APPIICATION OF STATETECAL ANALYSIS TO RADIO TRANSMISSIDN PROBLENS. *

The radio laboratoryof the Bureau of Standards has, in a number of cises, hid thecicrobor of unilyzins a large amount of complex data obtained a result of tests conducted for the rurpose of investigating radio transmission phenomena. The wide distribution of observers and the large number of variables contained in the data require the use of racid methods of analysis. With the cooperation of the Eureau of the Census it has been possible to meike a comprehensive statistical analysis of such data with a minimum expenditure of time by the use of the tabulating machines with winich the Bureau of the Census is equipped.

Nature of Applicatiors of Method. -- The first radio problem in which such an ainaysis was made by the Bureau was the investigation of signal fading conducted during the years 1920 and 1921 in cooperation with the American Radio Relay League (reported in the followin articles, "The Bureau of Standirds - A.R.R.L. Fading Tests," by S.Kruse, QST, 4^{4}, Sect., Nov., Dec., 1920; "Radio Signal Fading Phenomena, " by J. H. Dellinger and L.E. Whittemore, Journal washington Academy of Sciences, 11, p. 245, 1921; "Final Report on tine Fading Tests," QST, 7, p. $2 \overline{9}$ of Ausust, p. 23 of Sept., 1923). A network of observing stations distributed over the eastern part of this country and Canada recorded, on each test night, the variation in the strensth of signals received from designated transmitting stations and forwirded these records to the Bureau of Stindards for analysis and interpretation.

An investigation of the transmission distance rene ef radio broadcasting stations has been in progress since 1922, the results of which are being analyzed in a similar way. The reports are secured in such a form as to be readily transferable to tabulating machine cards as described below in the case of signal fading.

Statistical work of similar character with the aid of the tabulating machine has been done for many years by workers in sciences other than radio communication. It is the rurpose of this pamphlet to describe the actual procedure followed in anzlyzing a specific kind of radio data so that others wishing to employ the method may eisily adapt it to radio problems.

In the radio fading tests, uniform record cards were prepared for each observation oy every observer taking part. These cards *Preparad by \cdot. H . Fngel Assistant Physicist.
(See Fig. I) contained such information as general reception conditions, intensty of sisnals received from the transmitting station of the system and the preaence or absence of "atmospherics." From Jescriptions of their stations sent in by each observer in the early stajes of the investigation adaitional information of a more or less invariable character was obtained.

The Tabulatind Machine:- Several types of electric tabulating machines are in uise ail of which are designed to comrile, classify and nalyze statistical information. The original data are transferred to caris by moans of runched holes, which remit the machine electrically and autnomatioally to classify and agraegate the various itcms recorded. The records obtained are capable of positive proo: and aje immediately available. Three machines are used in this work, a key runch, a sorting machine, and a tabulating or counting machine.

The key runch is manually operated and is used to trinsfer the data to the tabulating machine cards. Figure 1 shons a standard card used in these machines. The perforations represent classified information that $c \not a n$ be readily comiled to meet the particular need and this translation of oritten details into numerals enables the adoption of a rapid and elasicic metrod of makin, studies of the same figures from different roints of view. For example, suppose it is desire ${ }^{2}$ to learn what effect the presence of clouds during transmission has on the fadine of signals. It is nossible by this method not only to examine the data mith reference tio clouds present at the transmitting station but ilso to consider the presence of clouds at each receiving station individually or simultaneously at all points of the recording system. It is possible to do this with each factor entering into the problem, the tabulation of any conceivable combination of the various factors being made quickly and accurately.

The sorting machine is used in the process of sorting the information contained by the cards into any desired groups or classes.

The tabulating machine counts the cards and at the same time obtains any total or subtotal of the information desired. AIl of these machines operate at high speed and with remariable accuracy.

Preparation of the Data.-- All data entering into the analysis must be coded, mubers being aesisned aocording to a prearranged schedule. At the same time that the code numbers are assigned a vertical column (or more columns if necessary) on the standard card is reserved for each variable to be used. (See Fie. 1). This arrangement may be compared to a system of rectancular coordinates. The following table will serve to illustrate how one set of values of a given item was coded:

Table I.

The sixth vertical column on the standard card was reserved for wave frequency data. The remaining itemb were coded in a similar manner and a cory of the complete code used in our work is attached to this parer. (Apperdix I and Appendix II give the tabulation codes used in the fading tests and the distance range tests resrectivelý).

Charts consisting of cross-section raner havine the same number of vertical columns as the tabulating machine cards were used in the fading test analysis to summarize the data and to serve as a scurce of information when punching the tabulating machine cards. On the chart each horizontal line represented one record card and suprlied the information necessary for runching one taoulatins machine card. More than ninety (90) such charts averaging seventy (70) records each were necessury for summarizing the fading test data.

A large fart of this labor may be eliminated in work of this kind by having the standard card punched or marked by the observer while in the field. If so desired, the cards could be marked with a pencil in the proper places and the cards sent into the central office for runching and tabulating. Actual cunching in the field would necessitate the use of a punching machine by each observer. It would probably be more efficient and generally satisfactory to do all purching in one place where a skilled orerator is available.

