
NBSIR 88-3770

AN AMPLE VERSION 0.1 PROTOTYPE:
THE HWS IMPLEMENTATION
:•

.
.

'

- rCK

April 21,1988 By:

Herbert T. Bandy Victor E. Carew, Jr. Jack C. Boudreaux

An AMPLE Version 0.1 Prototype:

The IIWS Implementation

H.T. Bandy V.E. Carew, Jr. J.C. Boudreaux

27 April 1988

Certain commercial equipment, instruments or materials are identified in this paper

adequately specify the experimental procedure. Such identification does
recommendation or endorsement by the National Bureau of Standards, nor does it

the materials or equipment identified are necessarily the best available for the purpose.

in order to

not imply

imply that

This publication was prepared by United States Government employees as part of their official

duties and is, therefore, a work of the U.S. Government and not subject to copyright.

'wk

CONTENTS

I. INTRODUCTION 1

1.

AN ORIENTATION FOR THE READER 2

n. AN OVERVIEW OF THE AMRF HORIZONTAL WORKSTATION 3

1. HORIZONTAL WORKSTATION CONTROLLER (HWSC) 3

2. COMMAND LEVEL INTERFACE FOR RCS 4

3. HIGH LEVEL MACHINE TOOL CONTROLLER (HLMC) 6

4. HORIZONTAL WORKSTATION FIXTURING CONTROLLER (HWFC) 6

5. MATERIALS BUFFERING CONTROLLER (MBC) 7

ffl. AMPLE PROCESS PLANNING INTERFACE (APPI) 9

1. FIRST-PASS ANALYSIS 12

2. SECOND-PASS ANALYSIS 14

IV. AMPLE REAL-TIME CONTROL INTERFACE (ARTCI) 17

1. THE DATA PREPARATION SYSTEM 17

2. THE VERIFICATION SYSTEM 21

V. AMPLE WORKSTATION ANIMATION PACKAGE (AWAP) 25

1. THE HWS PROTOTYPE OF AWAP 27

1.1. A Segmented Perspective of HWS 27

1.2. Implementation Environment 28

2. THE HWS EDITION SOFTWARE 29

2.1. Summary of the HWS AWAP Software 29

2.2. HWS Kinematic Models 30

2.3. Robot Positioning Specifications 31

3. VIEWING ROUTINES 33

4. PRINCIPLES OF ANIMATION CONTROL 36

4.1. Locations of Related Files 36

4.2. Initial Positions of Articles 39

4.3. Initial Positions of Workstation Components 41

4.4. Animation Commands 43

4.4.1. Independent Robot Commands 44

4.4.2. Article-dependent Robot Commands 46

4.4.3. Vise Fixture / Pallet Commands 48

4.4.4. V-block Fixture / Pallet Commands 48

4.4.5. Spindle / Tool Drum Commands 48

4.4.6. Active Pedestal Commands 49

4.4.7. Kardex Commands 49

4.5. Captions 49

4.6. Set File Compression 49

4.7. Set File Editor 50

VI. CONCLUSION 51

APPENDIX A' AMPLE Communication Module (Acomm)
1. Acomm/HWS COMMUNICATION PROTOCOL .

2. Acomm OPERATION

APPENDIX B: LISP-Related Notes on Acomm and APPI

LIST OF REFERENCES

FIGURES

1 Example Process Plan 10

2 HWS Robot (Component 2) 26

3 Gripper Orientation 32

4 Directory Structure 37

5 Data Elements in File hartic.dat 38

6 AWAP Data Files 40

iii

An AMPLE Version 0.1 Prototype:

The IIWS Implementation

I. INTRODUCTION

The Automated Manufacturing Programming Language Environment {AMPLE) system functioned

as the means for programming the Horizontal Workstation (HWS) during the March 1987

benchmark test of the Automated Manufacturing Research Facility (AMRF). The AMRF has

been established at the National Bureau of Standards for research concerning control

interfaces between automated components of flexible manufacturing systems, and for examining

related issues of standards and measurement [18]. HWS, the AMRF workstation for horizontal

milling, has served as a laboratory not only for the development of several prototype

controllers, interfaces and devices, but also for experimental implementation and demonstration

of the AMPLE system.

AMPLE is a general system for the definition and verification of manufacturing control data

[5] and [6]. Built around a central kernel called AMPLE/core, AMPLE provides an integrated

system of software tools for translating product design and process planning specifications into

equipment-level control programs.

In this report the modules of the implementation of the AMPLE Version 0.1 prototype for HWS
will be described. All of the AMPLE software used to support HWS runs on a Silicon

Graphics IRIS model 3020 workstation. This workstation features a Motorola MC68020 CPU
running UNIX System V with Berkeley 4.2 enhancements. Enhanced graphics capability is

available through a custom VLSI chip set that permits real-time animation of complex
polygonal models. This report will discuss the following modules:

• AMPLE Process Planning Interface (APPI).

The purpose of this module is to determine that process plans are correct and complete

before they are made available to HWS. 1 A process plan is correct if it conforms to the

syntax of the AMRF flat file format, and if the work elements in the procedure section of

the plan can in fact be performed by HWS. A process plan is complete if all work

elements needed to manufacture the part have been provided in the proper sequence. By

first parsing and then analyzing a process plan, APPI determines whether these criteria

are satisfied.

• AMPLE Real-Time Control Interface (ARTCI).

This module accepts high-level instructions, either interactively from the user interface or

remotely from APPI, and then generates equipment-level control data, and data to drive

the animation package.

1 The AMPLE Real-Time Control Interface, in its interactive data preparation mode
described in Section IV, was used to create the process plans used in the March 1987 AMRF
benchmark test. The process plans were created and stored in advance, so that a command
from HWS to AMPLE during the benchmark test would initiate APPI processing of any

specified plan.

1

An AMPLE Prototype: HWS

• AMPLE Workstation Animation Package (AWAP).
This module accepts input from ARTCI and generates an animated preview of all of the

physical motions that the associated control data, if actually executed, would produce. In

this manner, AWAP allows off-line validation and testing of control programs.

As Appendix A, the AMPLE module which functions as an interface to HWS is also included:

• AMPLE Communication Package (Acomm).
This module provides a communication port between HWS and AMPLE. Though several

different kinds of data can be transmitted, the most important information is contained in

process plans.

This report will describe the HWS implementation of the AMPLE prototype as it existed during

the March 1987 AMRF public benchmark test. The significant enhancements in the system

which have been developed since that time will be presented in separate reports.

1. AN ORIENTATION FOR THE READER

Appendices and a glossary are provided for clarification of system design considerations and of

certain terminology. Without the need to consult other references, the reader of this

document may expect to derive a basic understanding of how to design and generate programs

to make parts in HWS in the AMRF. The document does not cover generation of NC data for

the machine tool or grip and position data for the robot control system [21]; nor does it

cover programming the robot vision system [14].

The described methods of process plan verification and control data generation are

implementations of principles which are either well understood or documented elsewhere. On
the other hand, since this document introduces AWAP as a new animation software design, the

section containing pertinent explanations is more elaborate than other sections.

To present the reader with a concise view of the HWS implementation of AMPLE
,

this

document will use a pseudocode notational system which may be loosely defined as structured

English with liberal adaptations from the Ada programming language. 2 Specifically, the

pseudocode will specify relationships between symbols by using Ada type constructors such as

array and record, and will characterize the flow of control by if-then-else, loop, and case.

Since the pseudocode presents an abstract and very condensed description of a large software

system, the reader is advised to consult the surrounding narrative for more detailed

explanations.

2 Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

(AJPO). This language is defined in ANSI/MIL-STD 1815A-1983, American National Standard

Reference Manual for the Ada Programming Language.

2

An AMPLE Prototype: HWS

II. AN OVERVIEW OF THE AMRF HORIZONTAL WORKSTATION

HWS is one of six workstations in the AMRF. It features a customized Cincinnati Milacron T3

robot with an NBS-developed vision and control system, a White Sundstrand horizontal

machining center, a Kardex materials buffering system, and several custom-built flexible

fixtures.

AMPLE provides support for five controllers in HWS [16]. It provides three levels of control

data for the Horizontal Workstation Controller [19], commands and data for the fixturing

controller [17], and commands for the High Level Machine Tool Controller [11], the Real-time

Control System of the robot [21], and the Materials Buffering Controller [9]. An introduction

to each controller, as well as a brief example of the data provided to it by AMPLE
,

will now
be presented. Note that in all of the examples presented in this section, the term MacRow
refers to control code macros designed specifically for HWS.

1. HORIZONTAL WORKSTATION CONTROLLER (HWSC)

The Horizontal Workstation Controller is a finite state machine implementation of a

hierarchical control system. It is implemented in the FORTH programming language, and runs

on a Motorola MC68000-based computer system. The workstation breaks commands down to

three hierarchial levels, and the AMPLE system provides all three levels of control data for

the workstation.

AMPLE generates three levels of control data for HWSC. The first level of data describes in

a very general way what type of operation the system is about to perform. The content and

syntax of these data are shown in the following pseudocode.

type WORKSTATION-LEVEL-O-COMMAND-STRING is record

operation : 10 bytes;

occurrence : 2 bytes;

count : 2 bytes;

argument : 2 bytes

MacRow-name : 10 bytes;

end record;

An example of these data is:

operation occurrence count unknown MacRow name
1234567890 12 12 12 1234567890

MAKE 1 1 1 L0_MAKE_IT

The second level of control data describes how the system will behave in more specific terms.

These data include the order in which major operations are to occur, and which equipment

MacRows will be used. Here is a pseudocode description of the string:

3

An AMPLE Prototype: HWS

type WORKSTATION-LEVEL-l-COMMAND-STRING is record

operation : 10 bytes;

occurrence : 2 bytes;

count : 2 bytes;

argument : 2 bytes

MacRow-name : 10 bytes;

end record;

An example of these data is shown below:

operation occurrence count unknown MacRow name
1234567890 12 12 12 1234567890

LOAD 1 1 1 L1_L0AD__1

The third and final’ level of control data consists of the actual commands to be sent to each

controller. At this level, there are two parts to every data set. The first part is the actual

command name and instance number, and the second part is a literal ASCII representation of

the command with the parameter values filled in. Here is a pseudocode expansion of the level

2 command string:

type WORKSTATION-LEVEL-2-COMMAND-STRING is record

operation : 10 bytes;

operation-occurrence : 2 bytes;

device-name : 10 bytes;

command : 10 bytes;

command-occurrence : 10 bytes;

end record;

A sample of the actual command data for a part is shown below:

operation occurrence device name command occurrence
1234567890 12 1234567890 1234567890 12

LOAD 1 ROBOT MOVE 1

The commands are described in the sections for each controller.

2. COMMAND LEVEL INTERFACE FOR RCS

The Real-time Control System (RCS) for the robot is also implemented as a finite state

machine [1]. It too is implemented in the programming language FORTH, but uses multiple

4

An AMPLE Prototype: HWS

Intel 8086 CPUs to perform computations. The Real-time Control System also integrates with

a vision system and a safety system. AMPLE provides HWS with commands to be issued to

RCS that include source and destination locations and grip numbers. All other information for

the robot is entered through the user interface of RCS.

The command strings for the robot control system are ASCII strings that are sent from the

Workstation Controller to RCS. These strings include a command to be executed, an object

name, an object serial number, a location where the object may be found, a destination

location where the object is to be placed, and the location where the robot is to go when it

has completed the move. Some of these arguments are optional. The flag that appears at the

start of the string tells the workstation controller which of the fields in the command string

are to be filled with the current system values. The other integer numbers in the string

identify grip poses and tray sectors to be used for the move. Pseudocode describing this

string is shown below:

type ROBOT-COMMAND-STRING is record

robot-string-flag : 2 bytes;

robot-command : 16 bytes;

serial-number : 16 bytes;

source-grip-number : 2 bytes;

source-location : 16 bytes;

source-sector : 1 byte;

destination-grip-number : 2 bytes;

destination-location : 16 bytes;

destination-sector : 1 byte;

end-location : 16 bytes;

end-sector-number : 1 byte;

end record;

An example of these data is shown below:

flag command object name serial number
12 1234567890123456 1234567890123456 1234567890123456

00 MOVE FL209-B J13472

flag
12

source location
1234567890123456

flag
1

flag
12

destination location
1234567890123456

+1 BUFFER 1 +2 VFIXTURE

5

An AMPLE Prototype: HWS

flag end-at location flag
1 1234567890123456 1

1 SAFE 0

For a detailed description of these parameters, and a description of other robot programming

operations, see [21].

3. HIGH LEVEL MACHINE TOOL CONTROLLER (HLMC)

The High Level Machine tool Controller is used to enhance the capabilities of the existing

machine tool controller. The HLMC allows programs to be transferred to and from the

machine tool, allows remote monitoring of the machine’s status, and permits commands to be

issued to the machine tool from a remote source. It also provides sensory capability that the

machine would otherwise lack. The High Level Machine tool Controller is implemented in

FORTH on an Intel 8086 CPU. AMPLE provides ASCII commands for the Workstation

Controller to issue to HLMC.

The command data that AMPLE generates for HWSC to send to HLMC include a flag, a

command, and an object. The flag field is used by the workstation controller to indicate

which, if any, fields are to be filled in with current system values. The command field

contains the command to be executed by the HLMC, and the object field describes the object

to be acted upon by the command. A pseudocode definition of the HLMC command is shown

below:

type NC-COMMAND-STRING is record

nc-string-flag : 2 bytes;

nc-command : 30 bytes;

nc-argument : 20 bytes;

end record;

Here is a sample command for HLMC:

flag command
0 12 3

obi ect

0 12
12 123456789012345678901234567890 12345678901234567890

00 MACHINE FL209-B

4. HORIZONTAL WORKSTATION FIXTURING CONTROLLER (HWFC)

The Horizontal Workstation Fixturing Controller addresses both primary fixtures in HWS. One

fixture holds prismatic parts and the other holds turned parts. Both were designed at NBS

6

An AMPLE Prototype: HWS

and can be manipulated under computer control to hold a wide variety of parts. The fixturing

controller is implemented in FORTH on a Motorola MC68000-based system.

