

2 M. Aronoff and J. Messina

caused, ambiguities mean that constraints upon the valid range of element data are
often underused, which can impede automated processing of the standard.
Furthermore, as the standard itself is created by hand, information found in the
textual description may be missing from the standard altogether. If information is
repeated, or referenced multiple times, in the textual description, it may also appear
several times in the standard. Empty (and therefore unnecessary) “container”
elements may become part of the standard because they were part of the
implementing experts’ mental framework during the conversion from textual
description to formal standard.
 All of the above problems stem from an attempt to combine two separate steps of
the development process into one. The first step is to determine the standard’s
domain, which is generally the answer to the question “what information and/or
interactions are we trying to capture?” The second step is to create a particular
implementation, which can be characterized by the question “how will that
information be stored and moved around?” When those two steps are performed
simultaneously or in reverse order, the standard often suffers. What is needed is a
tool that allows domain experts to work solely on the domain of a standard without
falling into the trap of designing an implementation at the same time.

2 Solution: Focus, a distributed 3D modeling tool

The Focus 3D telemodeling tool attempts to improve the quality of information
exchange standards by borrowing a proven technique from the software industry:
data modeling. A formal data model captures only the domain information of a
standard; implementation questions are entirely removed from the process.
Domain experts are therefore able to describe the required data and interactions
with the appropriate amount of complexity, without concern about the eventual
language used to implement the standard and its particular idiosyncrasies. This
approach not only provides a clear, unambiguous description of the scope of a
standard, it also reduces the amount of time necessary to create the
implementation, as much of that process can be automated using existing software
tools. Moving the definition of a standard away from a textual description also
makes for quicker consensus between experts, as language and style issues no
longer factor into acceptance of the standard.
 A proper collaborative data model, however, can be difficult to achieve. The
cost of face-to-face meetings continues to rise, and existing solutions for remote
collaboration fall short when considering the problem of data modeling. Audio
conferences are insufficient, as data modeling is almost entirely a visual task.
Existing visual tools, such as web and video conferencing, are limited in that only
one person can actively work on a model at any given moment.
 To address the aforementioned problems, we developed Focus. It allows domain
experts to create data models without having Unified Modeling Language (UML)
expertise, and without being in the same physical location. Focus uses augmented
reality to create a shared, 3D environment. Abstract data modeling concepts like

Collaborative Augmented Reality for Better Standards 3

classes, associations, and generalizations are represented with concrete objects that
can be directly manipulated by the users.
 Augmented reality deals with “the overlay of virtual imagery on the real world.”
[2] More technically, it is the process of using specified, predefined marker objects
to position rendered, 3D objects within a real video stream. In Focus, that process
is combined with a 3D display device like a head-mounted display, a head-
mounted camera, and a hand tracking device. The result is that the user is
presented with a 3D data model that appears to float, for example, atop the user’s
desk. The user can reach into the model and make changes, and any other logged-
in users, in remote locations, can see the same model. The model behaves like a
real object -- the user can get up and walk around it to see it from different angles.

Each user in the system is given a virtual representation (an avatar) that shows
their position relative to the model.

3 Tracking the User

In order for a user to interact with the Focus environment, it is necessary to know
three things: their position relative to the model, the position of their hand relative
to the model, and any actions they are performing on the model. Position tracking
relies on two visible markers, or fiducials, as seen in Figure 1. The primary
fiducial represents the position of the model; it is free standing, and would
typically rest on a desk or table in front of the user. The secondary fiducial is
attached to the user’s hand, and tracks that hand’s position.
 The user’s perspective on the scene is extrapolated from the apparent size and
orientation of the primary fiducial in the user’s video camera feed. Each user’s
camera provides a video feed that duplicates their real-world point of view.
Whenever a new frame of video is available, Focus searches that frame for the two
fiducials, and provides their position in 3D space. The data model is rendered at
the position of the primary fiducial; a cursor and other indicators are rendered at
the position of the secondary fiducial. Anyone else in the system also has a

Figure 1. Example primary (left) and secondary (right) fiducials

4 M. Aronoff and J. Messina

perspective on the model, so the user sees other avatars appear where they are
“standing” relative to the model.
 Actions performed by the user are captured in one of two ways. A data glove,
capable of tracking finger positions, can be worn, in which case the user interacts
with Focus using a simple gesture language. Alternatively, the user can simply
hold any device that can provide the system with left- and right-click functionality;
in this case, the system uses standard mouse events to trigger actions. Since Focus
uses the secondary fiducial to track the hand’s position, a small presentation
remote works just as well as a mouse. Focus treats all actions as occurring at the
hand’s position. For example, if the user wants to create a new object, they would
reach their tracked hand into the model at the position where the new object should
be, and perform the “Create” gesture. The resulting configuration is flexible, in
that only a camera and a pointing device need to be connected to the system, and
scales well with increasing video (and therefore fiducial-tracking) quality, since no
changes are required when an upgraded camera or display device is attached.

