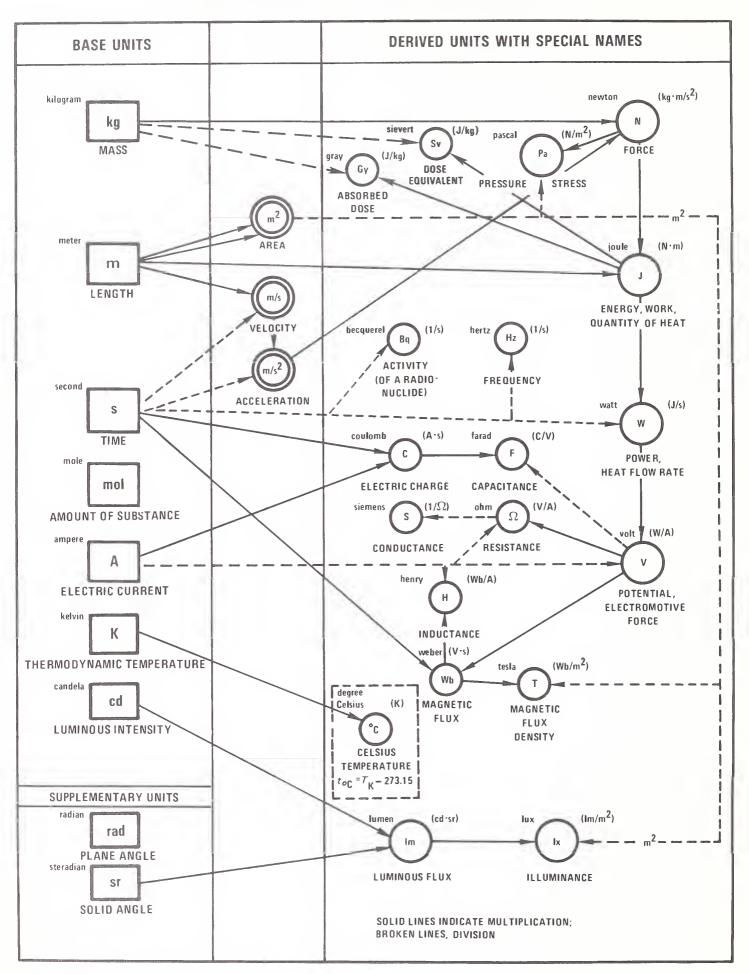


LC1132

(Supersedes LC1078)

THE METRIC SYSTEM OF MEASUREMENTS (SI)

Federal Register Notice of February 26, 1982


April 19,1982

This NBS Letter Circular reproduces the Federal Register notice that interprets and modifies the International System of Units (SI), the Modernized Metric System, for the United States. This notice supersedes a similar notice dated October 26, 1977.

Also included is a chart that shows the relationships of all the SI units to which names have been assigned.

May be reproduced freely

RELATIONSHIPS OF SI UNITS WITH NAMES

This chart shows graphically how the 19 SI derived units with special names listed in Table 2 of the Federal Register Notice, reprinted below, are derived in a coherent manner from the base and supplementary units. In the first column the symbols of the base and supplementary units are shown in rectangles, with the name of the unit shown toward the upper left of the rectangle and the name of the quantity (measurable attribute) shown below the rectangle. In the third column the symbols of the derived units with special names are shown in solid circles, with the name of the unit shown toward the upper left of the circle, the name of the quantity shown below the circle, and an expression of the derived unit in terms of other units shown toward the upper right. In the second column are shown those derived units without special names that are used in the derivation of the derived units with special names. In the chart the derivation of each unit is indicated by arrows bringing in numerator factors (solid lines) and denominator factors (broken lines).

The degree Celsius, shown on the chart in a broken-line rectangle, is a special name for the kelvin, for use in expressing Celsius temperatures or temperature intervals. Where it is used to express temperature intervals, it is equal to the kelvin, as shown on the chart, with the symbol K toward the upper right of the °C circle; where it is used to express Celsius temperatures, the equation below "CELSIUS TEMPERATURE" relates Celsius temperature $(t_{\circ C})$ to thermodynamic temperature (T_{κ}) .