AMPLE generates two types of data for the fixturing controller -- command data and Fixture

data. Command data identify particular sets of fixture data, and are to be sent by HWSC to

the fixturing controller when fixture data are to be executed. Fixture data are to be stored

in the fixturing controller in advance of the issuing of commands, and denote the action that

the fixturing controller will take when it receives a command.

type FIXTURE-COMMAND-STRING is record

fixture-string-flag : 2 bytes;

fixture-command : 10 bytes;

part-number : 10 bytes;

fixture-name : 10 bytes;

end record;

An example of HWFC data is shown below:

flag command part name fixture name
12 1234567890 1234567890 1234567890

00 LOCK FL209-B PFIXTURE

Information about the fixture data may be found in [17].

5. MATERIALS BUFFERING CONTROLLER (MBC)

The Materials Buffering Controller was built using the same set of tools that were used to

build the Workstation Controller. AMPLE generates commands for the Workstation Controller

to send to the MBC, and the workstation fills in some information during execution based on

the current state of the system. The Materials Buffering Controller is implemented in FORTH
on a Motorola MC68000-based system.

The command data for the Materials Buffering Controller are generated by AMPLE, and sent

by the HWSC as commands to the MBC. These data may be represented as follows:

type MBC-COMMAND-STRING is record

mbc-string-flag : 2 bytes;

mbc-command : 16 bytes;

object-type : 16 bytes;

object-name : 16 bytes;

serial-number : 16 bytes;

end record;

7

An AMPLE Prototype: HWS

The flag indicates to the workstation which fields in the command string should be filled with

current system values. The command string describes the action that the materials buffer is

to take. The object type field characterizes the object as blank, finished, a tool, or some
other item. The serial number field is usually filled in at execution time by the workstation

controller. A sample of the MBC data is shown below:

flag command object type object name
12 1234567890123456 1234567890123456 1234567890123456

00 PRESENT PART FL209-B

serial number
1234567890123456

13897

8

An AMPLE Prototype: HWS

III. AMPLE PROCESS PLANNING INTERFACE (APPD

A process plan is a report that describes the high-level workstation operations which define a

manufacturing process. Since such reports are used by systems throughout the AMRF, a

syntax for a flat file format for process plans has been defined. A full account of the

features of AMRF process plans is presented in [8]. An example is shown in Figure 1. For

the purposes of this document, only a brief list of the major features of this plan need be

discussed.

Process plans in flat file format are text files, which means that every process plan must be

resolved into tokens. Some tokens, such as reserved keywords and punctuation symbols, have

special syntactic roles; others, such as strings or user-defined keywords, have only

system-dependent significance.

The overall structure of plans may be described in terms of certain reserved keywords. First,

as Figure 1 shows, the first token and the last token of process plans must be keywords:

- -PROCESS _PLAN--

the process plan text

- -END_PROCESS_PLAN-

-

The process plan text is further divided into four sections: the header section, the parameter

section, the requirement section and the procedure section. Each of these sections is

introduced and terminated by keywords. For example, the header section has the form:

- -HEADER_SECTION-

-

header lines

- - END_HEADER_SECTION - -

where each header line consists of a header element name and the value which is assigned to

it. Notice that in this section and in all other sections lines are terminated by semicolon

punctuation.

From the programmer’s perspective, header element names and admissible ranges of values are

relatively unrestricted. In fact, the only header element name which must be present in all

process plans for HWS is the keyword PARTNAME whose assigned value will be used as the

basic name of the part throughout the AMPLE system.

The only strictly enforced rule governing the header section is that of component alignment.

Header lines must have the following tokens in the order specified: a legal process plan

keyword, the assignment symbol, a legal value, and finally the semicolon line terminator. (See

Appendix B.) Any deviation of these alignment rules is a fatal error.

9

An AMPLE Prototype: HWS

—PROCESS PLAN

—

—HEADER_SECTION

—

PARTNAME := LINKBAR1 ;

BLOCK-NAME := BL0CK1 ;

PROCESS PLAN NAME := HWS 5

—END HEADER SECTION

—

—PARAMETERS SECTION—
SNARK : INTEGER 1 .. 25 := 20;

—END PARAMETERS SECTION—

—REQUIREMENTS SECTION—
<< 1 >> TOOL

(TOOL-ID => TL209 ,

COMPONENTS => () ,

COMPONENTS-OF =>());
—END REQUIREMENT cE-nmi-nxi

—

A —PROCEDURE SECTION

—

<< 1 >> LOAD
(VARIETY => 2,
PARTNAME => LINKBAR ,

PART-HEIGHT => 5.0 ,

PART-WIDTH => 0.12 ,

PART-DEPTH => 2.0 ,

FIXTURE-ID => programmable-vise ,

FIXTURE-STOP => 1 ,

FIXTURE-WIDTH => 0.12 ,

FIXTURE-DEPTH => 0.00 ,

FIXTURE-FORCE => 4000 ,

PALLET => B,
GRIP => 1 ,

PREC-STEPS => () ,

STND-TIME => "0000:00:00:00") ;

(VARIETY => 1 ,

PARTNAME => LINKBAR1 ,

PALLET => B ,

PREC-STEPS => (1) ,

STND-TIME => "0000:00:00:00") ;

(VARIETY => 1 ,

PARTNAME => LINKBAR1 ,

PART-HEIGHT => 5.0 ,

PART-WIDTH => 0.12 ,

PART-DEPTH => 2.5 ,

FIXTURE-ID => programmable-vise ,

PALLET => B ,

GRIP => 0 ,

DROP-POINT => 0 ,

PREC-STEPS => (2) ,

STND-TIME => "0000:00:00:00") ;

Figure 1 . Example Process Plan

<< 3 >> UNLOAD

—END PROCEDURE SECTION—

—END PROCESS PLAN—

This text is an example of a process plan in flat file format: (A) the step number
for the first step of the process plan; (B) the work element name of the first step;

(C) an attribute-value pair; and (D) the PREC-STEPS attribute which indicates

the precedence of steps.

10

An AMPLE Prototype: HWS

APPI is primarily concerned with the procedure section, that portion of the process plan

which describes the manufacturing processes to be carried out. The text of procedure sections

is divided into lines, or steps according to the following alignment rules:

1. the first token is step number, which is an integer enclosed with doubly-paired corner

brackets;

2. the second token is a system-dependent work element name, which designates a process

which the workstation can be commanded to carry out, and which is associated with an

attribute list;

3. if the attribute list associated with the second token is not empty, then the next set of

tokens consists of a left parenthesis, a list of attribute-value pairs of the form:

attribute-name -* attribute-value

and then a right parenthesis;

4. the semicolon line terminator.

The variety of work element keywords and their attribute keywords is system-dependent.

However, one particular attribute is required. It is spelled PREC-STEPS, and is that attribute

whose value is the list of all of the steps in the procedure section which must be successfully

completed before the step in question can be started. This requirement enforces an ordering

on steps which can be modeled as a directed graph. Although this ordering of steps does not

guarantee the intended effects, it does permit certain crude error checks, such as to make
sure that the step number is greater than the largest step number in PREC-STEPS.

The purpose of APPI is to determine whether process plans are correct and complete. A
process plan is correct if it conforms to the syntax of the AMRF flat file format, and if all

of the work element names used in the procedure section represent work that can be

performed by the targeted workstation. A process plan is complete if all work elements

needed to manufacture the part have been provided in the proper sequence and if appropriate

values have been assigned to all attributes of the work elements. If the plan is incomplete,

the verifier will identify the missing element by issuing either an error message or a warning.

During the March 1987 AMRF benchmark test, the HWS version of APPI was designed to work

in the following manner. Flat file format process plans were transmitted to AMPLE from HWS
using the Acomm ACCEPT-FILE keyword (Appendix A). The current file would then be stored

locally as an ASCII file called partname. in. In response to Acomm keyword PROCESS
partname, APPI would then get the named process plan and build an internal representation of

it in AMPLE/core. In order to build such an internal representation, a first pass shallow

analysis of the plan has to be done. If the first pass is successful, then a more thorough

syntactic analysis is performed on the internal representation resulting from the first pass,

making use of local archival data which enumerate all legal work elements for HWS and also

all legal attributes of each work element.

11

An AMPLE Prototype: HWS

Some attributes are optional and others may have default values, so APPI does not assume

that the attributes of a work element are listed in any particular manner. Thus, the argument

list in every step of a process plan must contain both the attribute name and its associated

value. During the March 1987 benchmark test, the absence of an attribute merely caused a

warning, which implied that all attributes were regarded as optional. This policy has since

been changed to allow for the specification of some attributes as mandatory. If the second

pass terminates without fatal errors, then APPI returns a validated internal representation of

the process plan to AMPLE/core
,
and an ASCII file partname.out to ARTCI for further

processing. The ARTCI process, which does not require the intervention of any external

operator or programmer, returns an ASCII file partname.send, as described above. This file

will be transmitted to HWS in response to the SEND-FILE Acomm keyword. If the second

pass does not terminate successfully, then APPI returns the value nil to AMPLE/core and also

returns a file partname.crr for transmission to HWS.

1. FIRST-PASS ANALYSIS

The following pseudocode, in conjunction with the Acomm pseudocode presented in Appendix

A, describes the first pass of the syntactic analyzer, called build-pplan-rep, which accepts an

ASCII file containing a process plan in the flat file format.

procedure build-pplan-rep (filename)

begin

initialize readtable;

plan-open filename;

get token from filename;

if token = --PROCESS_PLAN-- then

get token from filename;

if token = ~HEADER_SECTION~ then

build header-rep;

else

put "no header section" on error-report;

plan-close;

return nil;

end if;

get token from filename

if token = -PARAMETERS_SECTION- then

build parameter-rep;

else

put "no parameter section" on error-report;

plan-close;

return nil;

end if,

12

An AMPLE Prototype: HWS

get token from filename

if token = ~REQUIREMENTS_SECTION~ then

build requirement-rep;

else

put "no requirement section" on error-report;

plan-close;

return nil;

end if,

get token from filename

;

if token = ~PROCEDURE_SECTION~ then

build procedure-rep;

else

put "no procedure section" on error-report;

plan-close;

return nil;

end if,

get token from filename;

if token = -END_PROCESS_PLAN~
and all sections built then

make pplan-rep;

plan-close;

return pplan-rep;

else

put "no end process plan" on error-report;

close plan;

return nil;

end if,

else

put "no begin process plan" on error-report;

close plan;

return nil;

end if,

end build-pplan-rep;

Comments. The preliminary discussion of the operations to be performed during the first pass

should be sufficient to explain most of the operations mentioned above. However, the

following points provide additional commentary.

initialize readtable;

This operation changes the status of certain tokens in flat file format process plans, and has

relevance to the interpretation of the underlying LISP code. (See Appendix B.)

13

An AMPLE Prototype: HWS

build header-rep;

The build operation processes the section one token at a time, continually monitoring its own
place within the section and the grammatical structure associated with that place. This

process will continue until either an error is detected, in which case build returns nil to the

calling environment; or the appropriate END token is reached, in which case build returns the

internal representation of the section being processed.

make pplan-rep;

return pplan-rep;

The make operation will be executed only if every section of the process plan has been

successfully analyzed during the first pass and has been assigned an internal representation by

the build operation. At this point, the final representation, plan-rep, is constructed from the

internal representations of all of the sections. The plan-rep is then returned to the calling

environment. The effect of error detection at this top level is to stop processing altogether

and to return niL

2. SECOND-PASS ANALYSIS

If the first pass has successfully terminated, the function analyze-hws-plan does the additional

job of analyzing the internal representation in greater detail.

function analyze-hws-plan {pplan-rep
)

get procedure-section from pplan-rep;

initialize arid-report;

initialize error-report;

loop

if empty procedure-section then

close artci-report;

close error-report;

return t;

end if;

get next step from procedure-section;

get step-number
,
prec-steps from step;

if step-number < maximum of prec-steps then

put "step sequence error" on error-report;

return nil;

end if,

14

An AMPLE Prototype: HWS

get workelement, arguments from step;

if workelement is not in HWS-symboltable then

put "unrecognized workelement" on error-report;

return nil;

end if;

put workelement
, step-number on artci-report;

get attribute-list of workelement from HWS-symboltable;

until empty attribute-list loop

get next attribute from attribute-list;

lookup attribute in arguments;

if attribute is found then

get attribute
,
value from arguments;

type-check value;

remove attribute, value from arguments;

else

put "missing arguments" on error-report;

return nil;

end if,

put attribute, value on artci-report;

end loop;

if not empty arguments then

put "unrecognized attributes" on error-report;

end if,

end loop;

end analyze-hws-plan;

Comments. In light of the explanations already given, this pseudocode needs only a few addi-

tional explanations.

return t;

return nil;

The main purpose of analyze-hws-plan is to examine the process plan’s internal representation

which was built in AMPLE/core by the first pass, to determine whether the process plan

satisfies the conditions on validity imposed by the second pass. If these conditions are

satisfied, the Boolean value t is returned to the calling environment, indicating that the

process plan is correct and complete. If these conditions are not satisfied, then the Boolean

value nil is returned. The analysis described in this function has no side effects on the

representation of the process plan. Aside from the value returned, the only externally visible

effects of this function are the files artci-report and error-report.

15

An AMPLE Prototype: HWS

workelement is not in HWS-symboltable

A very important function of AMPLE/core is to keep a detailed map of the name space, which

is a net of externally visible names and their semantic relations with one another. Nets of

this kind may be called symboltables. (See Appendix B.) If a work element specification is

not found in the HWS-symboltable, it is not a legal HWS work element.

type-check value;

In the AMPLE prototype of March 1987 the type-checking procedures were preliminary. Since

that time a much more extensive type-checking mechanism has been constructed. This

mechanism, sketched in [5], will be fully defined in the forthcoming AMPLE Reference Manual.

16

An AMPLE Prototype: HWS

IV. AMPLE REAL-TIME CONTROL INTERFACE (ARTCI!

The AMPLE Real-Time Control Interface (ARTCI) is a data preparation system for real-time

control systems in automated factories. ARTCI is designed to be a general purpose tool for

preparing and verifying control data for real-time control systems of automated manufacturing

workstations. This section discusses the implementation of ARTCI for HWS. The ARTCI
system provides a user interface for operating its data preparation system, which generates

the control data sets for the controllers in the workstation; and for operating its verification

system, which may be used for validating and inspecting the data sets.

