

 NISTIR 7290

Fingerprint Identification and
Mobile Handheld Devices:
An Overview and Implementation

Wayne Jansen
Ronan Daniellou
Nicolas Cilleros

NISTIR 7290 Fingerprint Identification and

Mobile Handheld Devices:
Overview and Implementation
Wayne Jansen
Ronan Daniellou
Nicolas Cilleros

C O M P U T E R S E C U R I T Y

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20988-8930

March 2006

U.S. Department of Commerce
Carlos Gutierrez, Secretary

Technology Administration
Michelle O'Neill, Acting Under Secretary of Commerce for
Technology

National Institute of Standards and Technology

William Jeffrey, Director
 ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security, and its collaborative activities with
industry, government, and academic organizations.

 Certain commercial entities, equipment, or materials may be identified in this

document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report
18 pages (2006)

 iii

Abstract

The use of mobile handheld devices within the workplace is expanding rapidly. These devices
are no longer viewed as coveted gadgets for early technology adopters, but have instead become
indispensable tools that offer competitive business advantages for the mobile workforce. While
these devices provide productivity benefits, they also pose new risks to an organization’s security
by the information they contain or can access remotely.

Enabling adequate user authentication is the first line of defense against unauthorized use of an
unattended, lost, or stolen handheld device. This report describes using fingerprint identification
on handheld devices. Two types of solutions are described: one that uses the computational
capabilities of the handheld device to authenticate a user’s fingerprints, the other that uses the
computational capabilities of a specialized processor to offload processing by the handheld
device. Details of the design and implementation of both solutions are provided.

 iv

Table of Contents
Introduction ... 1
Background ... 3
The Multi-mode Authentication Framework (MAF)... 4
Fingerprint Authentication – Lightweight ... 6

Overview.. 6
Protection .. 8
Handler Implementation... 9

Fingerprint Authentication – Heavyweight ... 11
Overview.. 12
Protection .. 12
Handler Implementation... 13

Management interface .. 15
References... 17
Appendix A – Software Organization .. 18

 v

Introduction
With the trend toward a highly mobile workforce, the use of handheld devices such as Personal
Digital Assistants (PDAs) is growing at an ever-increasing rate. These devices are relatively
inexpensive productivity tools that are quickly becoming a necessity in government and industry.
Most handheld devices can be configured to send and receive electronic mail and browse the
Internet using wireless communications. While such devices have their limitations, they are
nonetheless useful in managing appointments and contact information, reviewing documents and
spreadsheets, corresponding via electronic mail and instant messaging, delivering presentations,
and accessing remote corporate data.

Manufacturers produce handheld devices using a broad range of hardware and software. Unlike
desktops and notebook computers, handheld devices typically support a set of interfaces that are
oriented toward user mobility. Handheld devices are characterized by their small physical size,
limited storage and processing power, and battery-powered operation. Most Personal Digital
Assistant (PDA) devices provide adequate memory (at least 32 megabytes of flash memory and
64 megabytes of random access memory) and processing speed (200 MHz or higher) for basic
organizational use. Such devices come equipped with a Liquid Crystal Display (LCD) touch
screen (one-quarter VGA or higher) and a microphone/ soundcard/ speaker, but usually lack a
QWERTY hardware keypad and rely instead on a virtually displayed one. One or more wireless
interfaces, such as infrared or radio (e.g., Bluetooth and WiFi) are also built-in for
communication over limited distances to other devices and network access points; so too are
wired interfaces (e.g., serial and USB) for synchronizing data with a more capable desktop
computer. Many high-end PDA devices also support Secure Digital (SD) and Compact Flash
(CF) card slots for feature expansion. Over their course of use, such handheld devices can
accumulate significant amounts of sensitive corporate information (e.g., medical or law
enforcement data) and be configured for access to corporate resources via wireless and wired
communications.

One of the most serious security threats to any computing device is unauthorized use. User
authentication is the first line of defense against this threat. Unfortunately, management
oversight of user authentication is a persistent problem, particularly with handheld devices,
which tend to be at the fringes of an organization’s influence. Other security issues related to
authentication that loom over their use include the following items:

• Because of their small size, handheld devices are easily lost, misplaced, or stolen.
• User authentication may be disabled, a common default mode, divulging the contents of

the device to anyone who possesses it.
• Even if user authentication is enabled, the authentication mechanism may be weak or

easily circumvented.
• Once authentication is enabled, changing the authentication information regularly is

seldom done.
• Limited processing power of the device may preclude the use of computationally

intensive authentication techniques or cryptographic algorithms.

