
NBSIR 88-3700
(Supersedes NBSIR 85-3164)

A Technical Overview of the
Information Resource Dictionary
System (Second Edition)

Alan Goldfine

Patricia Konig

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

January 1988

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NBSIR 88-3700

(Supersedes NBSIR 85-3164)

A TECHNICAL OVERVIEW OF THE
INFORMATION RESOURCE DICTIONARY

SYSTEM (Second Edition)

Alan Goldfine

Patricia Konig

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

January 1988

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Page iii

A TECHNICAL OVERVIEW OF THE INFORMATION RESOURCE
DICTIONARY SYSTEM (Second Edition)

Alan Goldfine
Patricia Konig

This publication provides a technical overview of the
computer software specifications for an Information
Resource Dictionary System (IRDS) . It summarizes the
data architecture and the software functions and proces-
ses of the IRDS. The IRDS Specifications are the found-
ation for an American National Standard, a U.S. Federal
Information Processing Standard (expected to be issued in

1988) , and a Draft Proposal within the International
Organization for Standardization (ISO) . This Overview
also provides background information on the development
of the IRDS software specifications.

Key words: American National Standard; computer soft-
ware; data dictionary; data dictionary system; data
management; Federal Information Processing Standard;
FIPS; Information Resource Dictionary System; IRDS;
information resource management; IRM; International
Standard.

ACKNOWLEDGMENTS

We gratefully acknowledge the technical contributions and
thorough review of this publication by members of Technical
Committee H4 of Accredited Standards Committee X3 . We also
appreciate the technical contributions of Dr. Henry C. Lef-
kovits, President of AOG Systems Corporation, and his staff.
Dr. Margaret Henderson Law's thorough review and recommend-
ations on an earlier version of this publication greatly en-
hanced the clarity of presentation.

Page iv

'

"

Page v

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 BACKGROUND 1

1.2 DEVELOPMENT APPROACH 2

1.3 DEVELOPMENT OF AN IRDS PROTOTYPE 4

1.4 BENEFITS OF AN IRDS ' 4

1.5 IRDS DESIGN OBJECTIVES 5

1.5.1 The IRDS: An Outgiowth of Existing Systems 6

1.5.2 Flexibility of Use and Procurement Cost-Benefits . 6

1.5.3 Portability of Skills and Data
1.7 SCOPE OF REPORT 9

2. OVERVIEW OF THE IRDS DATA ARCHITECTURE 11

2.1 AN IRDS USER'S VIEW OF DATA 11

2.2 THE IRD SCHEMA 14

2.3 THE MINIMAL SCHEMA 15

2.4 THE BASIC FUNCTIONAL SCHEMA 18

2.4.1 Basic Functional Entity Types . 19

2.4.2 Basic Functional Relationship-Types 20
2.4.3 Basic Functional Attribute-Types 21

2.5 ENTITY NAMES 2 2

2.5.1 Purpose of Access-Names and Descriptive-Names . . 22
2.5.2 Uniqueness of Access-Names and Descriptive-Names . 23
2.5.3 Alternate-Names 2 3

3. OVERVIEW OF IRDS FUNCTIONS AND PROCESSES 2 5

3.1 POPULATING, MAINTAINING, AND REPORTING ON THE IRD . . 25
3.1.1 IRD Population and Maintenance 2 5

3.1.2 IRDS Output 25
3.1.3 Entity-Lists 2 6

3.2 IRD SCHEMA MAINTENANCE, CUSTOMIZATION, AND REPORTING 27
3.3 IRD-IRD INTERFACE . 2 8

3.4 IRD CONTROL FACILITIES 29
3.4.1 Versioning 29
3.4.2 Life-Cycle-Phases 29
3.4.3 Quality-Indicators 30
3.4.4 IRD-Views 3 0

3.4.5 Correspondence Between Views and Life-Cycle-Phases 31
3.5 IRDS MODULES 31

3.5.1 Basic Functional Schema . 31
3.5.2 IRDS Security 31
3.5.3 Extensible Life-Cycle-Phase Facility 32

TABLE OF CONTENTS

Page vi

Page

3.5.4 Procedure Facility 32
3.5.5 Application Program Interface 33
3.5.6 IRDS Services Interface 33

4. POPULATING AND MAINTAINING THE IRD 35
4.1 ENTITIES 35

4.1.1 Adding Entities 35
4.1.2 Modifying Entities 36
4.1.3 Deleting Entities . . 37

4.2 RELATIONSHIPS 37
4.2.1 Adding Relationships 37
4.2.2 Modifying Relationships 38
4.2.3 Deleting Relationships 39

4.3 COPYING ENTITIES AND RELATIONSHIPS 39

5. IRD OUTPUT 41
5.1 GENERAL OUTPUT 41
5.2 OUTPUT XMPACT-OF-CHANGE 44
5.3 OUTPUT SYNTAX 44
5.4 ENTITY-LISTS 46

5.4.1 Creating New Entity-Lists 47
5.4.2 Entity-List Set Operations ,48
5.4.3 Other Entity-List Functions 50

6. IRD SCHEMA MAINTENANCE AND OUTPUT 51
6.1 THE CONTENT OF THE IRD SCHEMA 51

6.1.1 Meta-Entities 52
6.1.2 Meta-Relationships 52
6.1.3 Meta-Attributes and Meta-Attribute-Groups 53
6.1.4 An Example of Part of an IRD Schema 56
6.1.5 Other IRD Schema Constructs 58

6.2 IRD SCHEMA MANIPULATION 58
6.2.1 Adding Meta-Entities . 59
6.2.2 Modifying Meta-Entities 59
6.2.3 Deleting Meta-Entities 60
6.2.4 Adding Meta-Relationships ... 60
6.2.5 Modifying Meta-Relationships ... 60
6.2.6 Deleting Meta-Relationships 61
6.2.7 Modifying Meta-Entity Names 61
6.2.8 Copying Meta-Entities 61
6.2.9 IRD Schema Testing 61

6.3 IRD SCHEMA OUTPUT 62

7. THE IRD-IRD INTERFACE 65

7.1

INTEGRITY CONSIDERATIONS 65
7.1.1 IRD Schema Incompatibility 65
7.1.2 IRD Incompatibility 67