The verification system is used to test and verify the data generated by ARTCI. The system

reads the data files for a particular operation, checks the files for syntax and completeness,

and then attempts to execute the files on an internal emulation system. The emulation system

is built to match the controllers for which the data are intended, but the outputs of this

emulation system are an error and warning report and data for AWAP. AWAP provides the

workstation programmer with a view of how the data generated by ARTCI would affect the

hardware being programmed.

1. THE DATA PREPARATION SYSTEM

The programming system is the user’s window into the ARTCI environment. It provides the

programmer with the necessary tools for building control data for a specific part. In this

section, a menu system is used to build a general outline of the operations to be performed by

the automated factory components. The menus provide general descriptions of sets of

operations that are commonly performed with the hardware being programmed. After the

outline is built from these data sets, ARTCI asks specific questions about the outline and its

effect on the automated factory components in the system. The user’s responses to these

questions assign values to parameters such as the force required for a particular operation, or

the distance which an actuator is required to move. When ARTCI has collected sufficient

information to build control data for the specified operations, it proceeds to a second process,

data preparation.

The menu system gathers the basic information necessary to build a program for the

workstation. It first provides the user with a list of the high-level operations that the

workstation is able to perform. These basic operations are selected by the user in the order

he wishes them to occur. The menu system then requests information from the user about

which MacRow he will use to perform each basic operation. In the case of an automated

milling workstation, these basic operations include loading a part, machining a part, refixturing

a part, unloading a part to the material handling system, exchanging machine cutting tools,

and exchanging fixtures on the machine. There are help windows provided to describe each of

the choices to the user and to tell the user what input is expected.

The control data generation process is template-based and generates control data for a

specific real-time controller or set of real-time controllers. It also has the ability to generate

process plans in AMRF flat file format as described in Section III. The control data

generation system has in its data base information about formats for control data, controller

functions, and controller capabilities. Based on information from the programming system, the

control data generation section of ARTCI builds control data by filling in parameters in

17

An AMPLE Prototype: HWS

templates. A library of these templates is stored in the local data base. The basic modules

of the data generation system are a local data base, the template system, and the control-

data-file and process-plan writer.

The local data base is a collection of files containing information about how the workstation

operates. This information includes primitive operations for each system component, MacRow
definitions based on primitive operations, parameter templates, and templates for writing

control data and process plans. In this context, a parameter template is an ASCII string with

sections missing. These missing sections are filled in with parameter values from the system

and concatenated with the rest of the template to produce a properly formed command string.

The menu system uses the MacRow definition files to display MacRow lists and help files.

Questions to the user about parameter values are built from parameter templates by the

parameter system. Finally, control data and process plan files are built by the control data

file and process plan writer using templates from the local data base.

The control-data-file and process-plan writer assembles all of the templates generated by the

template system and writes them in the proper form for the various real-time controllers.

Process plans are generated by filling in parameters in templates of basic process plan

elements. ARTCI currently supports process plans in the AMRF process plan format. The
final steps in control data preparation include concatenating multiple files into a single file

for the workstation and putting the proper communications headers on all of the files.

type FILE-HEADER is record

total-file-length : 10 bytes;

status-report : 10 bytes;

LF-delimiter : 1 byte;

location-level-O-data : 10 bytes;

number-level-O-records : 10 bytes;

location-level- 1-data : 10 bytes;

number-level-1-records : 10 bytes;

location-robot-data : 10 bytes;

number-robot-records : 10 bytes;

location-nc-data : 10 bytes;

number-nc-records : 10 bytes;

location-fixture-data : 10 bytes;

number-fixture-records : 10 bytes;

location-mbc-data : 10 bytes;

number-mbc-records : 10 bytes;

LF-delimiter : 1 byte;

end record;

These files are then stored in a local data base under their program name. The following

pseudocode describes how the ARTCI system functions:

procedure artd {program-name)

begin

read MacRow-files;

18

An AMPLE Prototype: HWS

if mode is interactive then

open menu-system;

while parameter-list not full loop

query user;

get parameter;

end loop;

close menu-system;

else if mode is automatic

open file partname.out;

read parameter-list;

else

error;

end if,

build workstation-level-O-command-strings;

build workstation-level-1-command-strings;

build workstation-level-2-command-strings;

build robot-command-strings;

build fixture-command-strings;

build nc-command-strings;

build mbc-command-strings;
build process-plan;

if error then

print error-report;

else

build transfer-file;

build file-header;

print transfer-file;

end if;

end artd;

Comments. The following commentary should serve to further explain the software modules of

ARTCI.

read MacRow-files;

This function reads initialization files telling the ARTCI system about the characteristics of

the workstation for which the data are being prepared. The files contain information about

which operations are available at each level of control, and what the structure of the

operations is.

19

An AMPLE Prototype: HWS

build workstation-level-O-command-strings;

build workstation-level-1-command-strings;

build workstation-level-2-command-strings;

All three levels of workstation data are generated by these functions. The operation types

provided during symbol table initialization are converted to the appropriate formats by filling

in templates and matching sequences of events against pre-defined tables. These functions

print a separate file for each set of data generated in the ARTCI program. Though the

workstation will ultimately require the data to be in one file in a slightly different format, as

explained below, the build operation writes multiple files so that the system is easier to

understand and debug. If an error occurs, the programmer may view each data set

independently and check for errors in content and format.

build robot-command-strings;

This function creates the robot strings that will be sent by the workstation to RCS. These

strings are generated by selecting an appropriate template for the operation to be performed,

and filling the template with parameters from the local data base. Currently, grip poses and

numbers must be checked against those selected by the robot programmer.

build fixture-command-strings;

This function generates two types of fixture data. The first type is the command strings that

the workstation will send to the fixturing controller, as defined above. These command
strings are generated by selecting and filling in templates. The second type of data generated

is the data that the fixturing controller uses to execute the commands. These data are loaded

into the fixturing controller prior to program execution and are executed by matching the

incoming command to a command list with associated actions. Data for the fixturing

controller are generated by selecting commands from an available command list and by filling

in templates. The file generated for the fixturing controller is called planname.fixt.

build nc-command-strings;

ARTCI provides only commands that HWSC will issue to the High Level Machine tool

Controller. The commands are generated by ARTCI from a list of available commands. ARTCI
does not generate NC control code.

build mbc-command-strings;

The Materials Buffering Controller commands are generated by selecting from a list of

available commands, and filling in parameters.

20

An AMPLE Prototype: HWS

build process-plan;

The process plans generated by ARTCI are in the AMRF flat file format. The plans are

generated by selecting templates designed for each step of part manufacture, and Filling in

parameters in the templates with information from the local data base.

print error-report;

This routine is invoked if any errors are detected during the course of generating data, and

will generate a file of errors encountered during the data generation procedure.

build transfer-file;

This function reads all of the data files generated by ARTCI, compresses them into one large

file, and adds a header record into a file called planname.send for communication to the

Horizontal Workstation Controller via the Acomm system. The file to be sent to HWSC is

constructed in the following manner: the entire file will be ASCII, with line feeds (ASCII 10)

used for record delimiters. The data records may be any length, but must be terminated by a

line feed.

2. THE VERIFICATION SYSTEM

The major sections of the verification system are the file checking system, the emulation

system, and the AWAP interface system.

The file checking system checks the data base to make sure that all of the necessary files for

the current program name are present, reads the files into local memory, and checks their

syntax and completeness. If any files are missing or incorrect, an error file is created and

the verification system terminates. If all the files are of the proper form, the file checking

system calls the emulation system.

The emulation system uses the information loaded into memory by the file checking system

coupled with information from the local data base to perform an emulation of the control

data. The emulator tests to make sure that the files can be executed, and it also creates data

files that describe an event timeline for all of the hardware in the workstation. This timeline

is based on standard times for operations, and describes what equipment is active at every

clock tick.

The AWAP interface is comprised of a module for addressing the motion capability of the

pertinent workstation (HWS, in this case), plus a general module for data formatting. The
workstation-specific module converts task data from the emulation routine into animation data

regarding the duration of each motion within the workstation, the sequence of motions, and

pauses. Concurrence of motions is also specified, but otherwise relative timing is not

included. The animation data must be derived in this form before conversion to the format

accepted by AWAP. The formatting module then organizes the animation data into the group

21

An AMPLE Prototype: HWS

of set files required to drive the AWAP simulation of the workstation task. For a description

of set files, refer to Section V of this document.

A central element in the operation of HWS is the state table [1]. Before describing the

operation of the verification system, the use of state tables in HWS will first be introduced. A
state table is a method for representing control flow. In the case of the HWSC, the table

consists of a number of paired rows of data. The first row in a data pair is a row of input

conditions. If the current state of the workstation matches the conditions on a row of the

state table, then the second row of the pair is executed. The pseudocode declarations below

describe the structure of an HWS state table.

type LEVEL-2-STATE-TABLE-ROW is record

level-2-command : 10 byte;

new-command-status : 10 byte;

active-status : 10 byte;

robot-status : 10 byte;

nc-status : 10 byte;

fixture-status : 10 byte;

mbc-status : 10 byte;

current-state : 10 byte;

robot-command : 10 byte;

robot-database-pointer : 10 byte;

nc-command : 10 byte;

nc-database-pointer : 10 byte;

fixture-command : 10 byte;

fixture-database-pointer : 10 byte;

mbc-command : 10 byte;

mbc-database-pointer : 10 byte;

status-to-level-1 : 10 byte;

new-state : 10 byte;

end record;

type LEVEL-2-STATE-TABLE is file of LEVEL-2-STATE-TABLE-ROW;

The following pseudocode describes how the verification system operates:

procedure verify (partname)

begin

read transfer-file

;

check control-data;

read level-2-state-table;

22

An AMPLE Prototype: HWS

until new-state = DONE loop

get level-2-state-table-row

;

get any command from level-2-state-table-row;

if new command then

process all commands on level-2-state-table-row;

build animation-records;

end if,

end loop;

if error then

print error-report;

else

print animation-files;

end if,

end verify;

Comments. The following comments should clarify how the verification system operates.

read transfer-file;

This function reads the file that is to be sent to the workstation controller. It will return an

error if one or more of the data files is missing, or if there is an invalid record in any file.

check control-data;

This function checks the control data for syntax, valid commands, and legal parameter values.

If any incorrect syntax is discovered, or if an unrecognized command or out-of-bounds

parameter is found, an error is returned.

read level-2-state-table;

This function examines the control data and checks to see which MacRows or state tables will

be required to manufacture this part. It then loads the state tables into the controller

emulator. This function will return an error if the control data specify a state table that is

unknown to the system.

get any command from level-2-state-table-row;

This is the main computational routine of the verification system. It keeps track of the

simulation’s internal states, and checks the state tables for matching rows. If a match is

found, internal states are updated and all commands on the state table row are processed.

23

An AMPLE Prototype: HWS

process all commands on level-2-statc-tabIc-row;

This operation generates data tables that will be used to drive the AWAP animation system.

This operation has the ability to simulate each controller in HWS, and will simulate the

execution of each command the controller receives. Process checks to see that the specified

controller can execute the given commands in its current state. If the controller can execute

the command, animation data are generated to represent the motion the controlled device

would exhibit if it were to receive such a command.

build animation-records;

This operation constructs animation records from templates that simulate the commanded
actions discovered by process commands.

print error-report;

This function generates an error report file to tell what errors, if any, were found by the

verification system.

print animation-files;

This print operation prints a set of files sufficient to drive the AWAP animation system. The

form of these files is documented in Section V.

24

An AMPLE Prototype: HWS

V. AMPLE WORKSTATION ANIMATION PACKAGE (AWAP)

AWAP, the AMPLE Workstation Animation Package, is a software system for computer graphics

simulation of three-dimensional objects in motion. The AWAP software design is not intended

for creating the most visually impressive displays, but for creating a visual representation with

such accurate movement capability that a user of AWAP can easily predict and study the

motion of a physical system without needing to experiment with the actual system. The
design of AWAP is sufficiently general to accommodate a wide variety of applications [3]. In

the prototype application discussed in this report, AWAP is featured as an AMPLE module.

In the course of developing a graphics simulation package, one of the first important

objectives was to adopt fairly simple technique for characterizing and recording geometric

representations of three dimensional shapes. Since the generation and verification of NC part

programs is outside the scope of the AMPLE implementation described here, there is no

concern for part attributes, and the depiction of parts (workpieces) may be especially plain.

A polygonal approximation of the shapes of objects was judged to be sufficient for the

immediate needs of the system, and could be adaptable to future needs. Even though a solid

representation would be better suited for such capability as interference checking, 3 the

mathematical complexity of a solid representation would prohibit animation at an acceptable

speed. The polygonal format chosen works well for visually checking the accuracy of motion,

and can be converted to a boundary representation of a solid model if the system is to be

used with a solid modeling package which accepts a boundary file. The following pseudocode

shows how a hierarchical structure of entities makes up a graphics object.

type POINT is array(3) of float;

type POLYGON is set of point;

type MEMBER is set of polygon;

type COMPONENT is set of member;

type OBJECT is set of member;

Objects are modeled as collections of polygons which are defined as ordered sets of vertices.

A crude representation of an object may be made up of very few polygons. For a more

accurate model an object may need to be subdivided into more polygons. Depending on the

graphics system used for implementation, the use of a very large number of polygons can

restrict the speed of animation. In the case of the HWS prototype, as well as that for the

AMRF Turning Workstation, precise modeling of most components has not been necessary, and

the number of polygons has not been a problem.

Each major component (such as a robot or machine tool) of a modeled workstation requires its

own file of geometric data. The data for all the articles to be handled by the robot may be

3 During animation, the polygonal model which is used does not check for interferences.

However, AWAP does have the capability of creating a static solid model which does allow

interference checking. The section on Viewing Routines explains that animation can be

suspended at any moment, and that the GMS function may be used to create a solid model of

the workstation in the suspended state.

25

An AMPLE Prototype: HWS

Front View

Robot Gripper

26

An AMPLE Prototype: HWS

in a single file. Detailed explanations of how objects are modeled and the format of the

geometry files are explained in Bandy [4].

