
SOFTWARE
DEVELOPMENT

TOOLS:
A Reference Guide

to a Taxonomy of

Tool Features

«D)

/l\
(in) (fn) (out)

//U\\
(I) (C) (T) (S) (D) (U) (M)

///l\\\

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology
Institute for Computer Sciences and Technology

Washington, DC 20234

FOREWORD

This booklet has been prepared as a reference

guide to a taxonomy. In particular, the taxonomy

that will be presented is a hierarchical order of

the features of software development tools.

Software development tools are computer pro-

grams that aid the specification, construction,

testing, analysis, management, documentation,

and maintenance of other computer programs.

Thus, software development tools include the tra-

ditional tools of a programmer (e.g., compilers,

editors), more recently developed tools (e.g.,

design aids, program analyzers, testing tools),

and tools currently in the research stage (e.g.,

formal verifiers, programming environments).

Tools are important because they can be used to

increase software productivity and quality. As a

result, their use has evolved as an important part

of software development.

The features of software development tools allow

one to distinguish one tool from another and to

determine which tools are more appropriate for a

given application. In order to do this, one must
acquire detailed information on a tool. This should

include what a tool accepts as input and how it

accepts it, the way it manipulates and analyzes that

input, and what a tool produces as output for both

the tool user and for further processing by other

tools. With a careful analysis of this information,

one can begin to understand the real capabilities of

fctool and can compare these capabilities with those

Vf other tools. The taxonomy of tool features pre-

sented in the next section provides a framework for

communicating and a basis for understanding the

capabilities of a tool. Following a period of

comment and review, NBS plans to issue the taxon-

omy as a Federal Information Processing Standard
(FIPS) to be used for the classification, acquisition,

and evaluation of software development tools in the

Federal Government. More details on the taxono-

my are contained in NBS Special Publication 500-

74.

A TAXONOMY OF SOFTWARE
TOOL FEATURES

The taxonomy is a hierarchical order of software

tool features and is illustrated in figure 1. At the

bottom or feature level of the hierarchy are a

total of 52 tool features. Each of these features

will be defined and discussed in the sections that

follow. At the third level are the classes of tool

features. These are subject (I), control input (C),

transformation (T), static analysis (S), dynamic
analysis (D), user output (U), and machine
output (M). Each of the 52 features has been

placed into one of these classes. The second level

of the taxonomy covers the basic processes of a

tool. These are input (in), function (fn), and

output (out). The highest level (@) covers all the

levels below. A key has been assigned to each of

the elements in the third and fourth levels. The
keys provide a way to abbreviate the classifica-

tion by features of a software tool. Classification

will be discussed further in a later section.

(®)

/l\
(in) (»n) (out)

///l\\\
(I) (C) (T) (S) (D) (U) (M)

/// l\\\
(1

-4) (1
-2) (1

-6) (1
-19) (1

-9) (1
-6) (1

-6)

Figure 1. Taxonomy.

The taxonomy has been designed to be expandable.

It is expected that future updates of the taxonomy
will include additional features and additional

levels.

Input

Input features are based on the forms of input

which can be provided to a tool. These features

fall into two classes, one which is based on how
the tool should operate (control input) and the

other based on what the tool should operate on

(subject). Using a compiler as an example, the

subject is the code that will be compiled and the

control input is the set of commands which
specify compiler options (optimize, debug, cross

reference, etc.).

Subject (Key: I). The subject is usually the main

input to a tool. It is the input which is subjected

to the main functions performed by a tool. The
four types of tool subjects are text, VHLL (very

high level language), code, and data.

11. Text—The input to the tool is presented in a

natural language form. Certain types of tools are

designed to operate on text only (e.g., text

editors, document preparation systems) and

require no other input except directives or

commands.

12. VHLL—The input to the tool is a program
written in a very high level language that is

typically not executed. Three recognized types

of VHLL’s are requirements languages, design

languages, and description languages. Require-

ments and design languages are both used to

define programs and to provide a means for

generating automatic documentation. Descrip-

tion languages are used to describe attributes of

pie input in high-level, non-procedural form.

13. Code—The input to the tool is a program
written in a language that is subject to a given

translation process before it is executed. Code is

the language form in which most programming
solutions are expressed and includes high level

languages, assembly languages, object representa-

tions or parametric representations.