TABLE OF CONTENTS

Page vii

Page7.2

THE INTERFACE PROCEDURE 68

8. IRDS CONTROL FACILITIES 71

8.1 VERSIONING 71

8.1.1 Versions of Entity Names 71
8.1.2 Versions of Meta-Entity Names 72

8.2 LIFE-CYCLE-PHASES 72

8.2.1 IRD Life-Cycle-Phases in the Core 73

8.2.2 IRD Schema Life-Cycle-Phases in the Core 74

8.2.3 Deactivation and Reactivation of the IRDS 75

8.3 QUALITY-INDICATORS 75

8.4 VIEWS 76

8.4.1 IRD-Views ° . 76

8.4.2 IRD-Schema-Views 76
8.4.3 Defining Views
8.4.4 Accessing the IRDS Through a View 77

9. MISCELLANEOUS TOPICS IN THE CORE 79
9.1 IRDS SESSION DEFAULTS AND INFORMATION 79

9.1.1 Displaying the Session Status 79
9.1.2 Setting the Session Defaults . 80

9.2 HELP 80
9.3 EXITING THE IRDS 8 0

9.4 ENTERING OTHER INTERFACES 81

10. USER INTERFACES 83
10.1 THE COMMAND LANGUAGE 8 3

10.2 THE PANEL INTERFACE 83
10.2.1 Structure of the Panel Interface 83
10.2.2 Panel Trees and Panel Areas 84
10.2.3 Special Features 86

11. IRDS MODULES 95
11.1 BASIC FUNCTIONAL SCHEMA 95
11.2 IRDS SECURITY 95

11.2.1 Global Security 96
11.2.2 Entity-Level Security 98

11.3 EXTENSIBLE LIFE-CYCLE-PHASE FACILITY 100
11.4 IRDS PROCEDURE FACILITY 103

11.4.1 Using IRDS Procedures 103
11.4.2 IRDS Procedure Statements 103
11.4.3 Example of an IRDS Procedure 104

11.5 APPLICATION PROGRAM (CALL) INTERFACE 105
11.6 IRDS SERVICES INTERFACE 106

11.6.1 Definition of the IRDS Data Content 108
11.6.2 The Interface Data Structures 108
11.6.3 The Interface Protocols 108

TABLE OF CONTENTS

Page viii

Page

11.7 POTENTIAL MODULES 109
11.7.1 Data Management Support Module109
11.7.2 Support of Distributed Databases and
Applications Module Ill

11.7.3 Life-Cycle and Configuration Management
Support Module Ill

11.7.4 N-ary Relationship Module 112

APPENDIX A: THE MINIMAL SCHEMA 113
A. 1 ATTRIBUTE-TYPES AND ENTITY-TYPES 113
A. 2 RELATIONSHIP-CL2 S£ -TYPES AND RELATIONSHIP-TYPES . . . 114
A. 3 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES 114
A. 4 ATTRIBUTE-TYPE-VALIDATION-DATA META-ENTITIES 114
A. 5 ATTRIBUTE-TYPE-VALIDATION-PROCEDURE META-ENTITIES . . 114
A. 6 IRD-PARTITION META-ENTITIES 115
A. 7 IRDS-DEFAULTS META-ENTITIES 115
A. 8 IRDS-LIMITS META-ENTITIES 115
A. 9 IRDS-RESERVED-NAMES META-ENTITIES 115
A. 10 NAMES META-ENTITIES 116

APPENDIX Bi THE BASIC FUNCTIONAL SCHEMA 117
B. l ATTRIBUTE-TYPES AND ENTITY-TYPES 117
B. 2 RELATIONSHIP-CLASS-TYPES AND RELATIONSHIP-TYPES . . . 119
Be 3 ENTITY-TYPES AND RELATIONSHIP-TYPES 123
B.4 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES 126

INDEX 129

REFERENCES 133

TABLE OF CONTENTS

Page 1

1 . INTRODUCTION

1 . 1 BACKGROUND

Significant changes have occurred in the evolution of
computer and information processing technology in the past
decade. Technology advances have reduced the costs of
computing and sparked an enormous growth in the use of
computers. For many organizations, the proliferation of
computing capabilities has resulted in a corresponding
proliferation of redundant and inconsistent data. Increas-
ingly, organizations are now viewing data and information as
resources that must be managed.

The data dictionary system is a key computer software
tool for the management of data and information resources.
It provides facilities for recording, storing and processing
descriptions of an organization's significant data and data
processing resources. In 1980, both the American National
Standards Institute (ANSI) and the National Bureau of Stan-
dards of the United States Department of Commerce initiated
efforts to develop standards for dictionary software. The
ANSI effort began with the approval by the Accredited Stan-
dards Committee for Information Processing Systems (X3) of a
project to develop a standard for an "Information Resource
Dictionary System" (IRDS) . This resulted in the July 1980
convening of what is now Technical Committee H4 of Accredi-
ted Standards Committee X3 (X3H4) , the group responsible for
developing the Standard for an IRDS.

As the world's largest user of information processing
technology, the U.S. Federal Government depends on this
technology to carry out Government-wide programs and deliver
essential public services. The National Bureau of Stan-
dards' effort focused on the development of a Federal Infor-
mation Processing Standard (FIPS) for Data Dictionary Sys-
tems .

Although X3H4 and the National Bureau of Standards used
different titles (i.e., "Information Resource Dictionary
System" and "Federal Information Processing Standard for
Data Dictionary Systems") , the two groups had identical
goals and a similar development approach.

Chapter 1 - INTRODUCTION

Page 2

The two efforts came together in September 1983 when
X3H4 voted to adopt the August 1983 version of the draft
Federal Information Processing Standard for Data Dictionary
Systems as its Base Document * The Base Document then evol-
ved into the current specification for the American National
Standard IRDS [1]. The draft proposed American National
Standard was twice circulated for public review and comment,
in 1985 and, as revised, in 1986. Comments on the same
draft document, considered as a potential FIPS, were solici-
ted from the U. S. Federal community in 1985.

In January 1984, tte International Organization for
Standardization (ISO) Technical Committee 97 assigned the
task of reviewing and commenting upon the IRDS Specifica-
tions as a potential International Standard to Subcommittee
21, Working Group 3 (ISO TC97/SC21/WG3) . In 1986, after
extensive study, Subcommittee 21 voted to register the IRDS
as a Draft Proposal, the first official step in the IRDS
becoming an International Standard.

1.2 DEVELOPMENT APPROACH

Since the Institute for Computer Sciences and Technology
(ICST) at the National Bureau of Standards initially devel-
oped much of the IRDS Specifications, it is important to
review the methods that ICST used. ICST interacted closely
with U. S. Federal Government users to develop software
specifications that would support U. S. Federal Government
requirements and that would be implemented by a wide spect-
rum of software suppliers and thus be available "off the
shelf." ICST pursued this goal by:

o Preparing and disseminating the Prospectus for Data
Dictionary System Standard [2] in 1980. The Prospectus
discusses the use of data dictionary systems and de-
scribes the plan to develop a Federal Information
Processing Standard.

o Conducting two Data Base Directions workshops in
October, 1980 and October, 1985. The first workshop
investigated how managers can evaluate, select, and
effectively use information resource management tools,
especially data dictionary systems. The second
workshop assessed the nature of current information
resource management practice and problems, and reported
on solutions that have proven workable. Again, a
considerable emphasis was on data dictionary systems.