In addition to the data for describing the geometry of the objects, there must also be data

for describing the positioning of the objects. For convenience, certain terminology referring

to groupings of geometry has been adopted. The term component refers to any major

component of the workstation such as a robot or a machine tool. The term member refers to

a rigid body -- a collection of geometric entities with fixed spatial relationships with one

another. Components are usually made up of several members (Figure 2). Each component

and member has its own assigned Cartesian coordinate system. Graphics objects are defined

for convenience. While a member or collection of members may constitute an object, the

component of which those members are a part may also be an object. Each object also has

an assigned coordinate system.

AWAP also features a system of animating the acquirement and placement of articles by a

robot. The task of specifying the range of possibilities for handling articles is simplified with

the use of coordinated sets of data structures. The grip points and the desired orientation of

an article are known in terms of the coordinate system of the article. Each location in the

workstation in which an article may be placed is characterized by the coordinate system of

that Article Location and by identification of the surfaces against which an article may be

seated. At all times, data management routines keep track of the locations and orientations

of each Article Location and of each article within an Article Location, with respect to all

pertinent coordinate systems. This design allows the pick-and-place commands to be very

simple. Instead of having to keep track of coordinates, the user uses commands involving

only such specifications as approach vectors, target article or target location. Adjustment of

robot gripper width to suit the article to be grasped is automatic.

1. THE HWS PROTOTYPE OF AWAP

One of the prototype applications of AWAP has been for a visual verification of control data

for HWS. In this application, data for operating the equipment in the workstation are first

used to drive an AWAP animation of the workstation in operation. This allows a user to

observe in advance the gross motions of the workstation components in response to the

control data.
4

If the animation of the workstation reveals actions which are not desired, it is

known that the control data contain mistakes which can then be identified and corrected.

The AWAP simulation can then be run again to validate the modified data.

1.1. A Segmented Perspective of HWS

In the modeling structure used here, each major device in the workstation, as well as each

article
,

is classified as a component. A complete list of every HWS workstation-component

follows.

4 Note that the response of the workstation to conditions which cannot be predicted on

the basis of the control data will not be simulated.

27

An AMPLE Prototype: HWS

type WORKSTATION-COMPONENT is

{robot,

machining center,

vise-fixture,

v-block-fixture,

active-pedestal,

stationary environment,

tool,

part}

type ARTICLE is

{tool,

part}

This section of the report regards HWS in a slightly different context than Section 2. For

the purpose of developing kinematic models, the workstation must be considered in terms of

its components or subcomponents which move with respect to others. The workstation

consists of a six-axis industrial robot, a numerically controlled (NC) horizontal machining

center, an automated fixturing system, two robot re-grip stations, and a tray buffering device

for storing, loading and unloading trays of parts, blanks, and tools from a robot cart delivery

system. The robot has the ability to change end effectors (grippers) as needed, selecting from

grippers mounted on the robot base. The machining center has two pallets on which fixtures

to hold workpieces are mounted. Each pallet may rotate about a vertical axis, and may
shuttle between its loading position (either at an extreme left or right position as one faces

the machining center) and the machining position. A tool drum which may hold up to thirty

tools operates such that the robot may load or unload tools, and such that the changing of

tools for machining may be done automatically by the machining center. The stationary

re-grip station is a table on which the robot may place an article and then grip the article in

another manner. Another re-gripping station is the active pedestal, which rotates the article

before it is again grasped by the robot. The tray buffering device presents trays to two

locations in the robot work space.

1.2. Implementation Environment

The HWS edition of AWAP, written in FORTRAN, is designed to be ported to many different

computers or types of graphics systems. Although development of the HWS prototype started

with a Ramtek 9400 graphics system hosted by a VAX 11/780 computer, the current

implementation uses the Silicon Graphics IRIS computer and graphics system described in

Section 1. The IRIS provides sufficient speed for the real-time animation desired for the

AWAP system. A convenient feature of the IRIS system is its manner of defining a graphics

object as a group of geometric entities which are all subject to the same transformations.

Thus defined and treated, these objects are ideal for partitioning a mechanism for kinematic

modeling [12]. The AWAP prototype makes use of the easy drawing and graphics manipulation

commands available through the IRIS Graphics Library’s FORTRAN callable subroutines. The

prototype of AWAP also takes advantage of the Z-buffering hardware feature to create static

images with hidden surface removal.

28

An AMPLE Prototype: HWS

Another tool which facilitated the development of the prototype is the AMPLE Coordinate

Editor [4]. The Coordinate Editor is a software package which may be used to create

geometry files for workstation components to be simulated. According to the known
dimensions of a component, a user must visualize the component as consisting of three-

dimensional primitives [10] such as boxes, cylinders, cones, etc. The Coordinate Editor creates

these primitives and automatically writes the corresponding polygon vertex coordinates into a

file in the required format. The resulting files of geometric data are read and interpreted by

AWAP to create the graphics representations of the workstation.

2. THE HWS EDITION SOFTWARE

Before going into detail concerning the HWS implementation of AWAP, an overview will first

be presented in pseudocode form. Then the balance of the report will elaborate on the design

and operation of the package.

2.1. Summary of the HWS AWAP Software

Following is an overview of the HWS Prototype of AWAP.

procedure animation-sequence (set files)

begin

initialize graphics system;

load color map;

get coordinate-data;

get initial-positions;

create objects;

specify default view;

create screen layout and fixed images;

until keyboard = 5 loop

if keyboard = 4 then

modify set-file with set file editor;

reset current set file pointer;

end if,

until final set-file loop

get set-file;

get motion-specs from set-file;

convert motion-specs to positioning-specs;

calculate modeling-matrix of each member for each animation frame;

29

An AMPLE Prototype: HWS

until final frame count loop

until final member loop

get modeling-matrix;

display-matrix «- inner product of modeling-matrix and view-matrix;

calculate arguments for graphics-calls;

execute graphics-calls;

end loop;

if keyboard = S then

until keyboard = f loop

get view-options;

modify view;

end loop;

end if,

end loop;

end loop;

end loop;

end animation-sequence;

2.2. HWS Kinematic Models

The positioning of a workstation component is implied by a parameter list used to characterize

the positioning of the members (as defined above) of that component. The constituent

polygons of a member are defined in terms of that member’s own coordinate system. The
positioning of a member is determined by the translation and rotation of its coordinate system

with respect to some other specified coordinate system. Each member has certain positioning

constraints. Some constraints locate the coordinate system of the member with respect to

another coordinate system, while other constraints imposfe orientation limits. The number of

parameters necessary to uniquely define the positioning of a group of members is equal to the

degrees of freedom of the group, minus the number of applicable constraints. Although the

number of parameters used to define the positioning of a group of members is consequently

fixed, the actual parameters may be chosen for convenience. Such a list of parameters

satisfies the requirement for positioning data. Kinematic equations which consider the

parameters and constraints for each group of members determine the unique positioning of

each member.

The kinematic model of a component is the set of equations for determining all the

transformation parameters (such as angles of rotation or distances of translation) for each

moving member of that component, as a function of less explicit positioning specifications. If

the motions of the members are independent of one another, as was the case for most of the

components in HWS, then the kinematic equations are simple. On the other hand, the robot

required a reasonably complex kinematic model.

The six degrees of freedom for the HWS robot are controlled by the six revolute joints.

Actuators at these joints are the means for the actual robot to attain any position. It is also

in terms of these joints that the positioning of the graphics representation of the robot is

30

An AMPLE Prototype: HWS

defined. However, in actual use, the joint angles would seldom be known. The practical

specification for robot position is the location and orientation of the gripper. Such a

specification of gripper positioning, along with the known constraints of the robot design, can

be used to uniquely determine the six joint angles in practically any case [15]. (There are a

few unlikely cases in which an infinite set of joint angles would satisfy the type of conditions

described here.) The kinematic model was designed to calculate the six joint angles as a

function of several types of positioning specifications.

2.3. Robot Positioning Specifications

The method for controlling the simulation of the robot is more complex than that for any

other component of the workstation. For this reason, the treatment of the robot will be

described in detail here, with the expectation that the method for controlling any other

component will become obvious.

The positioning specifications used by AWAP were selected conveniently and uniquely define

any positioning which may actually occur in the workstation. It is important to note that the

positioning specifications used by the version of AWAP described in this report are not meant

to be the exact specifications used with the actual workstation equipment. This AWAP
prototype is only meant to demonstrate possibilities. With this understanding, the following

approach was taken for the robot.

An attempt was made to simplify the task of specifying desired positions of the robot. Three

methods of doing so are described in this section. (The actual robot position parameters

required by the graphic model are explained in the Principles of Animation Control section of

this report.)

Methods of specifying robot position:

1. Any position of the robot is uniquely defined by the six joint angles. Although AWAP
accepts such a specification, these angles are not usually known by the user.

2. When the transformation matrix of the article to be gripped is known, the desired

matrix for the gripper in the corresponding position may be easily derived. If the

position is physically attainable, the parameters to define the positioning of the rest of

the robot may then be calculated.

3. If the location and orientation of the article to be gripped are known in terms other

than a transformation matrix, it may be most convenient to first specify the desired

location of the gripper tool tip, then specify the desired orientation of the roll axis

(Figure 2), and then specify the requirements for the roll angle. The position of the

gripper is thereby defined, and if the position is attainable, the parameters to define

the positioning of the rest of the robot may then be calculated.

Any of the above three methods may be used to specify the position of the robot. As
explained in the Principles of Animation Control section of this report, positioning

requirements related to the handling of articles are specified in terms of the articles, so the

31

An AMPLE Prototype: HWS

above considerations are taken into account automatically by AWAP software. For robot

positions to be specified without regard to any article to be handled, the third method of

specification has been found to be most useful. Therefore roll axis orientation becomes an

important concept.

z

Figure 3. Gripper Orientation

The bar in this figure represents the roll axis of the HWS robot. Point P represents

the tool tip. Therefore the gripper orientation (without regard to the roll angle) is

the same as that of the bar. Angles a (alpha), (3 (beta) and Y (gamma) are the

angles between the coordinate axes and the projections of the bar onto the coordinate

planes, as shown. The orientation of the bar is uniquely defined by any two of the

three angles. Note, however, that one of the three angles is undefined if the bar is

parallel to one of the coordinate axes.

32

An AMPLE Prototype: HWS

While there are many possible ways of specifying roll axis orientation and roll angle, the

following methods are judged to be convenient for our purposes. The orientation of the roll

axis may be designated in either of the following two ways:

• Give the components of a unit vector pointing in the positive X-direction of the local

coordinate system of the gripper (i.e., pointing through the arm along the roll axis

towards the tool tip. See Figure 2).

• For each of two coordinate planes, give the angle between the projection of the roll

axis onto the plane and the lower coordinate axis. (See Figure 3.) The lower

coordinate axis of a coordinate plane is the first of the two axes identifying a

coordinate plane according to right-hand rotational order (X, Y, Z, X, Y, etc.). For

example, the lower axis of the Y-Z plane is Y; the lower axis of the X-Z plane is Z.

The roll angle may be given explicitly if known. Otherwise, requirements may be designated

in either of the following two forms:

• Give the components of a unit vector pointing in the positive Z-direction of the local

coordinate system of the gripper. (See Figure 2.)

• Indicate whether the fingers of the gripper are to be in a vertical plane, or whether

the Fingertips are to be in a horizontal plane. For uniqueness, also indicate whether the

smallest roll rotation to achieve this position would be clockwise or counterclockwise.

Note that this type of designation is only possible in special cases.

The requirements for the roll angle, together with the orientations of the roll axis and the

local Z-axis of Member 5 (Figure 2), comprise enough information to calculate the roll angle.

The above method of having the roll axis orientation as an independent specification is

favored over other possibilities because of two major advantages. First, the method does not

require the user of AWAP to derive a single specification that implies the orientation of the

gripper, a three dimensional object. The second advantage is that the sixth degree of freedom

of the robot -- the roll angle -- becomes independent of the others, simplifying the

kinematics problem. Instead of six simultaneous nonlinear equations, there are five. The

solution was appropriately formulated and incorporated into the AWAP software. Details on

the development of HWS kinematic models are explained in Bandy [2],

3. VIEWING ROUTINES

To simulate motion, modeling matrices govern changes in the graphics image of the

workstation components. However, for the image to be displayed in the desired manner, the

workstation coordinates which would result from the modeling matrices alone must be scaled,

rotated, transformed from three to two dimensions, and clipped. These effects are contributed

by view matrices. The matrix product of the modeling matrix and the view matrix is the

display matrix which is directly used to create the image on the graphics screen. The viewing

routines which have been developed to suit the needs of AWAP manipulate the following

matrices.

33

An AMPLE Prototype: HWS

type MODELING-MATRIX is array(4,4) of float;

type VIEW-MATRIX is array(4,4) of float;

type DISPLAY-MATRIX is array(4,4) of float;

The different viewing functions are controlled by the user’s interaction with the IRIS
keyboard and mouse. Characters resulting from keystrokes are stored in queues until read and

processed.

type KEYBOARD is queue of character;

type MOUSE is queue of character;

type VIEW-OPTIONS is

{color,

default,

gms,

identify-member,

near-far-clipping,

orthographic-views,

pan,

rotate,

zoom}

AWAP allows the user to view the display of the workstation in practically any manner
possible. The user may suspend animation at any point to exercise the viewing capability.

Viewing functions include:

Color Priority

The conversion of the display from a wireframe appearance to an image with hidden surface

removal. The image seen during animation is wireframe with no hidden surfaces removed,

even though in the default view the priority of the colors was chosen to give the appearance

that the foremost workstation components are in front of the others. When animation is

suspended and the Color Priority function is used, AWAP first counts the number of bit planes

that are in the IRIS processor. If there are fewer than thirty-two bit planes, all the polygons

which make up the entire workstation are sorted according to how far they are from the user,

and are drawn and filled in order, from the furthest first to the nearest last. If the system

has thirty-two bit planes, AWAP automatically executes a more accurate method of hidden

surface removal: the IRIS Z-buffering function.

34

An AMPLE Prototype: HWS

Default

A specific view of the workstation, selected such that a single image of the entire workstation

fills the viewport and permits the viewer to see the top, front, and a side all at once.

GMS

A function which writes instructions for creating a solid model of the workstation in the same

state in which animation was suspended. GMS, a commercial solid modeling package, may
subsequently be used to draw the workstation in that state .

5 In addition to other uses of the

GMS representation, the workstation may be viewed with color shading (Gouraud).

Identify Member
A feature which allows the user to identify any desired member in the workstation by causing

the color of that member to flash.