 1

Fingerprint authentication is perhaps the best-known example of a proof by property mechanism.
Other classes of authentication mechanisms include proof by knowledge (e.g., passwords) and
proof by possession (e.g., smart cards).

This report describes fingerprint-based authentication mechanisms involving sensor units that
communicate with the device through standard interfaces supported by most handheld devices.
The report provides an overview of two different types of solutions to authenticate users and
provides details of the solutions’ design and implementation. The first solution uses the
computational capabilities of the handheld device to authenticate a user’s fingerprints. The other
solution uses the computational capabilities of a specialized processor to offload processing by
the handheld device.

The authentication mechanisms were implemented in C and C++ on an iPAQ Personal Digital
Assistant (PDA), running the Familiar distribution of the Linux operating system from
handhelds.org and the Open Palmtop Integrated Environment (OPIE). OPIE is an open-source
implementation of the Qtopia graphical environment of TrollTech. OPIE and Qtopia are both
built with Qt/Embedded, a C++ toolkit for graphical user interface (GUI) and application
development for embedded devices, which includes its own windowing system. The Familiar
distribution was modified with a Multi-mode Authentication Framework (MAF) that includes a
policy enforcement engine, which governs the behavior of both code modules and users [Jan03].
That framework provides the facility to add new authentication mechanism modules and have
them execute in a prescribed order.

 2

Background
Fingerprint verification is a quick and convenient method of establishing an individual’s identity.
Among all the biometric techniques, fingerprint-based identification is the oldest [Boe02]. A
fingerprint is made of a series of three-dimensional lines, called ridges, and the spaces between
them, called valleys. Features found in the unique pattern of a fingerprint’s ridges and valleys
are involved in the verification of an identity. Anatomic characteristics called minutiae are the
locations on a fingerprint where the ridges begin, stop, fork, or intersect. Minutia extraction
analyzes and identifies the key features of the fingerprint, such as the location and direction of
the ridges. Some approaches use only minutiae for matching, while others include information
such as the number of ridgelines between adjacent minutiae [Boe02].

When the fingerprint image is analyzed, the minutiae points are extracted and translated into a
code that serves as a template. The template is initially encrypted and stored in local memory, in
the scanning device itself, or on a smart card. Templates usually have a size of between 40 and
1000 bytes, often around 256 bytes [Boe02]. All of the details of the original fingerprint cannot
be recreated from the minutia data stored on the template. However, an artificial fingerprint
exhibiting that minutia can be generated [Ulu04].

Authentication by means of fingerprint recognition is based on matching the features of a live
fingerprint against those of enrolled fingerprints held in a data store. The technique relies on a
sensor to capture an image and the necessary algorithms to perform feature extraction and
matching. During verification of a fingerprint, an image of a live fingerprint is captured and
translated into a template of minutiae, and then compared with the stored templates of images
enrolled by the user. Authentication is successful and an identity established when the two
match. Several technologies exist that can be used to obtain a digital image of the fingerprint,
including capacitance, thermal, and optical sensing [Boe02].

Fingerprint authentication on a PDA is challenging since the algorithms cannot impose too high
a computational demand to be impractical, yet the result must be effective with reasonable false
acceptance and rejection rates. Fingerprint readers are beginning to appear as built-in hardware
on some PDA devices. For example, as early as 2002, IBM & CDL (Consumer Direct Link)
announced the Paron MPC PDA containing a small touch sensor, and at about the same time, the
HP’s iPAQ H54xx series was released containing a small swipe sensor beneath the navigation
button. Fingerprints readers have also been integrated into sleeves for iPAQ and other devices.

 3

The Multi-mode Authentication Framework (MAF)
MAF was developed previously in a related effort to provide a structured environment for the
protection and execution of one or more authentication mechanisms operating on Linux handheld
devices [Jan03]. The authentication mechanisms described in this report were implemented
specifically for this framework. Each authentication mechanism consists of two distinct parts: an
authentication handler and a user interface (UI) for the handler. Figure 1 illustrates these
elements within a Linux operating system environment, enhanced with kernel support for MAF.