Chapter 1 - INTRODUCTION

Page 3

The two workshop proceedings were published in 1982 [3]

and 1986 [4], respectively.

o Conducting interviews with U.S. Federal agency person-
nel who were knowledgeable about dictionary systems to
identify current and projected requirements for a

Standard. Based on these interviews and comments on
the Prospectus, the Federal Requirements for a Federal
Information Processing Standard Data Dictionary System

[5] was published and disseminated in the Fall of 1981.

o Conducting a series of seven workshops in 1982-86 for
representatives of more than fifty U.S. Federal agen-
cies. The purpose of the workshops was to obtain
feedback from the representatives on the evolving
Specifications, and to then incorporate the feedback
into the next revision of the Specifications.

o Preparing and disseminating an interim publication,
Functional Specifications for a Federal Information
Processing Standard Data Dictionary System [6], for
review and comment early in 1983. ICST received and
analyzed comments on this publication from more than
100 U. S. Federal Government agencies.

o Preparing and disseminating, in August 1983, the draft
Specifications for the Federal Information Processing
Standard for Data Dictionary Systems, the document that
became the X3H4 Base Document.

ICST prepared the Functional Specifications and the August
1983 draft Federal Information Processing Standard Specifi-
cations with extensive contract assistance from AOG Systems
Corporation.

To facilitate industry evaluation and acceptance of the
Standard, ICST personnel held discussions with current and
potential vendors of dictionary systems. ICST also spon-
sored three workshops for vendors to review the Specifica-
tions as they evolved. Vendors participating in the discus-
sions and/or workshops included:

Advanced Systems Technology
Burroughs Corp

.

Computer Corp. of America
D&B Computing Services
Frontier Solutions
General Electric Corp.

Applied Data Research
CINCOM Systems
Cullinet Software
Digital Equipment Corp.
GEAC Canada
Hewlett-Packard Corp.

Chapter 1 - INTRODUCTION

Page 4

Honeywell Information Systems
Infodata Systems
Intel Corp.
Manager Software Products
Pansophic Systems
Software AG of North America
TSI International
Wang Laboratories

IBM Corp.
INTECH Corp

.

International Computers, Ltd.
NCR Corp.
SAS Institute
Sperry Corp.
UCCEL Corp.

ICST also disseminated the interim publications and
draft Specifications to more than 200 private industry
organizations, universities, and state and local governments
in the United States and organizations in Australia, Aust-
ria, Brazil, Canada, England, Federal Republic of Germany,
France, Israel, Japan, Luxembourg, Mexico, the Netherlands,
Saudi Arabia, Scotland, and Sweden. This was in addition to
the distribution of the documents to U. S. Federal Govern-
ment agencies, software suppliers, and standards committees.

ICST personnel have been active in X3H4 since its incep-
tion, and have provided X3H4 members with copies of all the
documents discussed above and reviewed with them the results
of the workshops. Many of the X3H4 members als6 attended
the three workshops that ICST conducted for vendors of
dictionary software.

1.3 DEVELOPMENT OF AN IRDS PROTOTYPE

ICST has been developing a prototype IRDS that will
eventually implement the entire IRDS Command Language. The
prototype uses SQL calls to a relational DBMS to model the
IRDS data structures and to provide the underlying data
management. A set of C language programs interpret the
commands and interface with the DBMS. The current source
code for the prototype is available from ICST.

1.4 BENEFITS OF AN IRDS

A preliminary cost-benefit overview prepared for ICST
[7] estimates that the U. S. Federal Government could real-
ize over $120 million (in constant 1983 dollars) in benefits
by the early 1990s from use of a standard IRDS. Oppor-
tunities identified for cost redaction and avoidance in-
cluded the following:

Chapter 1 - INTRODUCTION

Page 5

o Improved identification of existing, valuable informa-
tion resources that can be used by others in the same
organization or shared with other organizations.

o Reductions of unnecessary development of computer
programs when suitable programs already exist.

o Simplified software and data conversion through the
provision of consistent documentation.

o Increased portability of acquired skills resulting in
reduced personnel training costs.

Similar savings can be expected in non U. S. Government
organizations

.

Although the Standard does not require an organization
to use a dictionary system or use one in a prescribed man-
ner, the IRDS can be used to:

o Aid development, modification, and maintenance of
manual and automated systems throughout their life-
cycle.

o Support an organization-defined data element standardi-
zation program.

o Support records, reports and forms management, spanning
the range from non-automated to fully automated en-
vironments .

Even before the availability of systems that conformed
to the IRDS Standard, the Specifications helped users become
more informed consumers by providing a common framework and
terminology to specify required dictionary system capabili-
ties and to help evaluate vendor offerings.

1.5 IRDS DESIGN OBJECTIVES

In developing the Specifications for a standard IRDS,
X3H4 and ICST recognized that dictionary system technology
is evolving and that the use of dictionary systems is ex-
panding. In view of this, X3H4 and ICST identified the
following three major objectives:

o The IRDS should contain the major features and capa-

Chapter 1 - INTRODUCTION

Page 6

bilities that exist in currently available dictionary
systems

.

o The IRDS should be modularized to support a wide range
of user environments and to support cost-effective
procurement

.

o The IRDS should support portability of skills and data.

1.5.1 The IRDS : An Outgrowth of Existing Systems

During the initial phase of development, both X3H4 and
ICST analyzed relevant literature and existing commercial
and Federally-developed dictionary systems. Features and
capabilities in the current generation of dictionary systems
and projected technology trends were identified. Major U.
S . Federal Government dictionary system users reviewed and
rated 96 features of existing systems. The rating results
and conclusions appear in Federal Requirements for a Federal
Information Processing Standard Data Dictionary System [5]

.

As discussed in Section 1.2, U. S. Federal Government
representatives and dictionary software vendors reviewed
draft versions of the Specifications. These reviews focused
on: (1) the functions required or desired by users of their
dictionary systems? and (2) the technical and economic
feasibility of implementing the specified IRDS functions.
As a result of these analyses and reviews, the IRDS Specifi-
cations contain the most commonly used facilities of exist-
ing systems, and thus represent a "state-of-practice" level
of technology in dictionary systems.