A method now in use by this Bureau and which is due to Mr . C.M.Jansky, Jr., eliminates a large part of the clerical work attached to the punching of the tabulating machine cards. Fach observer is supplied with prepared forms which he uses in reForting the results of his observations. There are tables on the forms which are numbered and, in general, the observer gives the desired information by checking one of the items in each table. Upon receipt, filly filled out, the form is edited and the numbers checked in the various tabies are inserted in reserved spaces at the bottom of the sheet. This arrangement permits the tranafer of data to tabulating machine cards with a minimum amount of labor.

The Process of Tabulation, - All cards having been punched they are ready for the sorting and tabulating machines which will automatically count and classify the data on the cards in any way desired. Detailed written instructions are prepared which enable the tabulating machine operator to analyze the data and at the same time enter in scaces provided in these instructions, the totals and subtotals obtained. The work from this coint is automatic, it being only necessary to set the tabulating macnine to sort the cards according to the information desired. For example, to sort the cards into grouns according to wave frequencies used, it would be necessary to set tne sorting machine at the sixth column which is the column reserved for wave frequency data. After passing the cards through the machine, nine groups of cards would be obtainsà and each group would tinen be counted. The result of the above operation rould appear ais foliovs:

Wave frequency, 	Total number of records
1428	000
1393	354
1183	2701
1033	000
999	87
908	000
799	1965
575	35

The above operation takes into account only the information relating to wave frequency without regard to the other factors. An example of sorting and counting when two or more factors are considered simultaneously is given in what follows.

We will suprose that it is desired to compare all of the transmitting stations taking part in the tests with regard to the uniformity of the intensity of signals received from them. The first step would be to sort the cards into sixteen groups (since there were sixteen transmitting stations), each grour containing all the records taken on a rarticular transmitter. The number of cards in each group would then be counted using the tabulating machine for that purrose.

Each of these sixteen groups is now separated into two subgroups, the one containing all records rerorting no fading or slight fading and the other group containing all records reporta ing bad fading. lhe number of cards in each of these groups is also counted. The results of this sorting would be as follows:

* (Note: Only trinee of the sixteen stations are listed).

Medium values may be obtained by adding together the extreme values and subtracting this from the total. By means of these values or ones similarly taken, tables may be prepared as an aid to the interpretation of the results. Such a tabie is shown below in which the values are expressed in percentages of the totals:

Table 3*

Transmitting stations listed according to percentage non-fading _-_ _- _- signals during fading tests.

*A complete set of tabies in wich are included the results obtained by this method of analysis is given in Scientific Paper No. 476 , "A study of rasio signal fading," by J.H.Dellinger, L. F. Whittemore, and S.Kruse, obtainable from the Superintendent of Documents, Governwent Printing Office, Nashington, D.C., at -ten_cents_per cory.

A machine has been recently developed and is now commercially available which greatly simplifies analyses such as have been just described. This machine is called a "digit counter." This machine will count the number of cards having ones, the number having twos, the number having threes, etc., punched out in a particular column for a given group of cards passed through the machine. For example, instead of sorting according to the sixth column and then counting the nine groups separately to secure the data given above, the result oould be obtained by one operation with a digit counter. If the cards were passed through this machine oith the stylus set orposite the sixth column, the total number of records for each viave frequency would be shown on nine of the fourteen counters on the machine.

In audition to the nine digits, this machine will also count
cards having the $0, R$ and X positions punched and also the total number of punched cards passed through the machine. Wi th this machine it is also possible to use cards having more than one hole per column. The possibilities of the digit counter greatly extend the usefulness of tabulating machines in scientific work.

Appendix I.

Radio Fading Test Tabulation Code.

Observing stations:
Observing stations are coded by taking an alphabetical list of their calls and assigning serial numbers beginning with the first station.

Month and Days:
The usual method of coding is used, e.g. 11/12/21.
Wave frequency code:
$1=1499 \mathrm{kilocycles}$
$2=1428$
$3=1393$
$4=1199$
$5=1033$
$6=999$
$7=908$
$8=799$

Receiving region (zones):

$\begin{aligned} & 1=N \text { to } N E \\ & 2=N E \text { to } \end{aligned}$	and	closer	than	250 11	$\operatorname{mil}_{n} \text { es }$
$3=E$ to $S E$	"	"	"	"	11
$4=S E$ to S	"	"	"	11	11
$5=S$ to S^{*}	"	"	"	"	"
$6=S W$ to	"	"	"	"	"
$7=\$$ to N	"	"	"	"	"
$8=N$ to N	"	"	"	"	"
$11=N$ to NE	"	greater	"	"	"
$12=N E$ to E	"	"	"	1	"
$13=E$ to SE	"	"	"	1	"
$14=S E$ to S	"	"	$3:$	11	"
$15=S$ to Sm^{N}	"	"	11	\#	"
$16=$ SW to W	n	"	"	"	"
$17=$ 相 to	π	"	"	"	"
$18=N$ No N^{T}	"	"	\#	п	"

Flevation of receiving station:
0. No data.