4 Modular and Distributed-Computing-friendly

Focus was designed from the beginning to be modular. Each piece of the system
can be replaced with a minimum of fuss. Video input, fiducial tracking, user input,
and 3D rendering are all designed to be swapped out with new modules as
technology improves. Focus uses a NIST-developed dependency injection
framework called Trimurti [12] to decouple these application modules. Each
module in the system knows what services it provides, and what services it
requires. Trimurti is responsible for connecting the requested modules together,
taking into account each module’s requirements.
 One advantage to this approach is that it makes the addition of new functionality
very easy; as an example, we have implemented two different modules for user
input (gesture and mouse input), which can be interchanged with a single name
change in the module assembly code for Focus. Another advantage is that modules
can be provided remotely. Each module knows that its required services have been
provided, but it speaks to those services through Trimurti, which can make use of a
distributed computing framework. The clearest example of this process is that the
main repository, in which all Focus projects are stored, will be kept on a separate
server; all Focus clients will access the repository as if it were local, but it will be
supplied remotely. Distributed computing also allows us to run a Focus client on a
nominally underpowered machine. Fiducial tracking, a fairly computationally
expensive process, can be offloaded to another machine, again requiring only a
single-line code change.

5 Hardware and software

When creating Focus, we felt it was important to keep the cost to a minimum. The
target was to keep total system cost below the price of a dedicated video

Collaborative Augmented Reality for Better Standards 5

conferencing system. Focus uses inexpensive, currently available hardware, and is
built using only free software. It is designed to be cross-platform; initial
development was done on Mac OS X, but all software components work on Linux
and Windows as well. All Focus software will also be made freely available for
further development.
 For video capture, we are using a few different Firewire-based web cameras; all
provide video frames in standard delivery formats, and are therefore supported on
multiple platforms. Gesture input is handled with an inexpensive data glove which
tracks finger positions, but the system can also be operated using a standard mouse.
The most expensive component of the system is the head-mounted display (HMD).
This is also the component likely to see the most improvement over the next few
years. We are primarily using a display which makes use of relatively new organic
light-emitting diode (OLED) displays to provide bright displays that are high-
resolution when compared with other, similarly-priced HMDs. However, as the
technology matures, further increases in both resolution and the user’s perceived
field of view will certainly improve the usability of the system. HMDs in this class
can be found for less than $1000.
 Focus utilizes the following software:

• ARToolkit [2] for user position tracking and real video capture
• Coin3D [5] for 3D scene management and rendering
• Libp5glove [10] to interface with the data glove
• DRb [6] for the underlying distribution of our modules
• Trimurti [12] to decouple the application modules

 Additionally, Focus is written in Ruby. As a number of the software components
were not capable of communicating in Ruby, we created Ruby-language bindings
for ARToolkit, Coin3D, and Libp5glove using SWIG [11]. Using Ruby, a higher-
level, object-oriented language, shortened the overall development time; adapting
these existing and relatively mature toolkits was considered a better solution than
attempting to write our own tracking algorithms and glove interface driver.

6 Designed for simplicity

The primary purpose of Focus is to allow domain experts to create data models
quickly, so simplicity of interaction is critical.

• Whenever possible, the interface makes use of direct manipulation: 3D drag-and-
drop is used for model arrangement, new vertices are added to association lines
by grabbing and pulling on the line.

• When direct manipulation is not feasible, Focus uses familiar interface
metaphors, such as a tool palette like those found in graphics programs.

• The gesture language has been designed to use simple gestures, like “Create”
and “Select,” which may be concatenated.

• All actions are persistent, so the user does not need to “Save” progress.
• Some actions (deletion of model elements, certain renaming actions, etc.) require

acceptance by the user, but until that acceptance is received, the action is

6 M. Aronoff and J. Messina

provisionally accepted and affected objects are clearly marked as needing
attention.

• All data models are also persistent. A user may create a new model, but may
also resume work on an existing model, which may have other participants
already at work. When the current session is complete, the model simply waits
on the server for further modifications.

 Part of designing for simplicity required providing users with instant, non-
blocking feedback. When an action is invalid, the user is told during the action
rather than after failure. If items cannot be dropped in a particular location, their
appearance changes while the user is dragging them. If an action does fail (e.g. the
user drops the items even though they are marked as un-droppable in that location),
Focus informs the user via an information display along the edge of the screen, and
does not request user intervention before continuing. The same information
display is used to inform the user of other changes to the environment, such as new
users joining a domain modeling session.
 Searches follow the instant, non-blocking philosophy as well. As search terms
are entered and modified, results are highlighted within the model, and the
resulting selection can be used for any of the other available actions in Focus. One
of the advantages of a 3D model layout is the ease of defining a spatial search. A
user can query the model in a traditional way (looking for occurrences of a
particular piece of text or range of numbers), but can also include spatial criteria
(results within a certain distance of the user’s position, or of a selected element in
the model).