1.5.2 Flexibility of Use and Procurement Cost-Benefits

To provide IRDS flexibility and procurement cost-
effectiveness, X3H4 and ICST adopted a modularized approach.
The IRDS Standard includes specifications for a "Core"
dictionary system Module plus specifications for five
additional Modules. The six Modules constitute the "base
level" standard.

Although the five additional IRDS Modules interface with
the Core Module, they are independe-nt of one another.
Organizations, therefore, can acquire one or more of the
five additional Modules if it supports their requirements.

Chapter 1 - INTRODUCTION

Page 7

They would not have to procure Modules that they do not
need.

The Core IRDS Module contains the basic capabilities
that organizations generally need. These Core Specifica-
tions are intended for implementation on large micropro-
cessors and small minicomputers as well as large computers.
The five additional Modules in the IRDS contain specifica-
tions for: (1) a "starter set" of dictionary data struc-
tures? (2) an IRDS security facility; (3) a, facility
supporting an organization's life-cycle management method-
ology; (4) a facility for defining and executing procedures
of IRDS Commands; and (5) an application program interface.

ICST , X3H4 and ISO TC97/SC21/WG3 are actively developing
additional Modules. Chapter 11 discusses these Modules and
others that are under consideration.

To provide additional flexibility, capabilities are
specified in the Core IRDS that enable organizations to
customize or extend the type of data that can be stored in
the IRD. These capabilities will provide the ability to
describe unique resources and define organization specific
system development methodologies.

1.5.3 Portability of Skills and Data

The Core IRDS Module contains two user interfaces: a
menu-driven "Panel" Interface and a Command Language Inter-
face. The Panel Interface is designed to support inter-
active processing, especially by inexperienced users. This
Interface leads users down a structured path of screens
(i.e., panels) that result in the execution of IRDS funct-
ions. Thus, non-technical staff as well as technical staff
will be able to execute IRDS functions without having to
understand or use the more complex syntax of the Command
Language Interface. The Command Language Interface may be
used in either a batch or interactive mode.

The IRD-IRD interface facility, discussed in Chapter 7,
provides a controlled method of moving data from one stan-
dard Information Resource Dictionary to another. Organiza-
tions using a standard IRDS could, for example, extract data
from decentralized IRDs and add it to a central IRD that
focused on organization-wide data management. The specified
IRD-IRD interface supports this transportability of data
even in the case where the standard IRD systems are devel-

Chapter 1 - INTRODUCTION

Page 8

oped by different vendors and are resident on different
hardware systems at different locations.

1.6 CONFORMANCE TO THE STANDARD

1.6.1 User Interfaces

An implementation of the IRDS conforms to the Standard
if it has either one or both of the user interfaces. The
Command Language is the same, except for some implementor
options, in all IRDSs that have this user interface. Like-
wise, the Panel Interface is similar. Thus, individuals
will, without significant retraining, be able to use dif-
ferent IRDSs that have the same user interface.

1.6.2 Standard/Extended Mode

There are two modes of operation for an IRDS Modules

o Standard Mode : The IRDS shall perform as specified by
the Standard. No extensions or modifications to IRDS
functionality are allowed.

o Extended Mode : The IRDS shall, as a minimum, perform
all functionality defined by correct syntax and seman-
tics, as specified by the Standard. It may also pro-
vide extensions to the Standard.

An implementation of the IRDS is then conformant if either:

o It operates in Standard Mode, or

o It operates in Extended Mode, but can, at the option of
the user organization, be restricted to operate in
Standard Mode.

Thus, the IRDS implementor may provide extensions to the
Standard, so that functions not allowed in Standard Mode are
allowed in Extended Mode. However, use of all functionality
that would have been correct in Standard Mode must still
produce the same results in Extended Mode.

Chapter 1 - INTRODUCTION

Page 9

1.7 SCOPE OF REPORT

The remainder of this report contains a summary of the
features of the IRDS. General topics, such as the effective
use of a dictionary system, are not addressed. Therefore,
readers of the subsequent chapters are presumed to be famil-
iar with general data processing concepts and the purposes
of a data dictionary system.

Chapters 2 and 3 provide a technical summary of the IRDS
structure and processes. The remaining chapters, providing
more technical detail, are designed for those individuals
reviewing the actual Specifications. It is recommended that
reviewers of the IRDS Specifications also read Using the
Information Resource Dictionary System Command Language
(Second Edition^ [8], and those interested in applications
of the IRDS read Guide to Information Resource Dictionary
System Applications : General Concepts and Strategic Systems
Planning [9]

.

Chapter 1 - INTRODUCTION

Page 10
-

'

.

-

'

.

Page 11

2 . OVERVIEW OF THE IRDS DATA ARCHITECTURE

This chapter presents an overview of the IRDS data
architecture—the framework in which Information Resource
Dictionary (IRD) data is organized and presented to the
user. Also discussed here are the properties of the various
names that can be used to refer to data stored in the IRD.

2.1 AN IRDS USER'S VIEW OF DATA

The IRDS Standard, including the Command Language and
Panel Interfaces, is specified in terms of entities,
relationships, and attributes. An IRDS entity represents or
describes a "real world" concept, person, event, or quan-
tity, but it is not the actual data that exists in an ap-
plication file, or database. Thus, an IRDS entity might be
Social-Security-Number or Payroll-Record. It would not be
the- actual social security number "123-45-6789" or the
actual contents of a payroll record. A relationship is an
association between two IRD entities (e.g., the Payroll-
Record "CONTAINS" Social-Security-Number) . Attributes
represent properties of an entity or relationship. For
example, one attribute of the entity Social-Security-Number
is its LENGTH. In this example, the value of LENGTH is 9

characters

.

The reason for specifying the IRDS through the use of
entities, relationships, and attributes is that the majority
of current dictionary system implementations either use this
approach or can be easily modeled with it. Nevertheless,
the Standard does not dictate an implementation approach .

Although users of the IRDS "see" entities, relationships,
and attributes, the software system implementing the Stan-
dard can be designed, for example, as a relational, network,
or other database management system application. (See sec-
tion 1.3 and also [10].)

Relationships in the IRDS are binary, denoting that an
association exists between two entities in the IRDS. The
reasons for choosing the binary relationship approach,
rather than a 3-part or more relationship approach, are: (1)
the vast majority of current implementations use binary
relationships; and (2) the IRDS should be "simple" enough

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 12

not to preclude implementation on large microprocessors or
small minicomputers.

A small subset of an Information Resource Dictionary
might conceptually have the form presented in Figure 1. In
this example, Finance-Department, Payroll-System, Personnel-
Department, Personnel-System, etc., represent "entities."
As depicted, the Finance-Department is responsible for the
Payroll-System and the Personnel-Department is responsible
for the Personnel-System. The "relationships" between these
entities reflect these responsibilities.