Near-Far Clipping

A function for moving the near and far clipping planes by moving the IRIS mouse and pressing

mouse buttons. The default view situates the clipping planes so that the near plane is nearest

to the viewer, the far plane is therefore further from the viewer, and the complete image is

between the near and far planes. By moving the far plane or the near plane into the image,

only the portion of the image remaining between the planes may be seen, and the rest of the

image is clipped — not displayed. When controlled, this effect may be used to suppress the

drawing of portions of the image which are not of immediate interest, thereby producing a

less cluttered display.

Orthographic Views

A function allowing the viewer to see any one of the following views: front, top, or side.

Pan

The function for controlling the movement of the image in any directions parallel to the plane

of the display screen. The appearance is given that the viewer is walking by. The user may
control this function by moving the IRIS mouse.

5 GMS is the Geometric Modelling System, a trademark of Interactive Computer
Modelling, Inc.

35

An AMPLE Prototype: HWS

Rotate

The function which may be used to control the orientation of the entire image on the display

screen. The appearance is given that the viewpoint is moving around, over or under the

image. By moving the IRIS mouse to the left or right, the user causes a positive or negative

rotation, respectively; and the angle of rotation will be the azimuth, incidence or twist,

depending on which mouse button is held down.

Zoom

The viewing function allowing the user to control the scale of the image so that it becomes
either larger (zooming in) or smaller (zooming out) at the same time that the workstation

coordinates at the center of the display screen remain at the center. Whether the zooming is

in or out depends on which IRIS mouse button is held down.

The AMPLE Coordinate Editor, the program for describing the geometry of the workstation

components, uses the same viewing routines as the AWAP implementation described in this

report. A complete explanation of the viewing routines used in the HWS prototype is

presented in Bandy [2].

4. PRINCIPLES OF ANIMATION CONTROL

This section shows how data are specified for creating desired motions. The prime intention

here is to present examples of data formats for performing specific actions, and thereby

illustrate the principles of AWAP animation. The examples will describe the different types of

data whose values must be reassigned from one animation sequence to another, and to state

the requirements for use of those data. However, the locations of files containing other data

will be mentioned first to establish the context of the discussion. It is important to note that

the HWS implementation of AWAP is intended only to demonstrate the potential of the

package. Neither the geometric representations nor the animated behavior are meant to

accurately model HWS.

4.1. Locations of Related Files

In the HWS prototype of AWAP, files were organized into directories which are designated for

particular purposes. To organize the discussion of data, files will be referred to as belonging

to the same directories as in the prototype. The directory structure is illustrated in Figure 4.

The main directory from which the animation package will be controlled will be referred to as

Main . (For the AMPLE system on the IRIS, Main may be equated to /d/ample.) The source

files are located in Main/Hws. Although the executable image is actually located in

Main/Execut, the program must be executed by running the UNIX shell script

Main/Hws/hsnarc. The geometry files are located in Main/Data/Cdata. There is one geometry

file for each major component (robot, v-block fixture, etc.). Geometric data for all articles

(tools and workpieces) are contained in a single file: harticl.dat. (The geometric data format

is explained in Bandy [4].)

36

An AMPIJL Prototype: HWS

In harticl.dat, articles must be numbered in integer sequence, the first being Article 10. It is

best for harticl.dat to contain data for no more articles than will be necessary for anticipated

animation. Timing of animation is most accurate when the program has to keep track of the

fewest articles. But even if 12 (the maximum) articles are used, the worst effect would be a

ten percent slower frame rate and a pause of up to five seconds between sets. (i.e., as

opposed to about two seconds between sets if no articles had been read. See the Animation

Commands section for an explanation of sets.)

The data which determine the initial positioning of all the articles in the workstation are

contained in Main/Data/Hdata/hartic.dat. The initial positions of everything else in the

workstation are defined by the parameters in Main/Data/Hdata/hparam.dat. The files of data

which govern the motions in an HWS animation sequence are located in the directory

/d/ample/Data/Hdata, and must have the filenames set.l, set.2, ..., set.n. The file containing

the captions to be shown with each set file is Main/Data/Hdata/hcode.set.

Main

Data

Hdata Cdata
hartic.dat geometry
hcode.set files

hparam.dat

set files

Execut Hws

executable source

Figure 4. Directory Structure

Only pertinent files and directories are shown. The directories shown
actually contain additional files and subdirectories in support of other

AWAP editions (TWS, etc.) and the Coordinate Editor.

37

An AMPLE Prototype: HWS

® 0
•- E

<Z

+z seat

_0
O

+Z seat

0
O

-Z seat -Z seat

w_

03

O —

.

c/>

co

O —

,

if)

Z width Z width
03

i

N
03

i

N

+Y seat +Y seat

0
O

0
o

-Y seat -Y seat

CO

o
,

0
X

CO

o
,

0
X

-

Y
width Y width

CO
1

X
CO

><

+X seat +x seat

Article Location Article Location

-X seat -X seat

X width X width

o O 11 -
CM CM

o
o
0
cr

CM CO LO CD

38

Figure

5.

DataElementsinFilehartic.dat

An AMPLE Prototype: HWS

4.2. Initial Positions of Articles

The initial positions of articles are specified in File hartic.dat in terms of orientation and

Article Location. Applicable Article Locations are:

200. Kardex Tray #1
201. Kardex Tray #2 (nearer to machine tool than Tray #1)

202. Vise Fixture

203. V-Fixture, front load

204. V-Fixture, top load

205. Active Pedestal

206. Regrip Table

207. Tool Drum
208. (not applicable)

209. (not applicable)

210. (not applicable)

211. Robot Gripper

212. (not applicable)

213. (Kardex) Hidden Buffer

The above Article Locations are to be used only in hartic.dat. As explained in the Animation

Commands section, different location codes called World Locations are used in set file

commands.

The orientation of an article is defined in terms of world space components of unit vectors in

the directions of the X and Z axes of the article coordinate system. (In world space, +X is

from the robot towards the machine tool, and + Z is up.)

File hartic.dat consists of a pair of consecutive records for each article, as shown in Figure 5.

The first record for each article contains permanent data regarding the gripping dimensions of

the article. Every second record contains data specifying the initial positioning of the article.

The sizes of the data fields do not matter since the file is read by a list-directed mode of

access. The data elements in the second record for each article appear in the following

order: Article number, Article Location, i,
j

and k components for the X-axis of the article,

and i, j and k components for the Z-axis. The article number is of integer data type; all

other data elements are real.

Although the remainder of this section is essentially unrelated to the initial positions of

articles, it is necessary to complete the explanation of File hartic.dat. Permanent data for

articles -- i.e., data that do not change with the animation sequence — are stored in the

odd-numbered records of hartic.dat. The permanent data are dimensional information for

seating articles in Article Locations. A seating surface is a surface of the article which may
contact some surface of a location in which the article may be placed. For each article, the

following data are permanent:

An AMPLE Prototype: HWS

10 1 . 00 • 50 . 50 1 . 00 - . 50 50 5.00 -2.50 2 . 50

10 200. .0000 1 . 0000 .0000 .0000 .0000* 1 .0000

1

1

4.00 -2 . 00 2.00 2.00 -1.00 1 .00 3.00 -1.50 1 . 50

1

1

201 . • 0000 .0000 1 . 0000 .0000 1 .0000 .0000 -

12 2 . 00 -1 . 00 1 .00 2.00 -1.00 1 .00 5.50 -2.75 2 .75

12 213 . 1 . 0000 .0000 .0000 .0000 .0000 1 . 0000

HART I

C

. DAT (example

)

4
.
0 • 1 0 11.0 -1 .0000 .0 .0 .0 .0 1 .0000

50 0. 1 o .0 .0 .0 .0 .0 .0 .0

4 2. 5 • 11.0 .0 .0 .0 .0 .0 .0

50 2. 5 • ,0 .0 .0 .0 .0 .0 .0

4 6 . 7 o .0 .0 .0 .0 .0 .0 .0

SET . 1 (example

)

7 4 . 5 • 3.0 .0 .0 .0 .0 .0 .0

4 0. 5 • 102.0 '1 . 0000 .0 .0 .0 .0 1 .0000

4 6 . 9 • 102.0 11.0 .0 .0 .0 .0 .0

7 10 . 1

1

• 2.0 .0 .0 .0 .0 .0 .0

3 12 . 14 • 2 .

0

11.0 .0 .0 .0 .0 .0

50 12. 14 e .0 .0 .0 .0 .0 .0 .0

SET. 2 (example)

’ Carry part to vise fixture’
’ Insert part in vise fixture’

HCODE.SET (example)

Figure 6. AWAP Data Files

40

Aii AMPLE Prototype: HWS

• Grip widths parallel to each axis of the article coordinate system

• Distances from the origin to the seating surface of the article in each of the six axis

directions. (The current implementation requires that the distances to the two seating

surfaces normal to an axis be equal. Each article is defined with its origin at the

midpoint between its grip points.)

Each odd-numbered record in hartic.dat contains the following data elements, respectively.

(See Figure 5 and the hartic.dat example in Figure 6.) As with the even-numbered records,

the sizes of the data fields do not matter.

• article number (integer)

• grip width (real) parallel to the X-axis of the article

• seating surface coordinate (real) in the -X direction

• seating surface coordinate (real) in the +X direction

• grip width (real) parallel to the Y-axis of the article

• seating surface coordinate (real) in the -Y direction

• seating surface coordinate (real) in the +Y direction

• grip width (real) parallel to the Z-axis of the article

• seating surface coordinate (real) in the -Z direction

• seating surface coordinate (real) in the +Z direction

4.3. Initial Positions of Workstation Components

The initial positions of all workstation components except articles are determined by

parameters contained in the file Main/Data/Hdata/hparam.dat. Where lengths are directly

specified, the unit of length is the inch. The sizes of the data fields in hparam.dat do not

matter; nor do the number of values per record, since the file is read by a list-directed mode
of access. The data types of the initial position parameters are indicated in the following

pseudocode.

type DEGREES: float;

type INITIAL-POSITIONS is record

gripper-code: integer;

finger-width: float;

gripper-orientation: array(3) of float;

41

An AMPLE Prototype: HWS

tool-tip-location: array(3) of float;

roll-angle: array(3) of float;

vise-jaw-opening: float;

left-pallet-y-coordinate: float;

left-pallet-rotation: degrees;

right-pallet-y-coordinate: float;

right-pallet-rotation: degrees;

quill-x-coordinate: float;

spindle-z-coordinate: float;

tool-drum-position: integer;

v-block-jaw-opening: float;

active-pedestal-jaw-opening: float;

active-pedestal-rotation: degrees;

reserved-parameters: array(7) of integer;

end record;

Brief explanations of the initial position parameters follow. Where commands are mentioned,

refer to the Animation Commands section.

The gripper-code indicates which gripper is mounted on the robot wrist, and is the same code

used in the CHANGE GRIPPERS command. The finger-width is the distance between the

fingers of the gripper mounted on the wrist. The gripper-orientation may be specified

according to the same requirements as the first three parameters of the GO XYZ (ijk)

command, or optionally according to the same requirements as the first three parameters of

the GO XYZ (ANG1ANG2) command. The tool-tip-location is comprised of the X, Y and Z
coordinates of the tool tip of the gripper, in terms of the robot coordinate system — i.e., the

coordinate system parallel to the world system, but having its origin at World [0., 0., 59.42].

The roll-angle is specified according to the same requirements as the first three parameters of

the ADJUST ROLL ANGLE command.

The vise-jaw-opening is the width between the jaws of the vise fixture. The
left-pallet-y-coordinate may locate the machine tool pallet containing the vise fixture

anywhere in the range between the machining position and the loading position.

left-pallet-rotation is the angle of rotation (about the Z-axis), in degrees, of that same pallet.

The v-block-jaw-opening
,

right-pallet-y-coordinate
,
and right-pallet-rotation are similar to the

data for the vise fixture and left pallet, but apply to the v-block fixture and right pallet.

The quill-x-coordinate and spindle-z-coordinate locate the in-out and up-down positions,

respectively, of the spindle of the machine tool. The tool-drum-position is the number
indicating which tool is in position to be transferred to the

spindle.

The two active pedestal parameters are active-pedestal-jaw-opening
,

indicating the width

between the inner faces of the jaws; and active-pedestal-rotation
,

the angle of rotation, in

degrees, about the Z-axis. The seven final initial-positions elements, the reserved-parameters,

are not used, but exist to allow the possibility of adding new capability without revising

format.

42

An AMPLE Prototype: HWS

The above parameters are identified by sequence numbers 1 through 29, in the order that they

appear in the pseudocode. Also contained in hparam.dat are Parameters 30 through 129,

comprising the default first set of animation data, to be used in the event that

Main/Data/Hdata/set.l does not exist. Therefore the data for these parameters must be in

accord with the requirements of animation data, as explained in the next section. Only
Parameters 30 - 39 are required to be data for a valid set-file command (explained below).

The remaining values may be zeros. The data types are integer for parameters 30, 40, 50, 60,

70, 80, 90, 100, 110, and 120; and are real for all others.

4.4. Animation Commands

The data which drive the animation are organized as shown in the following pseudocode.

type PERIOD is record

group: integer;

start-time: float;

end-time: float;

position-parameters: array(7) of float;

end record;

type MOTION-SPEC is set of period;

type SET-FILE is sequence of motion-spec;

The data files, called set files, that govern the motions in an HWS animation sequence must

be located in the directory Main/Data/Hdata, and must have the filenames set.l, set.2, ...,

set.n. Each record in a set file represents a period
,

a time interval in which action for a

specified motion group takes place. A motion group (or just group

)

is a collection of

geometric entities whose changes in position depend on a common set of equations. A
collection of periods constitutes a motion-spec — an animation command which implies motion

for the designated motion group. The start and end times of each period of each motion-spec

are measured in seconds from the start of the set file. Time intervals for different periods

are permitted to overlap if different groups are specified for each. Periods are referred to as

the sequence numbers of the records in the set file. Position parameters define the end-time

positioning of the geometric entities represented by the group number. Figure 6 contains two

examples of set files.

The sizes of the data fields do not matter since the file is read by a list-directed mode of

access. The following rules apply to set files:

43

An AMPLE Prototype: HWS

1. The order of occurrence of any one group in a set file must be chronological. Although

no two periods for the same group may have overlapping timing, the start time for one

occurrence may be the same as the end time for the last. (The exception for dummy
periods is noted later.)