1. Hill.
2. Plain
3. Veilley
\square

Wires:
O. No data

1. Trolley wires
2. Power wires
3. Signal wires
4. Trolley and power
5. Trolley and signal
6. Power and signal
7. All three

Intensities:
O. No signal

1. Small
2. Medium
3. Large

Fading:
0. No fading

1. Very slight fading
2. Medium faxing
3. Bax fading (slow)
4. Bad fading (rapid)

Static - Strays ("static")
C. No static

1. Very slight
2. Meaium
3. Bad (frequent)
4. Bad (infrequent)

Weather:

1. Clear
2. Cloudy
3. Rain
4. Snovi
5. Sleet
6. Fog
7. Lightning

Rain:
O. No rain

1. Rain

Clouds:
O. None

1. Here
2. Were present
3. Were and are present

Barometer:

1. Rising
2. Stationary
3. Falling.

Barometric gradient:

1. Up gradient
2. Alorg isobars
3. Down gradient.

Temperature gradient:

1. Up gradient
2. Along isotherms
3. Down gradieat.

Acpendix IT.
Pajio Distance_Range Tests Tabuiation Code.
The tatia below shows the information contained on a card describing a particuiar observation by a given observer on a given transmitting station as used in the radio distance range tests. Numbers not in parentheses refer to column numbers on the tabulation card; those in parentheses refer to numbers in the columns.

Table l.-- Summary of Range Test Data
(as runched on cards for tabulation)

1-2-3-Transmitting station number
4-5-6-7-Receiving station number

10-11-12-13-11 Date, number system, i.e., 06/01/22
15. Hour (Standard time at the receiving station)
16. Streng th of strays.
(1) $\left.\begin{array}{l}\text { 2 None } \\ 2\end{array}\right)$ 至ight
(13) Bad Very bad
(5) Local Iightnine
17. Severi.ty of fading
(1) No data
(2) Slight
(4) Very bad

Letter Circular 105-m10/31/23
18. Averaze strength of signal from station under test.
(2) Neak heard
(3) Strong
19. Average readability ctirough all interference.
(I) Not readable (3) But Iittle difficulty
(2) Just readable or oocasionally (4) Easily readable. readable.
20. Greatest obstacle to reception

(5) Amateur CWI and phone
(6) Commercial stations
(7) Broadcast stations
(8) Other receiving stations
(9) Power lines, etc.
21. Weather

1) Clear	(4) Fog
(3) Partiy cloudy	(5)
Rain	
	(7) Snow
	(7) Sloudy

22. Not used.
23. Dewector and circuit.
```
(1) Single-circuit crystal
(2) Tao-circuit crystal
(3) Single-circuit with tube detector (non-regenerative)
(4) Two-circuit with tube detectox (non-regenerative)
(5) Single~circuit wi th tube detector (regenerative)
(6) Two-circuit with tube detector (regenerative)
```

24. Audio-frequency amplification
(1) No amplification
(2) One step amplification
(3) Two steps amplification
(4) Three steps amplification
25. Radio-frequency amplification.

(3) Two steps amplification
(4) Three steps amplification
26. Location of station
3) on a plain
27. Immediate surroundings.
$\left(\begin{array}{l}\text { 1) No building near (open country) } \\ \text { (3) Buildings of moderate height (residential district) } \\ \text { High buildings (business districts) }\end{array}\right.$

$$
1 \because \text { in y } 3
$$

$$
\begin{aligned}
& \text { i ! } 1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\because & \vdots \\
\because & \ddots & \vdots \\
\ddots & \vdots & \vdots \\
\vdots & \vdots &
\end{array}
\end{aligned}
$$

28-29. Antenna equipment. (11) Coil antenna
88. Height in feet
$\begin{array}{lll}(2) & 0-20 & \text { feet } \\ (3) & 20-30 & n \\ 4 & 30-40 & 11 \\ 5 & 40-50 & n \\ (6) & 50 .-75 & n \\ 7 & 70 \\ 7 & 75-100 & " 1 \\ 8) & 0 v e r & 100\end{array}$
29. Length in ieet.

Using this summary, the reader can see that Fig. 2 shows a card punched for an observation on transmitting station 301 taken by observer 8305 whose distance is between 200 and 300 miles. The data were taken September 17, 1922, between 6 and 9 pm . There were no strays. Fading was slight. Signals were very strong and readable with little difficulty, the greatest obstacle being interference from other broadcasting stations. The weather was clear. The operator was using a two-circuit electron tube detector setivith two steps audio-frequency amplification, but no radio-frequency amplification. His station inas located on a hill in a residential district and his antenna was between 50 and 75 feet high and 100 to 125 feet long.
$\frac{\text { Worth. }}{\text { Date. }}$

FIG. 1.
STANDARD TABULATING MACHINE CARD USED IN FADING TEST ANALYSIS. THE CIRCLES IN EACH COLUMN REPRESENT PUNCHINGS WHICH MAY BE INTERPRETED BY REFERENCE TO THE ATTACHED CODE SHEETS.

Fig.2. Card Punched for Analysis of Data.