14. Data—The input to the tool is a string of
characters to which meaning is or might be
assigned. The input (e.g., raw data) is not in an
easily interpreted, natural language form.

Some tools, such as editors, operate on any of

the four of these input forms. In cases such as

this, the input form is chosen from the viewpoint

of the tool. Since editors view the input form as

text, then text would be the correct choice for

this tool.

Control Input (Key: C). Control inputs specify

the type of operation and the detail associated

with an operation. They describe any separable

commands that are entered as part of the input

stream.

Cl. Commands—The control input to the tool

consists primarily of procedural operators, each

capable of invoking a system function to be

executed. A directive invoking a series of diag-

nostic commands (i.e., TRACE, DUMP, etc.) at

selected breakpoints is an example. A tool that

performs a single function will not have this fea-

ture but will most likely have the next.

C2. Parameters—The control input is a series

of parameters that are associated with the

functions performed by the tool. Parameters are

usually entered as a result of a prompt from a

tool or may be embedded in the tool input. An in-

teractive trace routine that prompts for break-

points is an example of a tool with parametric

input.

Function

The features for this class describe the

processing functions performed by a tool and fall

into three classes: transformation, static analysis^

and dynamic analysis. Again using a compiler a?
an example, the transformation features would be

translation and possibly optimization, the static

analysis features would be error checking and
possibly cross reference, and a dynamic analysis

feature may be tracing.

Transformation (Key: T). Transformation fea-

tures describe how the subject is manipulated to

accommodate the user’s needs. They describe

what transformations take place as the input to

the tool is processed. There are six transforma-

tion features. Each of these features is briefly

defined as follows:

Tl. Editing—modifying the context of the input

by inserting, deleting, or moving characters,

numbers, or data.

T2. Formatting—arranging a program accord-

ing to predefined or user defined conventions. A
tool that “cleans up” a program by making all

statement numbers sequential, alphabetizing

variable declarations, indenting statements, and

making other standardizing changes has this fea-

ture.

T3. Instrumentation—adding sensors and count-

ers to a program for the purpose of collecting in-

formation useful for dynamic analysis. Most code
analyzers instrument the source code at strategic

points in the program in order to collect execu-

tion statistics required for coverage analysis and

tuning (see D2 and D9).

T4. Optimization—modifying a program to

improve performance, e.g., to make it run faster

or to make it use fewer resources. Optimizing

compilers have this feature.

T5. Restructuring—reconstructing and arrang-

ing the subject in a new form according to well-

defined rules. A tool that converts unstructured

code into structured code is an example of a tool

with this feature.

T6. Translation—to convert from one language

form to another. Tools that have this feature

include compilers, structured language preproces-

B
rs, and conversion tools.

atic Analysis (Key: S). Static analysis features

specify operations on the subject without regard

to the executability of the subject. They describe

the manner in which the subject is analyzed.

There are 19 static analysis features. Each is

briefly described as follows:

SI. Auditing—conducting an examination to de-

termine whether or not predefined rules have
been followed. A tool that examines the source

code to determine whether or not coding stand-

ards are complied with is an example of a tool

with this feature.

52. Comparison—assessing similarities between

two or more items. A tool that compares pro-

grams or test runs for maintaining version

control has this feature.

53. Complexity Measurement—determining

how complicated an entity (e.g., routine, pro-

gram, system, etc.) is by evaluating some number
of associated characteristics. For example, the

following characteristics can impact complexity:

instruction mix, data references, structure/con-

trol flow, number of interactions/interconnec-

tions, size, and number of computations.

S4. Completeness Checking—assessing whether
or not an entity has its parts present and if those

parts are fully developed. A tool that examines

the source code for missing parameter values has

this feature.

55. Consistency Checking—determining wheth-

er or not an entity is internally consistent in the

sense that it contains uniform notation and termi-

nology, or is consistent with its specification.

Tools that check for consistent usage of variable

names or tools that check for consistency

between design specifications and code are

examples of tools with this feature.

56. Cost Estimation—assessing the behavior of

the variables which impact life cycle cost. A tool

to estimate project cost and investigate its

sensitivity to parameter changes has this feature.

57. Cross Reference—referencing entities

other entities by logical means. Tools

generate call graphs or tools that identify

variable references in a subprogram have this fea-

ture.