Figure 1: Multi-mode Authentication Framework

Authentication handlers embody the mechanism that performs the actual authentication. They
communicate with the kernel, listening for when to initiate authentication and reporting whether
authentication was successful. They communicate with the user interface components to bring
up specific screens, accept input, display messages, etc. on the device. Handlers also
communicate with any peripheral hardware devices needed for authentication, such as a security
token, and access the file system to store and retrieve information as needed. Handlers run in
user space as do their respective user interface.

The user interface for an authentication mechanism is implemented as a set of components of a
plug-in module for the OPIE desktop environment. Their function is to perform all necessary
interactions with the user. For example, with smart card applications they can be used to prompt
for and accept entry of a personal identification number (PIN), or to notify the user of errors.
The plug-in module supports a socket interface to receive commands from an authentication
handler that runs as a separate process, and to route the commands to the correct user interface
component. Similarly, reverse routing is also supported for responses from user interface
components to an authentication handler.

 4

The kernel has two key modifications to support the framework: the policy enforcement
functionality and the multi-mode authentication functionality.

• Policy enforcement’s main responsibility is to impose different sets of policy rules on the
device, as signaled by multi-mode authentication, for one or more defined policy contexts
referred to as policy levels. For example, it can block hardware buttons and certain I/O
ports on the device until the user is authenticated at the lowest policy level, policy level 1.
Policy enforcement is also used to protect authentication information files, the user
interface and handler components, and policy enforcement information against improper
access. Moreover, it also has the means to register and start up authorized handlers, if
they are not running, or restart them, if they terminate for some reason.

• The main responsibility of the multi-mode authentication functionality within the kernel

is to govern the authentication steps as they relate to the various policy levels that are
configured. Communication between the kernel and an authentication handler is done via
the /proc file system. The multi-mode authentication functionality maintains complete
knowledge about the mappings between authentication mechanisms and policy levels,
simplifying the development of the authentication handlers. One of its key functions is to
initiate user authentication when the device is powered on. It also controls the order and
frequency in which the handlers are awakened from suspended state and begin execution,
and ensures that messages from only legitimate handlers are accepted and processed.

Together, the kernel policy enforcement and multi-mode authentication extensions are essential
for securing authentication applications.

To create an authentication mechanism, a developer needs to create an authentication handler for
the mechanism along with any needed user interface objects and the associated policy rules to
protect the mechanism. Policy rules include limiting access to any storage objects used, the user
interface objects within the plug-in module, and the handler itself; and limiting communications
to peripheral devices and among the handler, the user interface, and kernel. Note that writing an
authentication mechanism that neither interacts with the user nor requires a user interface
component is possible. For example, the mechanism could be based on a sensor that is
continually monitored and whose input triggers both an authenticated or non-authenticated
transition.

 5

Fingerprint Authentication – Lightweight
The lightweight fingerprint authentication mechanism relies on a fingerprint identification unit to
perform the entire authentication process and return a score for verdict determination to the
PDA. The work left to the PDA is mainly governing the fingerprint unit’s capture and
comparison of enrolled fingerprints with live prints. In addition, the PDA work includes the
display of user interface messages to guide the enrollment and management of fingerprints, the
determination of a pass/fail verdict from the matching score received, and the notification of an
authentication success or failure to the user. Figure 2 illustrates the functional organization of
the process, split between the fingerprint unit and the processor unit of the PDA. The term
lightweight is used to describe this approach, since much of the work is offloaded from the PDA
to the fingerprint unit, lightening the load on PDA processor unit.

Figure 2: Lightweight Functional Organization

The Fingerprint ID Unit (FIU) 300 from Sony was used for the prototype implementation.1 It is
a two-module sensor board and verification board, with a 128 x 192 pixel, solid state capacitive
sensor, 16-bit microcomputer, 1 megabyte of read only flash memory, 32 kilobytes of random
access memory, and supports RS-232 and Universal Serial Bus (USB) communications
interfaces. Extracted templates use 512 bytes per print, allowing up to 1000 fingerprint
templates to be stored in on-board memory. Templates can also be exported and stored
elsewhere. A temporary session key is used with a nonce to encrypt communications to/from the
unit and protect against replay. Encryption uses the Data Encryption Standard (DES) 56-bit data
Electronic Code Book (ECB) mode. Session keys are managed by the PDA, using a shared
master key.