Both the Payroll-Record and the Personnel -Record
entities contain the lower-level entities Social-Security-
Number and Employee-ID. The LENGTH of the Social-Security-
Number is 9 characters and that of the Employee-ID is 7

characters. This information is conveyed as "attributes" of
the entities Social-Security-Number and Employee-ID,
respectively. Although they are not depicted in Figure 1,

other attributes might describe the average number of
Payroll-Records in the Payroll-File and the average number
of Personnel-Records in the Personnel-File.

An important aspect of the IRDS is the concept of type.
Different attributes will in general have different mean-
ings. For example, the length of Social-Security-Number and
the number of RECORDS in a FILE are different. This
situation is represented in the IRDS by declaring that each
attribute has a "type" called an "attribute-type." Thus,
there would be attribute-types called LENGTH and NUMBER-OF

-

RECORDS

.

Attributes of a specific type will often apply to only
some of the entities. In this example, LENGTH is only
meaningful to Social-Security-Number and Employee-ID.
NUMBER-OF-RECORDS only has meaning for Payroll-File and
Personnel-File

.

In a similar manner, Social-Security-Number and Finance-
Department are instances of different types of entities. As
depicted in Figure 1, Social-Security-Number is defined in
the IRDS as an ELEMENT entity, Finance-Department is defined
as a USER entity, Payroll-System is defined as a SYSTEM
entity, etc.

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 13

Subset of an Information Resource Dictionary

Finance- Entity-Type: Personnel-

Department USER Department

Relationship-Type:

USER-RESPONSIBUE-
FOR-SYSTEM

Relationship-Type:

SYSTEM-CONTAINS-
F1LJE

Attribute-Type

LENGTH

RECORD

Relationship-Type:

RECORD-CONTAINS-
ELEMENT

Payroll- Entity-Type: Personnel-

System SYSTEM System

Payroll- Entity-Type: Personnel-

File FILE Rle

As Relationship-Type: A
CONTAINS ^ FILE-CONTAINS- ^ CONTAINS^ RECORD ^

V'

Entity-Type: ELEMENT
Sociai-

Security-

Number

Entity-Type: ELEMENT
Attribute-Type:

LENGTH

KEY

] a entity = relationship C'7o = attribute

Figure 1

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 14

The concept of type also applies to the relationships
shown in Figure 1. "CONTAINS" has the same general meaning
in Payroll-File CONTAINS Payroll-Record and Personnel-File
CONTAINS Personnel-Record. The relationship-type of both is
FILE-CONTAINS-RECORD . Although it is not shown in Figure 1,

Personnel-File could CONTAIN multiple record descriptions
(e.g., Personnel-File CONTAINS Consulting-Record and
Personnel-File CONTAINS Temporary-Personnel)

.

Payroll-Record CONTAINS Social-Security-Number, however,
has a different meaning, because it is a RECORD-CONTAINS-
ELEMENT relationship. Thus, relationships between entities
of different types always have different meanings.

Relationships also can have attributes. For example,
the relationship in Figure 1 between Payroll-Record and
Social-Security-Number could have a RELATIVE-POSITION
attribute-type with an attribute (a value) of 2 to document
that Social-Security-Number is the second ELEMENT in the
Payroll-Record. The value of the same attribute-type on the
relationship between Personnel-Record and Social -Security-
Number might be 4 to indicate that Social-Security-Number is
the fourth ELEMENT in the Personnel-Record.

In addition, ordered sets of attributes called
"attribute-groups" exist. For example, an ALLOWABLE-RANGE
"attribute-group-type" might consist of the pair of
attribute-types LOW-OF-RANGE and HIGH-OF-RANGE . The value
for LOW-OF-RANGE does not convey sufficient meaning by
itself. Therefore, it must be "grouped" with the HIGH-OF-
RANGE value.

Entities, relationships, attributes, and attribute-
groups will sometimes be referred to as "instances" of their
respective types. Thus, Finance-Department is an instance
of USER, and 5600 is an instance of NUMBER-OF-RECORDS

.

2.2 THE IRD SCHEMA

Section 2.1 addressed the organization of data in the
Information Resource Dictionary. This section and the
following one focus on the purpose and contents of the
Information Resource Dictionary Schema.

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 15

Figure 2 shows the relationship between IRD processes
and IRD data. This view of the IRDS also illustrates both
the self-describing nature of the IRDS , and the utility of
using the same descriptive technique for both the IRD and
its Schema. Figure 3 gives examples of typical contents at
the four IRDS data levels.

The IRD Schema describes the structure of the IRD.
Thus, for every entity, relationship, attribute, and
attribute-group that can exist in the IRD, the IRD schema
will contain the corresponding entity-type, relationship-
type, attribute-type, and attribute-group-type. The
Standard specifies specific entity-types, relationship-
types, attribute-types, and attribute-group-types. These
types, organized into the Minimal Schema of Module 1 and the
Basic Functional Schema of Module 2, are discussed in
sections 2 . 3 and 2.4.

The concept of the IRD Schema is important for two
reasons. First, the IRDS Specifications include facilities
that enable an organization to "extend" or "customize" the
Minimal Schema and the Basic Functional Schema. This means
that an organization can add additional entity-types,
relationship-types, attribute-types, and attribute-group-
types to satisfy its unique requirements.

Second, the IRD Schema supports the Core plus Module
approach described in Chapter 1. The IRD Schema provides a
mechanism not only to extend Schema data but also to define
and develop additional IRDS functions and control facili-
ties. This is similar to adding a new application into a
database environment.

2.3 THE MINIMAL SCHEMA

Every software package conforming to the IRDS Specifi-
cations includes the Minimal Schema, a collection of entity-
types, relationship-types, attribute-types, and other
descriptors necessary to establish controls over, and ensure
the integrity of, the IRD Schema and the IRD.

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 16

IRD PROCESSES IRD "DATA" LAYERS

Implementor

Unique

IRD Schema Maintenance,

Selection, Reporting

IRD Schema Control Facilities

(Life Cycle)

IRD Maintenance, Selection,

Reporting

IRD Control Facilities

(Views)

No IRDS Functionality

Figure 2

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Information

Resource

Dictionary

System

(IRDS)

Contents

Page 17

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Figure

3

Page 18

For example, the Minimal Schema includes the entity-
types IRDS -USER , IRD-VIEW, and IRD-SCHEMA-VIEW, the
relationship-types IRDS-USER-HAS-IRD-VIEW and IRDS-USER-HAS-
IRD-SCHEMA-VIEW, and the attribute-type DEFAULT-VIEW , which
are used by the organization to control and regulate access
to the contents of the IRD and the IRD Schema* The
attribute-types ADDED-BY, LAST-MODIFIED- -BY , and NUMBER-OF-
TIMES-MODIFIED , and the attribute-group-types DATE-TIME-
ADDED and DATE-TIME-LAST-MODIFIED automatically document
"audit" information concerning changes to the IRD and its
schema. The complete Minimal Schema is listed in Appendix
A.