2. The maximum duration of a set file — that is, the greatest end time that can be

specified -- is sixty seconds.

3. The maximum number of periods in a set file is twenty.

When a set file is executed, the data for each period cause a gradual change in the

positioning of the geometric entities of the corresponding group. At the start time, the

positioning starts to change from its previous state such that the positioning implied by the

parameters is achieved at the end time. Since set files are processed and executed

sequentially, animation will pause, perhaps for about two seconds, between set files. To mark

the end of an animation sequence, the last set file of the sequence must contain only a dot

(ASCII 46).

There are a few commands whose set-file elements deviate from the preceding description.

For example, there are certain cases for which the end positioning does not occur at the

specified end time. The explanations of set-file requirements for each command, given in the

rest of this section, will note such exceptions.

The following few sections contain examples of animation command formats. Certain

information required for each command will be identified to illustrate the manner in which the

animation is controlled. Since the intention is not to present a complete instruction manual,

information considered to be irrelevant to a general understanding will be either omitted or

abbreviated.

The position parameters required for the principal period of each command will be indicated.

As shown above in the type definition for period
,

there must be seven parameters per period;

so if fewer than seven are indicated, then the remaining parameters are constants associated

with the command. (The values of such constants are beyond the scope of this report.) All

vectors are represented by three floating point values -- the normalized i, j, and k

components. For the cases in which the first period for a command must be followed by one

or more dummy periods, each dummy period should have the same start and end times as the

first period for the command, but all dummy-period parameters should be equal to zero.

Dummy periods must appear in the same set file as the initial period for the command with

which they are associated.

Note that descriptors -- worded expressions such as GO TO XYZ (ijk) -- are used to refer to

the animation commands. The descriptors themselves are not used as commands, but are only

names identifying commands. As shown below, the actual commands are in the form of sets of

numerical values.

44

An AMPLE Prototype: HWS

4.4.1. Independent Robot Commands

These commands are for the robot to move without regard to any article. The robot

coordinate system referred to is parallel to the world coordinate system, but has its origin at

World [0., 0., 59.42]. When the robot moves its gripper from one location and orientation to

another, the tool tip follows a linear trajectory at the same time that the attitude of the

gripper also changes in a linear manner. If any joint limit is reached during an attempt to

traverse a linear trajectory, the tool tip deviates from the idealized trajectory only to the

extent required to prevent violation of the joint limit. If a destination specification is

unattainable by far, then the results are unpredictable. (The HWS robot algorithms are

explained in Bandy [2].) Figure 2 shows the basic configuration of the HWS robot.

GO TO XYZ (ijk). Three parameters denote the roll axis orientation vector — i.e., the vector

along the roll axis, in the direction of the tool tip -'- in terms of the world coordinate

system. Three other parameters are the coordinates of the tool tip in terms of the robot

coordinate system. The robot moves the gripper to the specified location and orientation.

The roll angle will remain as before unless the ADJUST ROLL ANGLE command is

simultaneously issued.

GO TO XYZ (ANG1ANG2). This is an alternate specification format for accomplishing the

same result as the command GO TO XYZ (ijk). Refer to Figure 3 to use the following codes

to specify gripper orientation. Alpha, beta, and gamma are in degrees.

Parameter 1 Parameter 2 Parameter 3

2. alpha beta
3. beta gamma
4. gamma alpha

The first parameter is the code indicating which two orientation angles will be specified in

the next two parameters. The next two parameters are the orientation angles, in degrees.

Three more parameters denote the location of the tool tip in terms of the robot coordinate

system. The robot moves the gripper to the specified location and orientation. The roll angle

will remain as before unless the ADJUST ROLL ANGLE command is simultaneously issued.

ADJUST ROLL ANGLE. There are two options here. For the first option, three parameters

represent the roll vector — the unit vector along the Z-axis of the gripper. If the vector is

not known accurately, it may be approximated. If the approximation is inconsistent with other

position specifications for the robot, the vector will be automatically adjusted, often to the

actual roll desired. (The pertinent algorithm is explained in Bandy [2].) The reference for

the roll vector is that it is parallel to the world Z-axis when the gripper is directed along the

world X-axis and the roll angle is zero. An alternate specification may be used if the roll

angle is actually known. In this case, the only parameter needed is the value of the roll angle

in degrees.

ADJUST GRIPPER OPENING. The width between the fmgers of the gripper which is mounted

on the robot wrist adjusts to the dimension specified by a single parameter.

CHANGE GRIPPERS. A parameter in the principle period for this command specifies the

gripper number: 1 for the parts handling gripper, or 2 for the tool handling gripper. This

45

An AMPLE Prototype: HWS

first period must be followed by seven dummy periods. The robot moves the current gripper

to its storage holster. The current gripper is released, and then the wrist goes to the holster

containing the newly specified gripper, attaches itself to that gripper, and waits above the

holster for the next command. Since the timing specification for this command does not

follow the rule stated after the type definition of period
,

the requirement will be explained

here. The timing specification for this command applies only to the robot moving the initial

gripper to the approach point above the empty holster. The remaining gripper change actions

take place during the eleven seconds after the initial gripper arrives above the empty holster.

Therefore the start time for next robot command cannot be sooner than eleven seconds after

the specified end time for the CHANGE GRIPPERS command.

4.4.2. Article-dependent Robot Commands

These commands are all related to handling articles. The coordinate system of an article is

fixed to the article, and rotates and translates with respect to other systems as the article is

moved. The approach point for an article is located at the tail of a designated approach

vector of magnitude D when the head of the vector is at the centroid of the article. D is

currently assigned the value 8.0 inches, but is easily changed. As with the Independent Robot

Commands, when the robot moves its gripper from one location and orientation to another, the

tool tip follows a linear trajectory at the same time that the attitude of the gripper also

changes in a linear manner.

The robot places articles in World Locations. The codes for World Locations are to be used

only in set files, and should not be confused with the Article Locations used in the file

hartic.dat. The approach point of a World Location is calculated as if the article of current

interest were situated in the location. Following are applicable World Locations:

100. Kardex Tray #1
101. Kardex Tray #2
102. Right Pallet Loading

103. Left Pallet Front Loading

104. Left Pallet Top Loading

105. Active Pedestal

106. Regrip Table

107. Tool Drum Loading

Some of the following commands refer to the touch point of an article. This point is the

intersection of the line from the article centroid to the tool tip of the gripper, and the

article surface nearest to the gripper.

GO APPROACH ARTICLE. The first parameter is the article number. The next three denote

the approach vector, indicating the desired orientation of the roll axis of the robot, in the

direction of the tool tip. Three more parameters represent the grip vector, indicating the

direction of finger motion (which finger does not matter) when the robot grips the article.

Both vectors are in terms of the coordinate system of the article. This first period must be

followed by one dummy period. The robot moves the tool tip to the approach point of the

specified article. At the same time, the gripper fingers open and the roll angle adjusts

46

An AMPLE Prototype: HWS

according to the requirements for gripping the article. Note that when execution of this

command is completed the gripper will still be a few inches away from the article.

GO GRIP. A parameter is equal to the article number, the only value needed in this

command. This first period must be followed by one dummy period. The command GO
APPROACH ARTICLE should have been issued prior to this command so that the gripper is at

the approach point of the article. The gripper now moves to the article and then the fingers

close. The specified end time should be one second greater than the time desired for the

gripper to arrive at the article. The closing of the fingers occurs in the last second.

RETRACT WITH ARTICLE. All parameters are equal to zero. The command GO GRIP should

have been issued prior to this command so that the gripper has closed on an article, but has

not yet moved it. Now containing the article, the gripper moves back to the former approach

point for the article.

GO APPROACH LOCATION. The first parameter is the World Location number. The next

three denote the approach vector. Three more parameters represent the roll vector, directed

along the local Z-axis of the gripper. Both vectors are in terms of the world coordinate

system. This command may be issued when the robot gripper already contains an article. The

robot carries the article to the approach point of the specified World Location. If the roll

vector is not known accurately, it may be approximated. If the approximation is inconsistent

with other position specifications for the robot, the vector will be automatically adjusted,

often to the actual roll desired [2]. The reference for the roll vector is that it is parallel to

the world Z-axis when the gripper is directed along the world X-axis and the roll angle is

zero.

GO READY TO RELEASE. Parameters specify the World Location number and article number.

The command GO APPROACH LOCATION should have been issued prior to this command so

that the gripper is at the approach point of the World Location. The gripper now moves the

article into its target place, but the fingers have not yet opened.

RELEASE / RETRACT. Parameters denote article number and a special code. This first

period must be followed by one dummy period. The command GO READY TO RELEASE should

have been issued prior to this command so that the article is in the desired place but the

gripper has not yet released it. Now the fingers open, releasing the article, and the gripper

backs off to the point indicated by the following interpretation of the code parameter. If the

code equals zero, the gripper backs off to the approach point. If the code is not equal to

zero, then the code is taken to be the desired distance between the fingertip and the touch

point of the article. The duration between start and end times should be one second greater

than the time it takes for the gripper to move from the article to the backoff point. The
gripper does not start moving until after the first second, during which time the fingers open.

GO TOUCH. The article number is indicated by a parameter. This first period must be

followed by one dummy period. This command is for moving the gripper from an initial

position a short distance away from an article, to the point where the fingertips touch the

article (i.e., to the touch point). The gripper should not initially contain an article.

TOUCH SPACING. Parameters denote article number and a special code. This first period

must be followed by one dummy period. This command is for moving the gripper small

47

An AMPLE Prototype: HWS

distances towards or away from an article, in the vicinity of the article. The gripper should

not initially contain the article, so no release is done here; but otherwise this command is

similar to RELEASE / RETRACT. The gripper moves to the point indicated by the following

interpretation of the code parameter. If the code equals zero, the gripper moves to the

approach point of the article. If the code is not equal to zero, then the code is taken to be

the desired distance between the fingertip and the touch point of the article.

4.4.3.

Vise Fixture / Pallet Commands

ADJUST JAW OPENING. A parameter is equal to the distance between the inner faces of the

two jaws. The movable jaw of the vise fixture adjusts position to attain the specified

distance between jaws.

CONVEY PALLET. The right pallet of the machine tool moves to the Y-coordinate specified

by a parameter.

ROTATE PALLET. The right pallet of the machine tool rotates to the angle specified in

degrees by a parameter.

4.4.4.

V-block Fixture / Pallet Commands

ADJUST JAW OPENING. A parameter is equal to the distance between the inner faces of the

two jaws. The movable jaw of the v-block fixture adjusts position to attain the specified

distance between jaws.

CONVEY PALLET. The left pallet of the machine tool moves to the Y-coordinate specified by

a parameter.

ROTATE PALLET. The left pallet of the machine tool rotates to the angle specified in

degrees by a parameter.

4.4.5.

Spindle / Tool Drum Commands

INDICATE MACHINING. All parameters are equal to zero. At the specified start time, the

area about the spindle nose starts flashing yellow to symbolize machining. The specified end

time has no effect on the duration of flashing, and should be assigned the same value as the

start time. The flashing will last for about eight seconds. All actions in the workstation are

suspended during that time, and consequently, subsequent commands should be timed as if

machining lasted only an instant.

MOVE SPINDLE. Two parameters are equal to the X and Z coordinates, respectively. The

spindle of the machine tool moves to the specified X (quill) and Z coordinates. The pertinent

coordinate system originates at the spindle home position, and is parallel to the world

coordinate system.

48

An AMPLE Prototype: HWS

ROTATE TOOL DRUM. A parameter specifies the tool position number. The tool drum
rotates until the tool position is situated for transferring a tool to the spindle.

4.4.6. Active Pedestal Commands

ADJUST JAW OPENING. A parameter specifies the distance between the two inner faces of

the active pedestal jaws. The jaws move either towards or away from each other if necessary

to attain the specified distance.

ROTATE. The active pedestal rotates to the angle specified in degrees by a parameter.

4.4.7. Kardex Commands

ARTICLE TO TRAY L The first parameter is the article number. The next three denote the

world vector along the local X-axis of the article. The remaining three parameters represent

the world vector along the local Z-axis of the article. The article will instantly appear on

Kardex Tray 1 in the specified orientation. Prior to this command the article had to have

been located in the Kardex hidden buffer.

ARTICLE TO TRAY 2. The parameters are exactly the same as for ARTICLE TO TRAY 1.

The article will instantly appear on Kardex Tray 2 in the specified orientation. Prior to this

command the article had to have been located in the Kardex hidden buffer.

4.5. Captions

For each active set file there must be an associated character string — a caption to be shown

at the bottom of the screen during animation as the set file is executing. Active set files are

all sequential set files before the termination set file which contains only a dot (ASCII 46).

The character strings must be contained in File Main/Data/Hdata/hcode.set. (See example in

Figure 6.) There should be one character string per record, and each string must be enclosed

in apostrophes. If captions are identical for some set files, then repeat them in separate

records of hcode.set. If captions are not desired for some set files, then enter null character

strings into the corresponding records of hcode.set. There must be at least as many character

strings in hcode.set as there are active set files.

4.6. Set File Compression

As was mentioned before, a set file may contain as many as twenty periods (records). For

purposes of developing and modifying the files, however, experience has shown that it is good

practice to keep them short -- perhaps five to ten periods — without being concerned that a

large number of files may be generated this way. A subroutine named HCMBIN is provided

with AWAP to combine all active set files into the smallest possible number of files before

they are read. HCMBIN can either read files from some remote directory, leaving the files

intact, and rewrite to the Hdata directory; or HCMBIN can both read and write from Hdata,

writing over the first versions.

49

An AMPLE Prototype: HWS

4.7. Set File Editor

When an animation sequence has been completed, the user has the option of repeating the

same sequence, creating a modified sequence, or terminating the execution of AWAP. The Set

File Editor allows the user to examine the initial conditions and animation data of the existing

sequence, and to change any parameters as desired. The user may then have the set file

pointer indicate which set file is to be executed first. The sequence may be run from that

indicated file through the last file; or the indicated file may be executed alone.

50

An AMPLE Prototype: HWS

VI. CONCLUSION

This document has described the AMPLE Version 0.1 prototype for HWS as it existed during

the March 1987 AMRF benchmark test. Since that time, the AMPLE modules discussed above

have been significantly improved, as will be explained in subsequent reports.