Overview
The fingerprint handler for the lightweight solution, as all MAF handlers, runs in user space.
The handler manages the mechanism by communicating with the kernel, the fingerprint reader,
and the Opie plug-in containing its user interface components. It guides the placement and

1 More information about the FIU-300 can be found at
http://bssc.sel.sony.com/Professional/puppy/files/SONY47653_FIU300.pdf

 6

http://bssc.sel.sony.com/Professional/puppy/files/SONY47653_FIU300.pdf

removal of fingers during fingerprint scans and controls all the necessary steps regarding the
authentication process and verdict determination.

The handler is triggered by the MAF enabled kernel when the user tries to access a specific level
that the handler protects, and after obtaining a live fingerprint scan of the user, replies to the
kernel with the result of the authentication (success or failure). The fingerprint handler is a non-
polling one – once a user is authenticated, the mechanism does not need continual fingerprint
authentication checks, as long as the policy level remains at that of the mechanism or higher.
The handler uses the Opie plug-in to tell its UI to display informative messages to guide the user
through the sign-on and enrollment steps. The type of interaction with the fingerprint reader
depends on the device interface used (e.g., serial, USB, etc.) and the command set of the reader.
In the case of the FIU-300, it uses the on-board capabilities of the device to acquire the
fingerprint images and templates, control the matching process, and obtain the scores of matches.

Fingerprint authentication has two main parts: enrollment and verification. Figure 3 gives an
overview of the fingerprint authentication process. The upper half shows the verification
functionality and the lower half the enrollment functionality. Note that discretion to enable the
authentication mechanism is, by default, left to the user. However an organizational
administrator can pre-enable the mechanism by enrolling the user at the time the device is issued.

Figure 3: Authentication Process Overview

 7

When activated, the handler mechanism prompts the user to login or, if fingerprints are not yet
enrolled, notifies the user to do so and then allows access. The authentication mechanism is
activated at both device power on and system boot up. Enrolling a fingerprint requires the
device to register a fingerprint scan of the finger several times to ensure accuracy. After the user
enrolls one or more fingerprints, he must successfully authenticate himself in the future before
being allowed to access the device or to add new or replace existing fingerprints. If a problem
arises during enrollment, the user can continue the process until successful.

Enrollment uses several types files. The mechanism settings file contains information related to
the scanning process, such as the number of fingerprints to collect and the root shared key for
encrypting information to and from the fingerprint unit. When a successful enrollment occurs,
the resulting template derived from the fingerprint scans taken of the user are saved away within
the fingerprint template information file, and the user gains access to the device. Note that for
the lightweight variant, fingerprint templates are maintained in the memory of the fingerprint
unit.

Once enrolled, subsequently powering on or booting up the device prompts the user to provide a
live fingerprint image for verification. The verification process uses information from the
mechanism settings file to encrypt information between the device and the fingerprint reader. A
correct match against the enrolled fingerprint templates in the fingerprint information file results
in successful authentication and access is granted to the device. If too many authentication
failures occur, further attempts are blocked temporarily to prevent unrestricted password
guessing attempts.

Any time after gaining access, a user can update the set of enrolled fingerprints by using an
available icon to launch the process and providing a live fingerprint image for verification, which
then follows the same procedure described above for verification at power on or boot up. In
Figure 3, the “Verify Fingerprint” boxes associated with fingerprint update do not show the
information flows discussed above, but are present implicitly. Successful verification allows the
user to enroll new fingerprint images adding to or replacing the existing set. A successful
enrollment updates the fingerprint template information file and the user regains access to the
device.

Protection
For user authentication the fundamental threat is an attacker impersonating a user and gaining
control of the device and its contents. Fingerprint units should be embedded into devices that are
designed to resist physical tampering and avoid exposing the communications channel between
the device and the unit. Presuming those safeguards are effective, the following vulnerabilities
are the main candidates for exploitation:

• The authentication mechanism can be bypassed
• Weak authentication algorithms and methods are used
• The implementation of a correct and effective authentication mechanism design is flawed
• The confidentiality and integrity of stored authentication information is not preserved

The fingerprint handler uses the encryption capabilities of the FIU-300 to protect its
communications with the unit. The openssl library is used to carry out the encryption operations

 8

on the PDA. Fingerprint templates are maintained on the FIU-300. Storing the templates in the
memory of the biometric device avoids risks associated with their transmission [Pol97].