National Bureau of Standards

Metric System of Measurement; Interpretation and Modification of the International System of Units for the United States

Section 3 of Pub. L. 94-168, the Metric Conversion Act of 1975, declares that the policy of the United States shall be to coordinate and plan the increasing use of the metric system in the United States. Section 403 of Pub. L. 93-380, the Education Amendments of 1974, states the policy of the United States to encourage educational agencies and institutions to prepare students to use the metric system of measurement as part of the regular education program. Under both these acts, the "metric system of measurement" is defined as the International System of Units as established by the General Conference

on Weights and Measures in 1960 and interpreted or modified for the United States by the Secretary of Commerce (sec. 4(4), Pub. L. 94–168; sec. 403(a)(3), Pub. L. 93–380). The Secretary has delegated his authority under these subsections to the Director of the National Bureau of Standards.

In implementation of this authority, tables and associated materials were published in the Federal Register of October 26, 1977 (42 FR 56513–56514), setting forth the interpretation and modification of the International System of Units (hereinafter "SI") for the United States.

In accordance with recent decisions of the International Committee for Weights and Measures of the General Conference on Weights and Measures, and to refine the earlier interpretation and modification, it is deemed appropriate to amend that interpretation and modification, as published in the above-cited Federal Register notice of October 26, 1977. To assist interested parties and encourage the proper use of SI, the entire interpretation and modification, as hereby amended, is republished. Accordingly, this notice supersedes the notice of October 26, 1977.

The amendments consist of the inclusion in table 2 of the sievert, a special name for the SI derived unit of dose equivalent, the inclusion in table 6 of the electronvolt and the unified atomic mass unit, and the inclusion in table 7 of the rem, a unit of dose equivalent. The unit "standard atmosphere" is no longer included in table 7. The amendments are indicated by a dagger symbol (†).

The SI is constructed from seven base units for independent quantities plus two supplementary units for plane angle and solid angle, listed in table 1.

TABLE 1.—SI BASE AND SUPPLEMENTARY UNITS

Quantity	Name	Symbol
SI base units: length	second	
amount of substance turninous intensity	molecandela	mol cd
plane anglesolid angle		rad sr

[&]quot;Weight" in common parlance is often used to mean "mass

Units for all other quantities are derived from these nine units. In table 2 are listed 19 SI derived units with special names which were derived from the base and supplementary units in a coherent manner, which means, in brief. that they are expressed as products and quotients of the nine base and supplementary units without numerical factors.

TABLE 2.—SI DERIVED UNITS WITH SPECIAL NAMES

	St unit		
Quantity	Name	Symbol	Expression in terms of other units
frequency	hertz	Hz	5-1
torce	newton	N	
pressure stress	pascal		
energy, work,	toule	J	
quantity of heat	10010		144111
power, radiant flux	watt	w	1/5
electric charge,	coulomb		As
quantity of			
electricity			
electric potential.	volt	V	W/A
potential			
difterence.		1	
electromotive			
torce.			
capacitance	tarad	F	C/V
electric resistance	ohm		V/A
conductance	siemens	S	A/V
magnetic Ilux	weber	Wb	V-s
magnetic flux density.	tesla	T	Wb/m²
inductance	henry	Н	Wb/A
luminous flux	lumen	lm	cd-sr
illuminance	lux	br	lm/m²
Celsius temperature 1	degree Celsius	° C	K
activity (of a	becquerel	Ba	9-1
radionuclide).			
absorbed dose.	gray	Gy	J/ka
specific energy	,	,	
imparted, kerma,			
absorbed dose			
ındex.			
dose equivalent,	sievert	Sv	J/kg
dose equivalent			
ındex.			

All other SI derived units, such as those in tables 3 and 4, are similarly derived in a coherent manner from the 28 base, supplementary, and specialname SI units.

TABLE 3.- EXAMPLES OF SI DERIVED UNITS EXPRESSED IN TERMS OF BASE UNITS

Quantity	St unit	Unit symbol
area	square meter	m²
volume	cubic meter	m ³
speed, velocity	meter per second	m/s
acceleration	meter per second squared.	m/s²
wave number	1 per meter	ni- i
density, mass density	kilogram per cubic meter.	kg/m³
specific volume	cubic meter per kilogram.	m³/kg
current density.	ampere per square meter.	A/m²
magnetic field strength	ampere per meter	A/m
concentration (of amount of substance)	mole per cubic meter	mol/m ³
luminance	candela per square meter.	cd/m²