51

An AMPLE Prototype: HWS

1

52

'

An AMPLE Prototype: HWS

APPENDIX A:

AMPLE Communication Module (Acomm)

The AMPLE communication module is a means for transferring data and messages between the

AMPLE system and suitably prepared AMRF workstations. During the March 1987 AMRF
benchmark test, an Acomm link was demonstrated between AMPLE and both, HWS and the

Turning Workstation (TWS). In this section, a description of the Acomm link to HWS will be

presented. This link differs in some respects from the Acomm link to TWS [13].

Data sets transmitted between HWS and AMPLE include process plans in the flat-file format

(Figure 1), various levels of control data for programmable controllers resident in HWS, and

various error and status reports.

1. Acomm/HWS COMMUNICATION PROTOCOL

The communication protocol defines the requirements for the transmission of ASCII strings.

Each string is terminated by a line feed (LF) character (ASCII 10). Every transmission begins

with a header record. There are three kinds of header records, each identified by its initial

keyword: ACCEPT-FILE, PROCESS, or SEND. The following pseudocode characterizes the

organization of header records:

type HEADER is record

keyword : 16 bytes;

option : 16 bytes;

file-option : 16 bytes;

system-identifier : 16 bytes;

data-identifier : 16 bytes;

version-control : 16 bytes;

LF-delimiter : 1 byte;

end record;

The ACCEPT-FILE header is used by HWS to prepare AMPLE to receive a named process plan

in the flat-file format. The PROCESS header is used to signal AMPLE to begin the analysis

of the named process plan in the AMPLE Process Planning Interface (APPI) module. The
SEND header is used by HWS to request that the control data, prepared in response to the

preceding header, be downloaded to the workstation. The control data to be transmitted are

identified by file-option. If file-option is HWSC-CD, then error status reports are sent,

followed by the control data for the HWS controller. If file-option is FIXT-CD, then control

data are sent for the programmable fixture. Should an unrecognized file-option be requested,

then Acomm transmits an ERROR response.

Acomm may make two responses to HWS: a DONE response which indicates the successful

termination of a transmission, and an ERROR response which signals the presence of an error

condition. The following pseudocode describes the organization of responses:

53

An AMPLE Prototype: HWS

type RESPONSE is record

byte-count : 10 bytes;

keyword : 10 bytes;

LF-delimiter : 1 byte;

data : variable bytes;

end record;

The initial byte-count includes all LF delimiters in the variable-length data section of the

response. If a response has no associated data, as is often the case, then the response

consists of precisely 21 bytes.

2. Acomm OPERATION

The operation of Acomm is controlled by a program called hwscomm, which has been

implemented in FranzLISP on a Silicon Graphics IRIS workstation. To establish a

communication link between AMPLE and HWS, the command hwscomm should be entered,

followed by a filename for the port through which the communication will take place. The
following pseudocode describes the behavior of hwscomm:

procedure hwscomm (filename)

begin

configure communication port;

open communication port;

open error-report;

loop

receive header;

get keyword from header;

get planname from header;

case keyword is

when ACCEPT-FILE

send DONE response;

print port to planname.pp;
mark accept-file attribute of planname;

send DONE response;

when PROCESS -*•

if accept-file attribute of planname is marked then

initialize error-report and artci-report files;

get process plan planname;

get partname from planname;

analyze planname;

54

An AMPLE Prototype: HWS

if analysis is successful then

print artci-report to planname.out;

start ARTCI process for planname and partname;

mark process attribute of planname;

else

mark err-report attribute of planname;

print error-report to planname .err;

mark process attribute of planname;

end if;

end if;

send DONE response;

when SEND -*

if process attribute of planname is marked then

get file-option from header;

case file-option is

when HWSC-CD -*

if err-report attribute of planname is marked then;

print planname.cn to port;

else

print planname.send to port;

end if;

when FIXT-CD -*

print planname .fixt to port;

when others

file-option is unrecognized;

end case;

else

planname was not PROCESS’ed;

end ERROR response;

end if;

55

An AMPLE Prototype: HWS

when others -*

keyword is unrecognized;

end ease;

end loop

end hwscomm;

Comments. This pseudocode version of Acomm omits many implementational details. To
clarify the functional organization of this module, some of its operations will now be
elaborated.

configure communication port;

The communication between AMPLE and HWS is established by an RS232C link to a port on

the Silicon Graphics IRIS workstation. From the point of view of the IRIS workstation, HWS
is treated as a certain kind of terminal. Using the UNIX stty command [20], the terminal

options must be set to the following specification

-igner:

-icrnl:

-ixon:

-ixoff:

-echo:

-echok:

-onlcr:

ignore CR on input

do not map CR to NL on input

enable START/STOP output control with ASCII DC1 and DC3
request that system send START/STOP characters when input queue is nearly

empty/full

do not echo back every character typed

do not echo NL after KILL character

do not map NL to NL-CR on output

open communication port;

The filename passed as the only argument of the procedure hwscomm is stored and then used

as a FranzLISP port name for the device configured in the preceding step. Because ports can

be opened either in read-only or write-only modes, the implied bi-directional flow of messages

and data in the communication protocol is actually implemented by repeatedly opening and

closing the same port. Header records and responses are transmitted to ensure that all I/O

operations are properly sequenced.

get keyword from header,

get planname from header,

Once a header record has been received, the information contained in it must be converted

from a character string to internally usable data. The value of the symbol keyword is

obtained by compacting the first 16 bytes of the header record. In this case, the compaction

consists of stripping off all leading and trailing blanks. Embedded blanks are preserved, which

means that ACCEPT-FILE is not the same keyword as ACCEPT FILE or ACCEPT -FILE. The

56

An AMPLE Prototype: HWS

value of the symbol planname is obtained by completely compacting the data-identifier and

version-control fields of the header record. Not only are all leading and trailing blanks

removed, but all embedded blanks are also removed.

print port to planname .pp;

To prevent the loss of data when an ACCEPT-FILE keyword is received from HWS, Acomm
initiates a background process which causes data from the communication port to be

transferred to a file. Specifically, the terminal device which has been configured as a

communication port is taken as the redirected input to the UNIX cat function and the file

planname.pp is taken as the output. The cat operation is terminated, and the output file is

closed, when an EOT character is received.

mark accept-file attribute of planname;

mark en-report attribute of planname;

mark process attribute of planname;

In Acomm the processing stages of a specific planname are indicated by marking the indicated

attributes of the symbol planname

.

Appendix B explains how such marking of symbol

attributes is done in FranzLISP, the language in which Acomm is implemented.

get process plan planname;

analyze planname;

These operations are provided by the AMPLE Process Planning Interface, which was discussed

in Section III.

start ARTCI process for planname and partname;

The ARTCI process and the construction of the files planname. send, planname. fixt, and

planname.err are discussed in Section IV.

57

An AMPLE Prototype: HWS

An AMPLE Prototype: IIWS

APPENDIX B:

LISP-Related Notes on Acomm and APPI

The software discussed in this report took experimental advantage of concepts which will be

central to subsequent versions of the AMPLE system. While a simplified and specific approach

to building internal representations satisfied the needs of this application, future

implementations will accomplish such tasks by means of a general, comprehensive tool: the

AMPLE Object Oriented Editor (OED) [7]. Acomm and APPI, as well as the central

components of the AMPLE system -- AMPLE/core, OED and others (not mentioned in this

report; see "AMPLE/mod” in Glossary) — are written in FranzLISP.

One advantage of LISP as an implementation language is that it permits a very precise control

over the name space of a particular application. Symbols may be assigned values, may be

assigned function definitions, and may have an extensive list of attributes or properties. In

FranzLISP, control over the property list is achieved with the functions putprop and get.

That is, the expression

(putprop ’my-tree ’red ’leaf-color)

says that the leaf-color attribute of my-tree is red. The function get returns the value of

the attribute. That is, if the expression

(get ’my-tree ’leaf-color)

were evaluated, then it would return the value red. If the symbol does not have the attribute

in question, then the value returned is the empty list object, called nil. In Boolean
evaluations, nil is equivalent to the Boolean false. An example of how attributes have been

used is seen in Acomm, where the processing stages of a specific planname are indicated by

marking the indicated attributes of the symbol planname; that is, by assigning the attribute

some non-nil value. Since any such value would do, the specific value assigned is t, which is

the equivalent of the Boolean value true.

The process plan format has also been designed to take advantage of LISP. In flat file

process plans, the legality of keywords and other symbols and values reflects the conventions

of the underlying LISP readtable. In order to resolve process plans into tokens, this readtable

has to be revised. In FranzLISP, colons, semicolons, and parentheses are special symbols.

Colons are used to describe access paths in packages, semicolons to initiate comments, and

parentheses to initiate (and terminate) lists. Thus, before any process plan is parsed, the

standard FranzLISP readtable is modified by reclassifying these symbols to the symbol class

vcharacter using the FranzLISP function setsyntax. The initialize readtable operation changes

the status of certain tokens in this manner as the first step of the first pass analysis of

APPI.

A very important function of AMPLE/core is to keep a detailed map of the name space, which

is a net of externally visible names and their semantic relations with one another. Nets of

this kind may be called symboltables. When one is analyzing process plans for HWS, the

symboltable would contain such information as:

59

An AMPLE Prototype: HWS

LOAD isa workelement of HWS

FIXTURE-ID isa attribute of LOAD

type FIXTURE-ID is string

The ease with which information of this kind can be represented in LISP is one of the most

persuasive reasons for using this programming language in this implementation.

60

An AMPLE Prototype: HWS

LIST OF REFERENCES

[1] Albus, J.S.; Barbera, A.J.; and Nagel, R.N. "Theory and Practice of Hierarchical Control,"

Proceedings of the 23rd IEEE Computer Society International Conference, 1981 September.

18-39.

[2] Bandy, H.T. The AWAP HWS Prototype, to be published as a National Bureau of Standards

(U.S.) NBSIR.

[3] Bandy, H.T. The AWAP System Specification, to be published as a National Bureau of

Standards (U.S.) NBSIR.

[4] Bandy, H.T.; Parker, J.S.; and Carew, V.E., Jr. The AMPLE Coordinate Editor, to be

published as a National Bureau of Standards (U.S.) NBSIR.

[5] Boudreaux, J.C. AMPLE: A Programming Language Environment for Automated
Manufacturing. Boudreaux, J.C.; Hamill, B.; and Jernigan, R., editors. The Role of

Language in Problem Solving - 2; North Holland, Amsterdam; 1986.

[6] Boudreaux, J.C. The AMPLE Project, National Bureau of Standards (U.S.) NBSIR 86-3496;

1987 March. 13 pages.

[7] Boudreaux, J.C. OED: The Object-Oriented Editor, National Bureau of Standards (U.S.)

NBSIR 87-3530; 1987 March. 15 pages.

[8] Brown, P.F.; and Ray, S.R. The NBS-AMRF Process Planning System: System Architecture,

to be published as a National Bureau of Standards (U.S.) NBSIR.

[9] Bunch, W.R. The Material Buffering System of the Horizontal Workstation, to be

published as a National Bureau of Standards (U.S.) NBSIR.

[10] Chasen, S.H. Geometric Principles and Procedures for Computer Graphic Applications,

Englewood Cliffs, NJ: Prentice-Hall; 1978. 241 pages.

[11] Fishman, D. The High Level Machine Tool Controller of the Horizontal Workstation, to be

published as a National Bureau of Standards (U.S.) NBSIR.

[12] IRIS User’s Guide Volume I (Version 3.0), Mountain View CA: Silicon Graphics, Inc.; 1986.

[13] Lee, K.; Donmez, A.; Gavin, R.; Greenspan, L.; Lee, V.; Reisenauer, E.; Peris, J.P.;

Shoemaker, C.; and Yang, C. The Turning Workstation in the AMRF

,

National Bureau of

Standards (U.S.) NBSIR 88-3749; 1988 March. 197 pages.

[14] Nashman, M. and Chaconas, KJ. The MBS Vision System in the AMRF, National Bureau of

Standards (U.S.) NBSIR 87-3684; 1987 December. 42 pages.

61

An AMPLE Prototype: HWS

[15] Paul, R.P. Robot Manipulators: Mathematics, Programming and Control
,
Cambridge MA:

The MIT Press; 1981. 279 pages.

[16] Scott, H.A. Architecture and Principles of the Horizontal Workstation
,

to be published as

a National Bureau of Standards (U.S.) NBSIR.

[17] Scott, H.A. and Burton, R.J. The Automated Fixturing System of the Horizontal

Workstation
,
to be published as a National Bureau of Standards (U.S.) NBSIR.

[18] Simpson, J.A.; Hocken, R.J.; and Albus, J.S. "The Automated Manufacturing Research

Facility," Society of Manufacturing Engineers Journal of Manufacturing Engineering
, 1(1):

17-32; 1982.

[19] Strouse, K. and Scott, H.A. Horizontal Workstation Controller Implementation
,

to be

published as a National Bureau of Standards (U.S.) NBSIR.

[20] UNIX Programmer’s Manual Volume 1A
,
Mountain View CA: Silicon Graphics, Inc.; 1986.

[21] Wavering, A.J. and Fiala, J.C. The Real-Time Control System of the Horizontal

Workstation
,
National Bureau of Standards (U.S.) NBSIR 87-3692; 1987 December. 183

pages.

62

An AMPLE Prototype: HWS

GLOSSARY

active set files -- In AWAP, all sequential set files before the termination set file. Active set

files contain data that determine motions in an animation sequence.

AMPLE — The Automated Manufacturing Programming Language Environment. AMPLE provides

a mechanism for constructing control interfaces to industrial manufacturing processes, and

also provides an integrated system of software tools for translating product design and

process planning specifications into verified equipment-level control programs.

AMPLE/core -- The central processor of AMPLE
,
which contains appropriate representations of

all entities in the manufacturing domain.

AMPLE/mod — A loosely bundled, extensible collection of software modules distributed around

AMPLE/core. Some modules, such as the Workspace Manager (WM), the Lexical Analyzer

(Lexx), and the Object Oriented Editor (OED), permit direct access to AMPLE/core.
Other modules are less tightly coupled to AMPLE/core

,
and provide the programmer with

specific support functions.