2.4 THE BASIC FUNCTIONAL SCHEMA

To support intra- and inter-organization communication
about information resources, the IRDS includes a Basic
Functional Schema Module as Module 2 of the Specifications.

The Basic Functional Schema defines a "starter set" of
IRDS entity-types , relationship-types, and attribute-types.
This starter set reflects agreements reached by members of
X3H4 and attendees at user workshops sponsored by the
National Bureau of Standards. These groups believed that
this Schema can be used by organizations to describe most
existing and planned manual and automated systems.

Since it is not feasible to identify all entity-types,
relationship-types, and attribute-types that might be
useful, an organization can augment the Basic Functional
Schema using IRDS extensibility. Organizations, for
example, that have large amounts of scientific data or who
have distributed processing applications may want to add
additional entity-types, relationship-types, and attribute-
types to the Basic Functional Schema.

Section 2.4.1 provides an overview of the Basic Func-
tional Schema. The complete Basic Functional Schema is
listed in Appendix B.

In the remainder of this document, the names of Minimal
Schema and Basic Functional Schema entity-types,
relationship-types, relationship-class-types, attribute-
types, and attribute-group-types will be represented as they
appear in the IRDS Specifications, using all upper-case
letters (e.g., ELEMENT, FILE-CONTAINS-RECORD) . Examples of

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 19

entities, relationships, and attributes will be represented
using lower-case letters, with the initial letter, all
letters following hyphens, and embedded relationship-class-
type names capitalized (e.g., Payroll-File, Budget-System
PROCESSES Cost-Center-File)

.

2.4.1 Basic Functional Entity Types

The Basic Functional Schema contains eight entity-types
that conceptually can be grouped into three categories:
DATA, PROCESS, and EXTERNAL.

DATA Entitv-Tvoes

1. DOCUMENT, describing instances of human readable data
collections. Typical DOCUMENTS are Form-1040 and 1984-
Annual-Report .

2. FILE, describing instances of an organization's data
collections. Typical FILES are Payroll-File and
Personnel-File

.

3. RECORD, describing instances of logically associated
data that belong to an organization. Typical RECORDS
are Personnel-Record and Payroll-Record.

4. ELEMENT, describing instances of data belonging to an
organization. Typical ELEMENTS are Social-Security-
Number and Employee-Id.

PROCESS Entitv-Tvpes

5. SYSTEM, describing instances of collections of proces-
ses and data. Typical SYSTEMS are Personnel-System and
Airline-Reservation-System.

6. PROGRAM, describing instances of automated processes.
Typical PROGRAMS are Print-Paychecks and COBOL-
Compiler

.

7. MODULE, describing instances of automated processes
that are either logical subdivisions of PROGRAM
entities or independent processes that are called by
PROGRAM entities. Typical MODULES are Sort-Records and
Check-Spelling.

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 2 0

EXTERNAL Entitv-Tvpes

8 . USER, describing individuals or organizational coupon-
ents. Typical USERs are Finance-Department and John-
Doe.

2.4.2 Basic Functional Relationship-Types

The collection of relationship-types provided by the
Basic Functional Schema is listed in Appendix B. This
collection includes virtually all the connections between
Basic Functional entity-types that might prove useful to
most organizations most of the time.

Most of these relationship-types are grouped into seven
"relationship-class-types”

:

1. CONTAINS, describing instances of an entity being
composed of other entities. A typical CONTAINS
relationship-type is RECORD-CONTAINS-ELEMENT, which has
as a possible instance the relationship Payroll-Record-
CONTAINS-Employee-Name

.

2. PROCESSES, describing associations between PROCESS and
DATA entities. A typical PROCESSES relationship-type
is SYSTEM-PROCESSES-FILE, which has as a possible
instance the relationship Budget-System-PROCESSES-Cost-
Center-File.

3. RESPONSIBLE-FOR, describing associations between
entities representing organizational components and
other entities, to denote organizational responsi-
bility. A typical RESPONSIBLE-FOR relationship-type is
USER-RESPONSIBLE-FOR-SYSTEM, which has as a possible
instance the relationship F inance-Department-
RESPONSIBLE-FOR-Payroll-System.

4. RUNS, describing associations between USER and PROCESS
entities, illustrating that a person or organizational
component is responsible for running a certain process.
A typical RUNS relationship-type is USER-RUNS-PROGRAM,
which has as a possible instance the relationship John-
Doe-RUNS-System-Backup

.

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 21

5. GOES-TO, describing "flow" associations between PROCESS
entities. A typical GOES-TO relationship-type is
PROGRAM-GOES -TO-PROGRAM which has as a possible
instance the relationship Input-Program-GOES-TO-
Processing-Program

.

6. DERIVED-FROM , describing associations between entities
where the target entity is the result of a calculation
involving the source entity. A typical DERIVED-FROM
relationship-type is , DOCUMENT-DERIVED-FROM-FILE , which
has as a possible instance Annual-Report-DERIVED-FROM-
Program-File.

7. CALLS, describing "calling” associations between
PROCESS entities. A typical CALLS relationship-type is
PROGRAM-CALLS-MODULE, which has as a possible instance
Main-Program-CALLS-Sort-Routine.

2.4.3 Basic Functional Attribute-Types

The attribute-types developed for inclusion in the Basic
Functional Schema are the ones that organizations generally
want applied to Basic Functional entity-types. Some
attribute-types in this collection are common to all entity-
types. These common attribute-types provide a synonym
facility for IRDS names (see section 2.5.3) and also general
documentation for entities (DESCRIPTION and COMMENTS)

.

Other Basic Functional attribute-types are associated
with just one or a few entity-types. For example, NUMBER-
OF-RECORDS, with possible attribute instance 240, is unique
to the FILE entity-type.

As an additional feature of the Basic Functional Schema,
certain relationship-types have attribute-types associated
with them. For example, the attribute-type ACCESS-METHOD is
associated with the relationship-types SYSTEM-PROCESSES-
FILE , PROGRAM-PROCESSES-FILE , and MODULE-PROCESSES -FILE

.

Thus, for the relationship Input-Module-PROCESSES-Master-
File, the attribute-type ACCESS-METHOD has a possible value
of Indexed-Sequential

.