The lightweight fingerprint authentication mechanism relies on MAF, which in turns relies on
the security of the underlying operating system implementation. The handler must be protected
from substitution and overwrite respectively through the multi-mode authentication and policy
enforcement functionalities of MAF. Substitution is prevented through an entry in the list of
registered handlers (e.g., </usr/bin/handlerSMMC 2>) identifying its location, while overwrite is
prevented with the following policy rules in the MAF policy file (/etc/MAF/defaultPolicy),
which also grants exclusive access to information maintained by the handler:

<file /etc/MAF/FP* /usr/bin/HandlerFP 0>
<file /root/Settings/FP/* /usr/bin/HandlerFP 0>

Handler Implementation
The lightweight fingerprint handler operates as a non-polling handler, allowing a prescribed
number of fingerprint scans before giving up. The following code excerpt shows the main
execution loop of the handler, during a regular authentication (device available, fingerprint(s)
already enrolled):

while(1) {
 int result;

 result = HandlerReady (0);
 TellKernel (ex_Login() ? "AUTH-OK" : "AUTH-FAIL");
 }

The ex_Login() function below uses the global variable NB_OF_ATTEMPTS, which is set to
the number of authentication attempts allowed a user to provide a live matching fingerprint
before an authentication failure is returned to the kernel.

for(nb_of_attempts = 1; nb_of_attempts <= NB_OF_ATTEMPTS;
nb_of_attempts++)
 {
...

 if (fingerprint_authentication (fd))
 {
 TellUI ("FP:shw:User Authenticated");
...
 plugin_release_device(fd);
 return -1;
 }
 } // for nb_of_attempts
...
return(0);

The fingerprint_authentication function called by ex_Login() determines where to carry out
the work (i.e., either off or on the PDA), as shown below.

int fingerprint_authentication (int fd)
{

 9

 #ifdef FIU300_ONLY
 // scanning and processing of the fingerprint done on the device
 i = compare_on_fiu300(fd, 5);
 #else
 // scanning of the image, then transferred to the pda, which process it
 i = compare_on_pda(fd);
 #endif // FIU300_ONLY

 if (i < AUTH_THRESHOLD)
 {
 printf("fingerprint_authentication: failed\n");
 return 0;
 }
 printf("fingerprint_authentication: success\n");
 return 1;
}

For the lightweight authentication variant, the compare_on_fiu300 function is called. The work
is eventually performed on the fingerprint device, using findIDInListwithScan(), which is part
of the system development kit for the fingerprint unit. The function builds the appropriate
command according to the parameters given, sends it to the unit, gets acknowledgment from the
unit, and returns the score.2 The unit itself scans a fingerprint image, creates gray scale and
monochrome data, and compares the monochrome data with template data at specified index
numbers to obtain a matching score.

/***
*/
 int compare_on_fiu300(int fd, int nb_registers, ...)
 {
...

 if ((i = findIDInListwithScan(fd, &score, 10, 8, 0X00, 0X17 0X00,
 0X02, 0X00, 0X00, 0X00, 0X01)))
 {
 fprintf(stderr, "compare : findIDInListwithScan failed (%d)\n", i);
 return(-1);
 };

 return score;
 }

2 An overview of the functions supported by the system development kit for the FIU-300 is available at
http://bssc.sel.sony.com/Professional/puppy/files/PUPSDK1.pdf

 10

http://bssc.sel.sony.com/Professional/puppy/files/PUPSDK1.pdf

Fingerprint Authentication – Heavyweight
The heavyweight fingerprint authentication mechanism relies on the computational capabilities
PDA to perform the entire authentication process. The PDA relies on the fingerprint sensor only
to capture fingerprint images on demand, performing feature extraction, template storage,
matching, and verdict resolution using its own computational resources. Figure 4 illustrates the
functional organization of process, split between the fingerprint unit and the processor unit of the
PDA. The term heavyweight is used to describe this approach, since most of the work is done
directly on the PDA rather than the fingerprint unit, reducing the hardware needed for the
fingerprint unit to a sensor.