AMRF — The Automated Manufacturing Research Facility at the National Bureau of Standards.

animation clock — In AWAP, the concept regulating the timing of animated motions. Seconds in

time are either specified or implied in set file commands. The resulting animation timing

depends on the screen refresh rate, and is accurate unless calculations between frames

slow the programmed refresh rate of 7.5 frames per second. All motions cease during the

eight seconds that the INDICATE MACHINING command takes to execute, and then

motions resume their timing as if there were no pause. This means that the "animation

clock" was suspended during that pause, and the execution of the set file will actually

take eight extra seconds.

animation sequence -- The collective result of the successive execution of all active set files.

APPI -- The AMPLE Process Planning Interface. This module reads, parses, and verifies process

plans in the AMRF flat-file format.

approach point -- (of an article:) The point located at the tail of a designated approach vector

when the head of the vector is at the centroid of the article to be approached. In

AWAP, the magnitude of an approach vector is set to always be 8.0; however the value of

this constant may easily be reassigned. The approach point of a World Location is

calculated as if the article of current interest were situated in the location.

approach vector -- The unit vector in the direction in which the robot gripper is to approach

an article from a nearby location. When the approach point is reached, the roll axis will

be aligned with the approach vector.

ARTCI -- The AMPLE Real Time Control Interface. This module generates and verifies control

data for manufacturing workstations.

63

An AMPLE Prototype: HWS

Article Location — The code used in AWAP for specifying the location of an article.

article -- A tool, workpiece or any other item handled by the robot.

ASCII -- American Standard Code for Information Interchange, a standard form in which
computer data may be stored and transmitted.

AWAP — The AMPLE Workstation Animation Package. This module produces an animated
simulation of the workstation in action.

background process -- A computer process that is not directly accessible to the user. Such

processes are frequently used to perform maintenance and updating on computer systems.

caption — A character string shown at the bottom of the screen during animation, corresponding

to a set file.

component -- Also called "major component" -- In AWAP, a grouping of "members" which has its

own coordinate system. Examples of components are the robot, the v-block fixture, etc.

directed graph -- Also called "digraph" — A finite but unempty set of vertices or nodes, which

are connected by a (possibly empty) set of ordered pairs of vertices whose members are

called directed edges, or arcs.

end time -- In AWAP: except for special cases noted in this report, the time for the motion for

the pertinent period to stop. End time is specified in seconds, measured from the start of

the current set file.

fingertip — The extreme end of a finger of a robot gripper. In AWAP, since the length of a

finger is along the X direction of the finger coordinate system, the fingertip has a

greater X coordinate than any other part of the finger. For the current model of the

HWS robot, the finger system X coordinate of the tool tip is 1/4 inch less than the finger

system X coordinate of the fingertip.

finite state machine -- A system whose next function is determined according to a data table.

The table consists of multiple rows and columns. Each column represents an input or

output value for the system, and each row represents an event or set of events. The

system scans the table for a row containing a particular set of input values. When such a

row is found, the finite state machine will output all of the values found in the output

columns of that row.

fixture -- A mechanical system for rigidly attaching workpieces to a machine tool table. The

fixtures of HWS grasp and release workpieces under computer control.

flat file format -- The AMRF standard format for storing process plans.

gripper orientation -- In AWAP for the HWS robot, the orientation of the roll axis, which is

also the local X-axis, of the gripper. This specification is without regard to the roll

angle, which is specified independently. Gripper orientation may be specified in terms of

either a unit vector or the alpha, beta and gamma codes depicted in Figure 3.

64

An AMPLE Prototype: HWS

grip pose -- A definite manner in which a robot is to grasp a specific part. The grip pose

describes the gripper contact points on the part, along with the orientation vector of the

gripper as it approaches the part.

grip vector — A unit vector indicating the direction of motion of either of the robot gripper

fingers when an article is to be gripped. The vector for either finger has the same
effect.

group -- Also called "motion group" — In AWAP, a collection of geometric entities whose
changes in position depend on a common set of equations. In some cases a group is made
up of members whose motion with respect to one another is determined by a single

command.

HLMC -- The High-Level Machine tool Controller. This is a computer system that was added to

the controller provided with the HWS horizontal machining center so that the machining

center could perform additional functions.

horizontal machining center -- A milling machine used for metal and plastics cutting. A
machining center implies certain features such as the ability to store multiple tools and

load them under computer control. A horizontal machining center has its spindle oriented

in the horizontal plane.

hsnarc -- The name of the executable image for the HWS edition of AWAP. The UNIX shell

script Main/Hws/hsnarc executes the actual executable image Main/Execut/hsnarc.

HWFC — Horizontal Workstation Fixturing Controller. This computer system controls all of the

fixtures in HWS.

HWS — The Horizontal Workstation of the AMRF at the National Bureau of Standards. HWS
consists of a robot, a horizontal machining center and other components. The HWS
edition of AWAP provides an animated simulation of HWS.

HWSC — Horizontal Workstation Controller. This computer system controls HWS. It schedules

events and coordinates activity between systems in the workstation.

lower axis (of coordinate plane:) — The first of the two axes identifying a coordinate plane

according to right hand rotational order (X, Y, Z, X, Y, etc.). For example, the lower

axis of the Y-Z plane is Y; the lower axis of the X-Z plane is Z.

MacRow — Term used to describe a macro used by the HWSC. Derived from computer MACro
and a ROW of a state table.

MBC -- Material Buffering Controller. The computer system that controls the material buffering

device in HWS.

NC — Numerical Control -- The term referring to the technology used to automate machine

tools. Numerically controlled machine tools are programmable to operate under computer

control.

65

An AMPLE Prototype: HWS

parse -- The process of resolving a string of symbols, known to be a grammatical sentence of a

given language, into its syntactic components.

period -- In AWAP, a time interval in which action for a specified "motion group" takes place.

Each record in a set file represents a "period". Periods are referred to as the sequence

numbers of the records in the set file.

permanent data (for articles:) — Dimensional constants for articles, stored in the odd-numbered
records of in hartic.dat and used for seating articles in Article Locations.

port -- Also called "communication port" — A connection point to a computer system.

pseudocode -- A form of notation similar to a computer language, used for program design or

description.

RCS -- Real-time Control System. The RCS controls the robot in HWS.

robot system ~ In AWAP for the HWS robot: the coordinate system of the robot, which is

parallel to the world coordinate system, but whose origin is located at World [0., 0.,

59.42].

roll axis — In AWAP for the HWS robot, the local X-axis of the gripper. The +X direction is

used as a specification for gripper orientation. (See Figure 2.)

roll vector — In AWAP for the HWS robot, a unit vector along the local Z-axis of the gripper

(Figure 2). The direction of the roll vector implies the roll angle of the gripper — i.e.,

how far the gripper is rotated about its X-axis from its reference position.

RS232C -- A widely used standard electrical interface for interconnection of computer

equipment.

seating surface -- A surface of the article, which may contact some surface of a location in

which the article may be placed.

set file -- A data file that determines the motions for some segment of the duration of an

AWAP animation sequence. The only exception to this definition is the last set file of

the animation sequence, called the "termination set file", which contains only a dot.

start time — In AWAP, the time for the motion for the pertinent period to start. Start time is

specified in seconds, measured from the start of the current set file.

state table -- A table of data used to operate a system defined as a finite state machine. In a

state table each row of data represents a possible state of the system, and the action to

be taken should the system be in that state.

symbol table — A list, kept by a language translator of a system, of words and symbols known

to the system.

66

An AMPLE Prototype: HWS

template -- A pre-defined character string having blanks which are to be replaced with values

to be assigned by the software making use of the template.

termination set file -- The file following the last active set file. The termination set file

contains only a dot.

timeline -- A representation of the state of a system at a specified time, in terms of the status

of each element of the system at that time.

token — A syntactically significant unit (keyword, name, etc.) or sequence that is an input to a

software system.

tool tip (of the robot gripper:) — The reference point fixed in the local coordinate system of

the gripper, which is meant to coincide with target world space coordinates of a gripper

location specification.

touch point (of an article:) -- The intersection of the line from the article centroid to the tool

tip of the robot gripper, and the article surface nearest to the gripper.

tray sector -- In the AMRF, a region within a material handling tray. The AMRF data base

keeps track of which part or tool is in each sector of each tray, and this information may
be used by the robot, the vision system, or the material handling system.

vision system -- A optical system used by robots and other automated devices for the purpose of

identifying objects and ascertaining their locations and orientations. This information is

used by the HWS robot to identify and acquire parts that are stored in material handling

trays.

world coordinate system (for the HWS edition of AWAP:) — The Cartesian coordinate system

which originates at the center of the base of the robot (on the floor), has the X-axis

pointed toward the machine tool, and has the Z-axis pointed upward.

World Locations -- AWAP codes indicating where the robot is to place articles. The codes for

World Locations are to be used only in set files, and should not be confused with the

Article Locations used in the file hartic.dat.

world space -- 3-dimensional space in terms of the world coordinate system.

67

An AMPLE Prototype: HWS

'

68

An AMPLE Prototype: HWS

INDEX

Acomm 2, 11, 21

alignment, component 9, 11

AMPLE 1, 3, 9, 11, 17, 25, 51, 53, 59

AMPLE/core 1, 11, 12, 15, 16, 59

AMRF 1-3, 9, 11, 25, 51, 53

animation 1, 2, 21, 23-25, 27

APPI 1, 9, 53, 59

approach point 46-48

ARTCI 1, 2, 12, 17, 55, 57

articles 25, 27, 28, 31, 36, 39, 41, 45, 46, 47

Article Location 27, 39, 46

attribute, symbol 11, 12, 15

AWAP 2, 17, 21, 25

interface 21

build operation 14, 20

captions 37, 49

clipping 34, 35

commands, animation 43

active pedestal 49

Kardex 49

robot, article-dependent 46

robot, independent 45

spindle / tool drum 48

v-block fixture / pallet 48

vise fixture / pallet 48

component, major 25, 36

controller

fixturing 6

machine tool 6

materials buffering 7

robot 4

workstation 3

Coordinate Editor 29, 36

data base, local 18, 20

data preparation system 17

descriptors, animation command 44

directory structure 36

emulation system 17, 21

file checking system 21

finite state machine 3

first pass analysis 11, 12

flat file format 1, 9, 12, 17

FranzLISP 54, 57, 59

geometric data 25, 29, 36

geometric representations 25, 36

geometry files 27, 29, 36

grip points 27, 41

grip pose 5, 20

header record 18, 21, 53, 56

header section 9, 12

hidden surface removal 29, 34

HLMC 6

Horizontal Workstation (see also HWS) 1, 3

HWFC 6

HWS 1, 3, 9, 17, 21, 25, 27, 29, 53

hwscomm 54, 56

initial positions 37, 39, 41

internal representation 11, 14, 59

joint angles 31

keyword 9, 53

kinematic model 28, 30, 33

LISP 13, 59

MacRow 3, 17

marking (attributes) 57, 59

material handling 17

matrix,

display 33

modeling 33

view 33

MBC 7

member 27, 30, 35

menu system (ARTCI) 17, 18

NC 2

object, graphics 25, 27

OED 59

parameter section 9

parameters, positioning 30, 37

partname 9, 21

period 43

dummy 44

pick-and-place 27

planname 56

polygon 25, 29, 30, 34

port, communication 2, 54

position parameters 31, 41, 43

positioning specifications 30, 31

procedure section 1, 9

process plan 1, 9, 17

pseudocode 2

Ramtek 9400 28

69

An AMPLE Prototype: HWS

RCS 4, 20

readtable 12, 59

real-time control interface 1, 17

requirement section 9

robot coordinate system 42, 45

roll angle 31, 33, 42

roll axis 31, 45

orientation 45

seating surface 39

second pass analysis 12, 15

set file 22, 37, 43

compression 49

editor 50

Silicon Graphics IRIS 1, 28, 54

solid model 25, 35

state table 22

symboltable 16, 59

template, data 17

tool tip 31, 42

touch point 46

trajectory, robot gripper 45, 46

Turning Workstation (TWS) 25, 53

user interface (ARTCI) 1, 17

verification system (ARTCI) 17

viewing routines 33

vision, robot 2, 5

work element 1, 11

World Location 39, 46

70

READER COMMENT FORM

Document: An AMPLE Version 0.1 Prototype: The HWS Implementation

This document is one in a series of publications which document
research done at the National Bureau of Standards Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested
editorial changes.

Comments

:

If you wish a reply, give your name, company, and complete
mailing address:

What is your occupation?

NOTE: This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Bureau of Standards
Building 220, Room B-lll
Gaithersburg, MD 20899

NBS-114A (rev. 2 -ac)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See, nstruction s)

4. TITLE AND SUBTITLE

PUBLICATION OR
REPORT NO.

NBS IR88-3 7

2. Performing Organ. Report No. 3. Publication Date

70 APRIL 1988

An AMPLE Version 0.1 Prototype: The HWS Implementation

5. AUTHOR(S)

Herbert T. Bandy, Victor E. Carew, Jr., Jack C. Boudreaux

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7 . Contract/Grant No.

NATIONAL BUREAU OF STANDARDS -

U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

. Type of Report & Period Covered

10.

SUPPLEMENTARY NOTES

J Document describes a computer program; SF-J85, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information . If document includes a significant
bibliography or literature survey c mention it here)

The Automated Manufacturing Programming Language Environment (AMPLE) system is being

developed within the Center for Manufacturing Engineering of the National Bureau of

Standards to provide a uniform programming language environment for the construction

of control interfaces to industrial manufacturing processes; and to provide an

integrated system of software tools for translating product design and process

planning specifications into equipment-level control programs. Work on the AMPLE

project has been surrounded by a larger and more comprehensive project which

investigates the design of advanced automated manufacturing systems. This project,

embodied in the Automated Manufacturing Research Facility (AMRF) of the National

Bureau of Standards, has provided an invaluable source of empirical data and practical

experience. In this report the modules of the implementation of the AMPLE Version 0.1

prototype for the Horizontal Workstation System (HWS) will be described.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Automated manufacturing; computer animation ;
programming language environment;

rapid prototype; real-time control.

13. availability 14. NO. OF
PRINTED PAGES

Unlimited

|

For Official Distribution. Do Not Release to NTIS

[1 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

77

15. Price

$13 ,95
|X1 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

USCOMM'OC 8043-P80