58. Data Flow Analysis—graphical analysis of

the sequential patterns of definitions and refer-

ences of data. Tools that identify undefined

variables on certain paths in a program have this

feature.

59. Error Checking—determining discrepan-

cies, their importance, and/or their cause. Tools

used to identify possible program errors, such as

misspelled variable names, arrays out of bounds,

and modifications of a loop index are examples

of tools with this feature.

510. Interface Analysis—checking the inter-

faces between prograr^ elements for consistency

and adherence to predefined rules and/or

axioms. A tool that examines interfaces between

modules to determine if axiomatic rules for data

exchange were obeyed has this feature.

511. Management—aiding the management or

control of software development. Tools that

control access, updates, and retrievals of soft-

ware; tools that maintain and control data defini-

tion and use; and tools that manage test data sets

are examples of tools with this feature.

512. Resource Estimation—estimating the re-

sources attributed to an entity. Tools that esti-

mate whether or not memory limits, input/out-

put capacity, or throughput constraints are being

exceeded have this feature.

513. Scanning—examining an entity sequential-

ly to identify key areas or structure. A tool that

examines source code and extracts key informa-

tion for generating documentation is an example
of a tool with this feature.

514. Scheduling—assessing the schedule attrib-

uted to an entity. A tool that examines the

project schedule to determine its critical path

(shortest time to complete) has this feature.

515. Statistical Analysis—performing statistical

data collection and analysis. A tool that uses sta-

Pstical test models to identify where program-
mers should concentrate their testing is one
example. A tool that tallies occurrences of state-

ment types is another example of a tool with this

feature.

516. Structure Checking—detecting structural

flaws within a program (e.g., improper loop

nestings, unreferenced labels, unreachable state-

ments, and statements with no successors).

517. Tracking—tracking the development of an

entity through the software life cycle. Tools used

to trace requirements from their specification to

their implementation in code have this feature.

518. Type Analysis—evaluating whether or not

the domain of values attributed to an entity are

properly and consistently defined. A tool that

type checks variables has this feature.

519. Units Analysis—determining whether or

not the units or physical dimensions attributed to

an entity are properly defined and consistently

used. A tool that can check a program to ensure

variables used in computations have proper units

(e.g., hertz= cycles/seconds) is an example of a

tool with this feature.

Dynamic Analysis (Key: D). Dynamic analysis

features specify operations that are determined

during or after execution takes place. Dynamic
analysis features differ from those classified as

static by virtue of the fact that they require some
form of symbolic or machine execution. They
describe the techniques used by the tool to

derive meaningful information about a program’s

execution behavior. There are nine dynamic anal-

ysis features. Each is briefly described as follows:

Dl. Assertion Checking—checking of user-

embedded statements that assert relationships

between elements of a program. An assertion is a

logical expression that specifies a condition or

relation among the program variables. Checking
may be performed with symbolic or run-time

data. Tools that test the validity of assertions as

the program is executing or tools that perform
formal verification of assertions have this feature.

D2. Constraint Evaluation—generating and/oig

solving path input constraints for determining
test input. Tools that assist the generation of or

automatically generate test data have this fea-

ture.

D3. Coverage Analysis—determining and assess-

ing measures associated with the invocation of

program structural elements to determine the

adequacy of a test run. Coverage analysis is

useful when attempting to execute each state-

ment, branch, path, or iterative structure (i.e.,

DO loops in FORTRAN) in a program. Tools
that capture this data and provide reports summa-
rizing relevant information have this feature.

D4. Resource Utilization—analysis of resource

utilization associated with system hardware or soft-

ware. A tool that provides detailed run-time

statistics on core usage, disk usage, queue lengths,

etc. is an example of a tool with this feature.

r
D5. Simulation—representing certain features

of the behavior of a physical or abstract system

by means of operations performed by a

computer. A tool that simulates the environment

under which operational programs will run has

this feature.

D6. Symbolic Execution—reconstructing logic

and computations along a program path by

executing the path with symbolic rather than

actual values of data.

D7. Timing—reporting actual CPU times associ-

ated with parts of a program.

D8. Tracing—tracking the historical record of

execution of a program. Tools that produce trace

histories or allow the setting of breakpoints for

tracking down errors have this feature.

D9. Tuning—determining what parts of a pro-

gram are being executed the most. A tool that in-

struments a program to obtain execution

frequencies of statements is a tool with this fea-

ture.