Figure 4: Heavyweight Functional Organization

The heavyweight solution can significantly overwhelm the processing load on the PDA
processor unit. Two experiments performed with open source code, cross-compiled to the ARM3
processor used on the iPAQ, illustrate this point. Executing an early version of a fingerprint
verification system from SourceForge took approximately one hour to feature extract and match
a fingerprint.4 While an order of magnitude better, the NIST fingerprint image software took
several minutes to perform the same task.5

The heavyweight application uses a commercial product for Original Equipment Manufacturers
called FingerCell, which is specialized for handheld devices.6 The FingerCell Embedded
Development Kit (EDK) provides a software library, documentation, and a sample fingerprint
database for developing an embedded fingerprint identification system. The FingerCell library
functions include feature extraction, feature generalization, matching, and algorithm parameter
setting. The library is designed to run on ARM-based platforms and for compatibility with the
Arm-Linux GCC C compiler. An ARM based processor with at least 150 MHz Central
Processing Unit (CPU) clock rate results in fingerprint enrollment in less than one second.

3 More information on ARM processors can be found at http://www.arm.com/
4 More information can be found at http://fvs.sourceforge.net/
5 More information can be found at http://fingerprint.nist.gov/NFIS/index.html
6 More information on the FingerCell library can be found at http://www.neurotechnologija.com/fc_edk.html

 11

http://www.arm.com/
http://fvs.sourceforge.net/
http://fingerprint.nist.gov/NFIS/index.html
http://www.neurotechnologija.com/fc_edk.html

Overview
The fingerprint authentication process illustrated earlier in Figure 3 is also applicable for the
heavyweight solution. The heavyweight variant of fingerprint handler, as with the lightweight
variant, is a non-polling handler that runs in user space. It also manages the mechanism by
communicating with the kernel, the fingerprint reader, and the Opie plug-in containing its user
interface components in a similar fashion, guiding the fingerprint scanning process and
controlling all the necessary steps during the authentication process and verdict determination.
The main difference, however, is that once an image is captured from the fingerprint sensor, the
handler relies on the algorithms of the FingerCell library to extract features and create templates
and to perform matching operations.

Two different sensors were used in the implementation:

• The Fingerprint ID Unit (FIU) 300, discussed earlier in the lightweight fingerprint
authentication section

• The Atmel FingerChip AT77C101B

The automatic template extraction, storage, and matching features of the FIU-300 were not used
in the heavyweight variant. Instead, only its ability to capture and return an image was relied on.
However, communications with the unit were encrypted using the FIU-300 supported features.

The FingerChip single-chip sensor is integrated into the body of iPAQ 5400’s and 5500’s and
interfaces to the USB host controller.7 It uses physical temperature effects for fingerprint
sensing. The sensor comprises an array of 8 rows by 280 columns, giving 2240 temperature-
sensitive pixels. The fingerprint image is captured by sweeping the user's finger across the linear
sensing area. Sweeping captures successive images (slices) from which the fingerprint is
reconstructed. Reconstruction produces a large, high-quality, 500 dots per inch image of the
fingerprint. Unlike the FIU-300, no function exists to support encrypted communications with
the processor.

Protection
For user authentication the fundamental threat is an attacker impersonating a user and gaining
control of the device and its contents. Fingerprint units should be embedded into devices that are
designed to resist physical tampering and avoid exposing the communications channel between
the device and the unit. Presuming those safeguards are effective, the following vulnerabilities
are the main candidates for exploitation:

• The authentication mechanism can be bypassed
• Weak authentication algorithms and methods are used
• The implementation of a correct and effective authentication mechanism design is flawed
• The confidentiality and integrity of stored authentication information is not preserved

As with the lightweight variant, the heavyweight fingerprint authentication mechanism relies on
MAF, which in turns relies on the security of the underlying operating system implementation.
The heavy fingerprint handler and its UI components are protected using the policy enforcement

7 Information on the driver used for the Familiar distribution on the iPAQ can be found at
http://heim.ifi.uio.no/~jorgenam/h5400/

 12

http://heim.ifi.uio.no/~jorgenam/h5400/

mechanisms and policy rules as that of the lightweight variant. When communicating with the
FIU-300, all messages are encrypted.