The attribute-types in the Basic Functional Schema are
listed in Appendix B.

In the remainder of this document, we will assume,
unless otherwise specified, that the user organization's

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 22

IRDS includes the Basic Functional Schema, and we will use
the contents of the Basic Functional Schema to provide
examples of IRDS functionality.

2.5 ENTITY NAMES

The IRDS contains a flexible and generalized facility
that enables users to assign different kinds of names to an
entity. The different names serve distinct purposes, and
several important ' conventions exist regarding them. The use
of and distinction between access-name, descriptive-name,
and alternate-name is basic to an understanding of the IRDS,
and thus is discussed in this Chapter.

2.5.1 Purpose of Access-Names and Descriptive-Names

The most important name of an entity is its access-name.
This name is the entity's primary identifier, and the
structure of most commands and panels are based on it. In
most organizations, the access-name will probably be terse,
to minimize the number of keystrokes required to manipulate
the IRD, thereby saving time and reducing the potential for
error.

The access-name has two parts: an assigned access-name
and a version-identifier. The structure of the version-
identifier is discussed briefly in Chapter 3 and in more
detail in Chapter 8. Normally a user will be responsible
for specifying the assigned access-name of an entity. An
option exists, however, to have the IRDS generate, using a
standard algorithm, the assigned access-name for entities of
a given type. This facility allows a user to enter new
entities into the IRD before the final names of the entities
have been determined. The initial entry of entities using
the system-generated name option frequently will take place
in an auxiliary IRD. Once the correct names of the entities
are known, the user can modify the system-generated access-
names and then move the entities, using functions available
in the IRD-IRD interface facility, to the IRD that contains
more standardized or precise names.

Terse access-names do have a disadvantage for the user,
however, because they may not convey the meaning of the
object represented by the entity. This terseness can cause
problems, particularly in the preparation of reports for
non-technical users and managers unfamiliar with the

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 23

contents of the IRDS. To address this problem, the IRDS
allows users to assign a descriptive-name to an entity. The
descriptive-name will normally be longer and more meaningful
than the access-name. The structure of the descriptive-name
is the same as that of the access-name, (i.e., there is an
assigned descriptive-name and a version-identifier) . SSN
and Social-Security-Number are examples, respectively, of an
assigned access-name and an assigned descriptive-name.

When output is generated from the IRDS, the user may
specify whether the access-name, the descriptive-name, or
both, are to appear.

2.5.2 Uniqueness of Access-Names and Descriptive-Names

Access-names and descriptive-names must be unique
throughout a particular IRD. During the development of
these Specifications, members of Technical Committee X3H4
and attendees at a user workshop sponsored by the National
Bureau of Standards voted for uniqueness of name throughout
an entire IRD, rather than name uniqueness only within an
entity-type. This means that a user cannot, for example,
have a FILE entity with an access-name Payroll and a RECORD
entity also called Payroll.

Uniqueness of assigned access-names and assigned
descriptive-names in the IRD simplifies the Command Language
and Panel Interfaces. Except during the actual creation of
new entities, the IRDS immediately recognizes the type of
every entity whose name is included in a command or panel

.

Thus, the user is not repeatedly forced to specify an
entity’s type. Organizations that want to use assigned
access-names or descriptive-names that are unique only
within an entity-type could adopt an organization-defined
naming convention. For example, all assigned names could be
prefixed with a mnemonic of the appropriate entity-type
name. Thus, prefixing all file names with "F-” and all
record names with "R-" would allow two different entities
with the "same” name Payroll to be represented as F-Payroll
and R-Payroll. This convention would assure uniqueness in
the IRD.

2.5.3 Alternate-Names

In addition to the assigned access-name and the assigned
descriptive-name of an entity, a user, applying the Basic

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 24

Functional Schema, may specify alternate-names for an
entity. The term alternate-name is used here in the same
sense as the terms "synonym" and "alias" are often used.
Alternate-names document the different names, if any, used
to identify the same "real-world" object. Alternate-names
are ordinary attributes of entities—they do not have
version-identifiers, they do not have to be unique, diff-
erent entities can have the same alternate-name, and the
IRDS does not include any rules for the use of these names.
For example, the ELEMENT whose access-name is Social

-

Security-Number might have alternate-names SSN, Soc-Sec-No,
Soc_Sec_No, and Social_Security_Number

.

ALTERNATE-NAME attributes are frequently used as part of
an IDENTIFICATION-NAMES attribute-group, in conjunction with
ALTERNATE-NAME-CONTEXT attributes. Thus, an organization
might define IDENTIFICATION-NAMES attribute-groups to
categorize its alternate-names according to programming
language environment: (SSN, FORTRAN) , (Soc-Sec-No, COBOL)

,

(Soc_Sec_No , PL/ I)

.

Data element naming conventions, within the framework of
the IRDS, are discussed in [11].

Chapter 2 - OVERVIEW OF THE IRDS DATA ARCHITECTURE

Page 25

3. OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

As discussed in the Introduction, the IRDS Standard
specifies two user interfaces: a Command Language Interface
and a Panel Interface. An implementation of the IRDS will
conform with the Standard if it has either one or both of
these interfaces. This chapter presents an overview of the
IRDS functions and processes specified for both user
interfaces. Subsequent chapters provide more detail on the
individual functions and processes. Unless stated other-
wise, each specified facility is part of the Core IRDS.

3.1

POPULATING, MAINTAINING, AND REPORTING ON THE IRD

This section briefly describes the specified IRDS
facilities that enable a user to populate and maintain an
IRD, and retrieve individual or groups of entities with
their associated relationships and attributes. The follow-
ing section, 3.2, discusses maintenance and reporting
facilities for the IRD Schema.

3.1.1

IRD Population and Maintenance

Facilities exist to create and delete entities and
relationships in the IRD. Existing entities and relation-
ships can also be modified by changing their attributes.
Users can also modify existing assigned access-names and
assigned descriptive-names. In addition, a user can copy an
entity to create a new entity. This new entity will have
the same attributes as the original entity. Optionally, the
new entity can have relationships with the same entities to
which the original entity is related. Versioning, discussed
in Section 3.4, can be used to distinguish between the
"copies .

"

3.1.2

IRDS Output

A General Output function produces reports and prepares
query responses on specified IRD entities, their relation-
ships, and their associated attributes. The precise format
of IRDS reports will be defined by implementors of the
Standard. The Standard specifies facilities that enable
users to define: (1) the contents of a report or query

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 26

(i.e., the entities, attributes and relationships that
should appear) ; (2) the kinds of names to be displayed; (3)
the sequence of information; and (4) the report destination.