Output

Output features provide the link from the tool to

the user. They describe what type of output the

•fl produces for both the human user and the

get machine (where applicable). Again using a

compiler as an example, the user output would
be diagnostics and possibly listings and tables

(cross reference), and the machine output would
be object code or possibly intermediate code.

User Output (Key: U). User output features

handle the interface from the tool to the human
user. They describe the types of information that

the tool provides for the user and the form in

which this output is presented. There are six user

output features. Each is briefly defined as

follows:

Ul. Computational Results—an output from the

tool is simply the result of a computation. The
output is not in an easily interpreted natural lan-

guage form (e.g., text).

U2. Diagnostics—an output from the tool

simply indicates that a software discrepancy has

occurred. An error flag from a compiler is an

example.

U3. Graphics—an output from the tool is graph-

ically presented with symbols indicating opera-

tions, flow, etc. A tool providing a flowchart of

a program is an example.

U4. Listings—an output from the tool is a

listing of a source program or data and may be

annotated. Many different forms of listings can

be generated. Some may be user controlled

through directives.

U5. Text—an output from the tool is in a

natural language form. The output may be a

choice of many different types of reports and the

formats may be user defined.

U6. Tables—an output from the tool is

arranged in parallel columns to exhibit a set of

facts or relations in a definite, compact and com-
prehensive form. A tool that produces a decision

table identifying a program’s logic (conditions,

actions, and rules that are the basis of decisions)

is an example.

Machine Output (Key: M). Machine output fea-

tures handle the interface from the tool to a

target machine. They describe what the machi®
expects to see as output from the tool. There are

six machine output features. Each is briefly

described as follows:

Ml. Data—The input to the machine is repre-

sentations of characters or numeric quantities to

which meaning has been assigned. A tool

generating input to a plotter is an example.

M2. Intermediate Code—The input to the ma-

chine is between source code and machine code.

A tool producing P-code for direct machine inter-

pretation is an example.

)M3. Object Code—The input to the machine is

a program expressed in machine language which
is normally an output of a given translation

process. A tool producing relocatable load

modules for subsequent execution is an example.

M4. Prompts—The input to the machine is a

series of procedural operators that are used to in-

teractively inform the system in which the tool

operates that it is ready for the next input.

M5. Source Code—The input to the machine is

the program written in a procedural language

that must be input to a translation process before

execution can take place.

M6. Text—The input to the machine is present-

ed in a written form that can be read without ma-
chine interpretation. A tool producing English

text which is fed to the machine is an example.

TOOL CLASSIFICATION

To classify tools with the taxonomy, one must

identify a tool’s input, functional, and output fea-

tures. As many features are identified as

necessary to fully describe the capability of a

tool. Identifying tool features, in some cases, can

a major challenge because most tool

Jpkcriptions fail to provide sufficient information.

Considerable effort may be required to acquire

the information necessary to identify what the

tool does and how it interfaces with the external

environment.

The result of classification is the hierarchical

representation of the features provided by a tool

which may be abbreviated using keys. For
example, if we were to classify the compiler that was

used previously as an example, it would have the

following classification:

Input
Subject

Code
Control Input

Commands
Function

Transformation
Optimization
Translation

Static Analysis

Cross Reference
Error Checking

Dynamic Analysis

Tracing
Output

User Output
Diagnostics
Listings

Tables
Machine Output

Object Code

The compiler would have the following classifi-

cation when individual keys are chosen:

I3.C1/T4.T6.S7.S9.D8/U2.U4.U6.M3

Note that the slash is used to separate the input,

functional, and output features and the period is

used to separate individual keys. It can be seen

from the example that the classification clearly

and succinctly communicates the features

provided by a tool and that the classification

summarizes the tool attributes.

SCOPE
The taxonomy is primarily a classificati^k

scheme for software development tools. Th^^
are, however, many tools that are broader in

function and application that can not be easily

classified by the taxonomy. These tools include

operating systems, system utilities (linkage

editors, loaders, tape handlers, file systems,

sorters), data base management systems, and man-
agement information systems. These tools serve

as an extended part of a system and are outside

the scope of the taxonomy. Since most of the fea-

tures in the taxonomy are specific to the soft-

ware development process, only tools specific to

software development should be classified.