Handler Implementation
The heavyweight fingerprint handler operates as a non-polling handler, allowing a prescribed
number of fingerprint scans before giving up. The main execution loop of the handler is the
same as that of the lightweight variant discussed earlier. The fingerprint_authentication
function called by ex_Login() from the main loop is also identical. However, instead of the
work being carried out on the device, fingerprint authentication is carried out on the PDA
through the use of the compare_on_pda function listed below.

int compare_on_pda(int fd) {
 ...
// get the collection of enrolled fingerprint files to compare the
fingerprint to
 n = scandir(WORKING_DIRECTORY, &enrolledList, filter, alphasort);
...
 // Put the finger on the sensor
...
 if ((i = scan(fd)))
 ...

 TellUI("FP:shw:Scan complete\nPlease remove your finger");

 // copy the grayscale from the device to the pda
 if ((i = getGrayscale(fd)))
 ...

 // show the image to the user
 if(!(buffer1=strcatalloc(0, 3, "FP:shwimg:", WORKING_DIRECTORY,
"grayscale.pgm")))
 ...
 TellUI (buffer1);

 // Processing the file
 // first, the image of the fingerprint just scanned is of grayscale type
 type1=0;
...
 if (!(buffer1=strcatalloc(0, 2, WORKING_DIRECTORY, "grayscale.pgm")))
 ...

 while(n--)
 {
// determine the type of the file which will be processed
 if (!(i=fnmatch("*grayscale*", enrolledList[n]->d_name,
FNM_NOESCAPE)))
 {
 //grayscale
 type2=0;
 } else {
 //template
 type2=1;
 }

 if (score < AUTH_THRESHOLD)

 13

 {
// compare with the next file in the collection we found, only if
necessary
 if (!(buffer2=strcatalloc(0, 2, WORKING_DIRECTORY, enrolledList[n]-
>d_name)))
 {
 //error handling
 } else {
 if ((score = compare_fingerprints(buffer1, type1, buffer2, type2)
) < 0)
 ... //error handling
 }
 }
 free(enrolledList[n]);
 }

 /* delete the raw image */
 printf("Deleting the grayscale image got from the device for comparison
(%s)\n", buffer1);
 i=remove(buffer1);
 ...

 return score;
}

The compare_on_pda function collects a live fingerprint and then compares it to the enrolled set
of fingerprints using the FingerCell compare_fingerprints function. Similarly, during
enrollment, the heavyweight solution uses a FingerCell function to generalize the fingerprint
images scanned to remove noise and extract the common characteristics to create a template.

 14

Management interface
The fingerprint management interface is the same for both the lightweight and heavyweight
solutions. It can be launched at any time to enroll or update the set of enrolled fingerprints via an
icon located on the tab “Settings” of the Opie desktop. If fingerprints have been enrolled, the
user must authenticate to the mechanism with a live fingerprint, before any changes are allowed.
The snapshots of the user interface are shown in Figure 5 below, showing the attempt to enroll a
new fingerprint (at left) and delete an existing one (at right).

Figure 5: Fingerprint Management Screens

The management interface is very simple and intuitive to use. The user can select any finger of
either hand. For the selected finger, an action is proposed corresponding to the enrollment state
of this finger. The user can erase the information using the Erase button or add a fingerprint
using the Enroll button. :

• If the finger is enrolled, its name is underlined. If the user chooses to erase a fingerprint,
all information concerning the fingerprint is cleared, after a confirmation. If the user
chooses to update a fingerprint, the existing information must be cleared before the
enrollment process can proceed (i.e., the finger must not be enrolled).

• If the finger is not enrolled, no underline appears and the user can enroll the finger.
Three consecutive fingerprint scans are taken, which are compared against one another
using a round robin protocol. The one with the best average result is selected as the
representative template for the user’s finger.

After an action is completed, the interface is updated and the user can continue with any
additional fingerprint management functions.

 15

The fingerprint management interface is contained in the Opie plug-in, with the other MAF
interfaces. The graphical part is written in C++ and completely separated from the processing
part, the handler itself, written in C.