7 How it works

Now that the underlying technology and design philosophy have been discussed,
the next step is to explore what a Focus modeling session is like. In this example,
a data modeling project has already been created on the repository server at some
previous time. The user wishes to resume work on this project. She places the
main fiducial, which is a rectangle roughly 5x7 inches in size, on the desk in front
of her. She puts on the HMD and glove, and starts the Focus client program. At
startup, it connects to the repository server; the user authenticates for a particular
project, and is logged in. She is now participating in that project’s modeling
session. The data model appears atop the main fiducial on her desk, and other
users’ avatars appear around the desk at their respective relative locations.

Collaborative Augmented Reality for Better Standards 7

 Each object in the data model has a representation in 3D. Classes have a default
representation (see Figure 2), but can also be assigned model fragments. For
example, a circuit board class might have a 3D model of a board as its
representation. Focus can read model fragments stored in SGI’s OpenInventor
format, which can be created from any number of free and for-pay 3D modeling
tools. Associations, generalizations, and other connections between classes are
drawn as lines.

 Each user working on the model has a 3D palette of tools available to them; one
user’s palette is active at any moment, and only that user may modify the model.
(It should be noted that this was a design decision intended to enhance
collaboration, and the single active palette may be abandoned in the future in favor
of any user being able to modify the model at any time.) While inactive, the
palette contains a representation of the active tool being used on the model, the
name of the active user, and a button to request control of the model. Our user’s
palette is inactive to start. She presses the button to request control. When control
is relinquished by the active user, her palette becomes active and populates with
the available tools. These tools perform functions familiar to users of graphical
editors -- tools for the different types of classes and associations that may be
created, move, delete, and search. At this point, the user can make changes to the
data model, rearranging, adding, modifying, and deleting model elements; all other
users will see her changes reflected immediately in their own client applications.

8 Status

The design phase of Focus is complete, including the following steps:

• Use case catalog
• Publication on Focus architecture
• Investigated component technologies
• GUI design whitepaper published [1]

Figure 2. Default representation of a class

8 M. Aronoff and J. Messina

The implementation phase of Focus is ongoing. The following components have
been completed:

• I/O hardware purchased
• Software components developed and tested
• Basic system functionality complete

• Create, modify, rearrange and delete model elements
• Simple associations between model elements

9 Future steps

Development on Focus continues, with several organizations planning to test it as
the center of a model-driven process for standards development. Once the first
iteration is complete, additional features such as more complete UML coverage
and automated schema generation are planned. Additionally, as hardware prices
continue to fall, it is possible that “see-through” HMDs (which display only the
rendered 3D content on a transparent display) will be integrated into Focus,
removing the display resolution issues inherent to small, inexpensive cameras.

10 References

[1] Aronoff M, Messina J, Simmon E. Focus 3D Telemodeling Tool: GUI Design

for Iteration 1. NIST Interagency/Internal Report (NISTIR) 32470, 2006.
[2] ARToolkit. Available at: <http://artoolkit.sourceforge.net/>. Accessed on Feb.

23, 2007.
[3] Billinghurst M, Kato H. Collaborative Augmented Reality. Communications of

the ACM, July 2002;45;7:64-70.
[4] Billinghurst M, Cheok A, Kato H, Prince S. Real World Teleconferencing.

IEEE Computer Graphics and Applications, Nov/Dec 2002;22;6:11-13.
[5] Coin3D. Available at <http://www.coin3d.org/>. Accessed on Feb. 23, 2007.
[6] DRb (Distributed Ruby). Available at <http://chadfowler.com/ruby/drb.html>.

Accessed on Feb. 23, 2007.
[7] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 3rd edn. Boston San Francisco New York: Addison-Wesley, 2004;
35-52, 65-84.

[8] Griesser A. Analysis Catalog for Focus 3D Telemodeling Tool. NIST
Interagency/Internal Report (NISTIR) 32090, 2005.

[9] Griesser A. Focus 3D Telemodeling Tool Use Cases For Iteration 1. NIST
Interagency/Internal Report (NISTIR) 32096, 2005.

[10] Libp5glove. Available at <http://www.simulus.org/p5glove/>. Accessed on
Feb. 23, 2007.

[11] SWIG. Available at <http://www.swig.org/>. Accessed on Feb 23, 2007.
[12] Trimurti. Available at <http://trimurti.rubyforge.org/>. Accessed on Feb 23,

2007.