TABLE 4 - EXAMPLES OF SLIDERIVED UNITS EXPRESSED BY MEANS OF SPECIAL NAMES

Quantity	Name	Unit symbol
dynamic viscosity	pascal second	Pa-s
moment of lorce .	newton meter	N-m
surface tension	newton per meter	N/m
heat flux density,	watt per square	W/m²
irradiance	meter	
heat capacity, entropy	joule per kelvin	J/K
specific heat	joule per kilogram	J/(kg K)
capacity, specific entropy	kelvin.	
specific energy	joule per kilogram	J/kg
thermal conductivity	watt per meter kelvin	W/(m·K)
energy density	joule per cubic meter .	J/m³
electric field strength.	volt per meter	V/m
electric charge density	coulomb per cubic meter.	C/m³
electric flux density	coulomb per square meter	C/m²
permittivity	farad per meter	F/m
permeability	henry per meter	H/m
molar energy	joule per mole	J/mol
molar entropy, molar heat capacity.	joule per mole kelvin	J/(mol·K)
exposure (x and y rays).	coulomb per kilogram .	C/kg
absorbed dose rate	gray per second	Gy/s

For use with the SI units there is a set of 16 prefixes (see table 5) to form multiples and submultiples of these units. It is important to note that the kilogram is the only SI unit with a prefix. Because double prefixes are not to be used, the prefixes of table 5, in the case of mass, are to be used with gram (symbol g) and not with kilogram (symbol kg).

TABLE 5.—SI PREFIXES

Factor	Prefix	Symbol
10 18	еха	Ε
10 15	peta	P
1012	tera	Т
109	grga	G
108	mega	M
103	kilo	k
10 2	hecto	h
10 1	deka	da
10-1	deci	d
10-2	centi	С
10-1	milli	m
10-6	micro	μ
10-9	nano	n
10-12	p+c0	р
10-15	femto	1
10-18	atto	a

Certain units that are not part of the SI are used so widely that it is impractical to abandon them. The units that are accepted for continued use in the United States with the International System are listed in table 6.

TABLE 6.- UNITS IN USE WITH THE INTERNATIONAL SYSTEM

Name	Symbol	Value in St unit
minute (time)	mın	1 min = 60 s
		1 h = 60 min = 3 600 s
day	d	1 d 24 h 86 400 s
degree (angle)		1° = (\pi/180) rad
minute (angle)		
		= (\pi / 10 800) rad
second '(angle)	·	1"=(1/60)
		$=(\pi/648000)$ rad
liter	L*	1 L= 1 dm ³ = 10 ⁻³ m ³
metric ton	t	1 t= 10 ³ kg
hectare (land area)	ha	1 ha = 101 m ²
telectronvolt	eV	1 eV = 1.602 × 10 ⁻¹⁹ J, ap-
		proximately**
tunified atomic	u	1 $u = 1.660 57 \times 10^{-27} ext{ kg},$
mass unit.		approximately**

"3 oth L and I are international symbols for liter. Because "1" can easily be confused with the numeral "1" the symbol "L" is recommended for United States use.

"The values of these units in terms of SI units are

obtained experimentally.

In those cases where their usage is already well established, the use, for a limited time, of the units in table 7 is accepted, subject to future review.

TABLE 7.—UNITS IN USE TEMPORARILY WITH THE INTERNATIONAL SYSTEM

nautical mile	angstrom	cune
knot	barn	roentgen
	bar	rad 2
	gal ¹	†rem 3

Metric units, symbols, and terms that are not in accordance with the foregoing Interpretation and Modification are no longer accepted for continued use in the United States with the International System of Units. Accordingly, the following units and terms listed in the table of metric units in section 2 of the Act of July 28, 1866 that legalized the metric system of weights and measures in the United States are no longer accepted for use in the United States: myriameter

gtere millier or tonneau quintal myriagram kilo (for kilogram)

For more information regarding the International System of Units, contact Dr. David T. Goldman, National Measurement Laboratory, National Bureau of Standards, U.S. Department of Commerce, Washington, D.C. 20234, telephone (301) 921-3304.

Dated: February 2, 1982. Emest Ambler, Director. [FR Doc. 82-5150 Filed 2-25-82; 8:45 am]

BILLING CODE 3510-12-M

 $^{^1}$ In addition to the thermodynamic temperature (symbol 7) expressed in kelvins (see table 1), use is also made of Celsius temperature (symbol 7) defined by the equation where $T_{\rm o} = 273.15~{\rm K}$ by definition. The unit "degree Celsius" is equal to the unit "kelvin," but "degree Celsius" is a special name in place of "kelvin" for expressing Celsius temperature. A temperature of the control of a Celsius temperature difference can be expressed in degrees Celsius as well as in kelvins.

Unit of acceteration.
 Unit of absorbed dose.
 Unit of dose equivalent.