The dialog between the handler and the interface is done using the dialog protocol, as shown in
the following code with the erase_fingerprint() method:

// This method is called when the user presses the Erase button, after
choosing a finger
int FPManagementUI :: erase_fingerprint() {

// handFinger is the finger currently selected

 char Seq[250];
 snprintf(Seq, 250, "FPM:eras:%i", handFinger);
 if (-1 == msgMux->SendMsg(Seq, (struct sockaddr*)rAddr, rAddrLen)){
 perror ("Error Sending the sequence");
 }

}

Every time the interface needs to communicate with the handler, a message is constructed and
sent. The handler analyzes this message, as illustrated in the following code example:

// Test if the message is an erase command

if (strncmp (msgFromUI, "FPM:eras", 8) == 0) {
 printf("erase_fingerprint command received \n");

 char str [10];
 int tp_fing = 0;

 // We scan the message to get the finger number

 if(sscanf (msgFromUI, "%9s%d",str,&tp_fing)){
 printf("\nerase_fingerprint - sscanf done, finger = %i \n" ,
tp_fing);

 // we launch the erase process
 if (!(erase_fingerprint(tp_fing))) {
 sprintf(msgToUI, "FPM:quit:%i", 4);
 TellUI(msgToUI);
 release_device(fd);
 return(-1);
 }

 16

References

[Beo02] Nicky Boertien, Eric Middelkoop, Authentication in Mobile Applications, CMG,

Telematica Instituut, The Netherlands, January 2002, <URL:
https://doc.telin.nl/dscgi/ds.py/Get/File-23314/VH_authenticatie.pdf>.

[Jan03] Wayne Jansen Vlad Korolev, Serban Gavrila, Thomas Heute, Clément Séveillac, A

Framework for Multi-Mode Authentication: Overview and Implementation Guide,
NISTIR 7046, August 2003, <URL: http://csrc.nist.gov/publications/nistir/nistir-
7046.pdf>.

[Pol97] Despina Polemi, Biometric Techniques: Review and Evaluation of Biometric

Techniques for Identification and Authentication, Institute of Communication and
Computer Systems, National Technical University of Athens, April 1997, <URL:
ftp://ftp.cordis.lu/pub/infosec/docs/biomet.doc>.

[Ulu04] Umut Uludag, Anil K. Jain, Fingerprint Minutiae Attack System, The Biometric

Consortium Conference, Arlington, VAm September 2004, <URL:
http://www.wvu.edu/~bknc/2004%20Abstracts/Fingerprint%20Minutiae%20Attack%
20System.pdf>.

 17

https://doc.telin.nl/dscgi/ds.py/Get/File-23314/VH_authenticatie.pdf
http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
http://csrc.nist.gov/publications/nistir/nistir-7046.pdf
ftp://ftp.cordis.lu/pub/infosec/docs/biomet.doc
http://www.wvu.edu/~bknc/2004 Abstracts/Fingerprint Minutiae Attack System.pdf
http://www.wvu.edu/~bknc/2004 Abstracts/Fingerprint Minutiae Attack System.pdf

Appendix A – Software Organization
The fingerprint authentication software is organized into the following components:

• FPManagementUI.cpp - This is the management interface class, where enrolling and
deleting fingerprints are implemented.

• main.c - This is the regular main code of the handler that is launched by the kernel to

carry out authentication. The ex_Login and fingerprint_authentication functions
discussed in the body of the report are part of this component.

• fingerprint.c – This Contains the main methods of the fingerprint handler, such as

reading/saving configuration, initiating comparisons, etc. The compare_on_pda and
compare_on_fiu300 functions discussed in the body of the report are part of this
component.

• authentication.c - The methods here carry out the authentication. They are called by the

methods in fingerprint.c. If the authentication library or its methods are changed this part
should be re-implemented.

• encryption.c - The FIU-300 uses encryption for communication; the methods used to

perform cryptography using the openssl library are embodied here.

• serial.c –The generic methods that fingerprint.c is calling and also specific ones for the
specific device being used are located here. This procedure should be re-implemented if
another RS-232 serial scanner is used. The heavyweight variant relies too much on the
specific communication protocol of the sensor to abstract out generic functions. For the
lightweight variant, the generic methods that would need to be re-implemented for
another scanner are:

• getGrayscale()
• release_device()
• initialise_device()

 18

	Introduction
	Background
	The Multi-mode Authentication Framework (MAF)
	Fingerprint Authentication – Lightweight
	Overview
	Protection
	Handler Implementation

	Fingerprint Authentication – Heavyweight
	Overview
	Protection
	Handler Implementation

	Management interface
	References
	Appendix A – Software Organization