This report customization facility enables IRDS users to
vary the contents of a report depending on the intended use.
For example, a report for managers might display only some
attributes, but would probably include such things as the
descriptive-name and decoded rather than encoded attributes.
A report prepared for the technical staff might contain the
access-name rather than the descriptive-name, and show all
attributes, in code form, associated with the selected
entities and relationships. A response to an on-line query
might be designed to display the minimum required infor-
mation.

There are two special-purpose output facilities. One
reports on all entities that would be affected by a change
to a specified entity (e.g., all RECORD, MODULE, PROGRAM,
and FILE entities that would be affected by a change to a
given ELEMENT entity) . A second facility produces output in
Command Language format that can then be used as a training
aid. To use this facility, an organization must have the
Command Language Interface.

3.1.3 Entitv-Lists

As an aid in preparing reports and queries and modifying
the contents of the IRD, the IRDS Standard specifies
facilities that enable users to develop lists of entities.
If the entity-list is developed for report preparation
purposes, the general output facilities can be used to
customize the report(s).

A user first performs an initial retrieval, resulting in
the selection of either: (1) all entities or (2) a group of
entities based on the entities' access-names or descriptive-
names, or on designated character strings within the
name(s). An option also exists to include entities related
to the ones retrieved.

This initial list is then "pared down" through the
specification of other entity characteristics, such as:
entity-type; relationships of the entities; attributes and
attribute-groups; text attribute strings; and alternate-
names. A user also can create a new entity-list by perform-
ing: the union of two or more entity-lists; the intersec-

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 27

tion of two or more entity-lists; the symmetric difference
between two entity-lists; or the subtraction of one entity-
list from another.

An entity-list can be named. This named list will
remain available to the user who created it for the duration
of an IRDS session. If an entity-list is not named, it will
become, by default, the "current list." The current list is
retained until: (1) another unnamed list is created (which
will overwrite the old current list) ; (2) the current list
is named; or (3) the IRDS session ends.

3.2 IRD SCHEMA MAINTENANCE, CUSTOMIZATION, AND REPORTING

As discussed in Chapter 2, the IRD Schema describes the
structure of the IRD. For every entity, relationship,
attribute, and attribute-group that can exist in the IRD,
the IRD schema will contain a description of the correspon-
ding entity-type, relationship-type, attribute-type, and
attribute-group-type. The IRD schema itself is also
described in terms of entities, relationships, and
attributes. However, because of the potential for misunder-
standing that could occur in discussions of the IRD schema
versus the IRD, similar yet distinct terminology is used in
the Specifications to describe the IRD Schema. Thus, the
IRD schema contains:

o "Entities" called meta-entities.

o "Relationships" between meta-entities that are speci-
fied as meta-relationships.

o "Attributes," called meta-attributes, that document the
characteristics of meta-entities and meta-
relationships .

o "Attribute-Groups," called meta-attribute-groups.

IRDS extensibility provides an organization with the
capability of customizing the schema, and thus the IRD. A
user can, for example, add, modify, and delete meta-
entities, meta-relationships, and their associated meta-
attributes and meta-attribute-groups.

A user can report on the contents of the IRD schema.
The format of this output can be tailored by specifying:

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 28

o The meta-entities that should be displayed, by name or
type. The display of all meta-entities may also be
requested.

o The meta-attributes and meta-relationships that should
be displayed along with the selected meta-entities.

3 . 3 IRD-IRD INTERFACE

The IRD-IRD Interface provides a controlled mechanism
for moving data from one standard IRDS implementalien to
another. The interface includes a set of four functions
permitting selected parts of a source IRD to be transferred
to a target IRD without affecting the integrity of either
IRD.

One function specifies the set of entities and relation-
ships that the user wants to extract from an existing IRD.
These entities and relationships are copied to an "IRD
export file" in a format specified by encoding rules based
on ISO Standards 8824 [12] and 8825 [13]. This function
also generates a file, in the appropriate ISO Standard
format, that contains the schema of the source IRD.

Another function creates an "empty" IRD. (The creation
of an empty IRD is required whenever a standard IRD is
initialized.) When the empty IRD* is created, the Minimal
Schema (or some other IRD schema in export format) must be
loaded. The user also can load IRD data that is in export
format.

A third function checks the compatibility between the
schema of the IRD in which the user is operating and another
IRD schema that resides in either an IRD schema export file
or another IRD. Since IRD schema compatibility depends on
which schema is the source and which is the target, the user
must specify this information.

Finally, a fourth function imports a previously exported
IRD schema and an IRD subset into the target environment.
This requires that the IRD subset reside in an IRD Standard
export file, and the source IRD schema reside in the same or
another export file. An IRD schema compatibility check is
again performed automatically before execution of the IRD
import

.

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 29

3.4 IRD CONTROL FACILITIES

The Core IRDS contains four facilities that are impor-
tant in populating and maintaining the IRD and in reporting
on the contents of the IRD. These are: (1) Versioning;
(2) Life-Cycle-Phases; (3) Quality-Indicators; and (4)

IRD-Views . There are direct analogues of (1) , (2)

,

and (4)

for control of the IRD Schema.

3.4.1 Versioning

An IRD entity describes a "real world" object. As the
object changes, the corresponding entity will have to be
changed. The Core IRDS allows a user to track such changes
by using revision-numbers. These revision-numbers represent
the chronology of the entity (and thus the chronology of the
object that the entity describes) in the sense that the
highest revision-number represents the most recent version
of the entity. Each revision is stored as a distinct entity
in the IRD.

A related concept is the desirability of identifying
multiple "variations" of an entity. An example is the 5

versus 9 digit U.S. Postal Service Zip Code. Some files
might still exist where the old 5-digit Zip Code was used,
and others might contain the new 9 -digit code. These two
Zip Codes could be represented by distinct entities whose
access-names show that one is a variation of the other.
Variations are denoted by a variation-name, a specified
string that must begin with an alphabetic character. A
facility exists to control valid variation-names for each
entity-type.

The revision-number and the variation-name are both
appended to the assigned access-name and the assigned
descriptive-name. The precise structure and the associated
integrity rules are presented in Chapter 8

.

3.4.2 Life-Cvcle-Phases

IRDS Life-Cycle-Phases directly support the life cycle
methodology used by an organization. A user can therefore
document, in the IRD, the life-cycle-phase in which an
entity exists. For example, different entities can be
associated with the phases Requirements Analysis, Logical
Database Design, etc.

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 30

The IRDS recognizes the following three classes of Life-
Cycle-Phases

:

o UNCONTROLLED — multiple UNCONTROLLED life-cycle-phases
can be defined and used by an organization.

o CONTROLLED — there is only one CONTROLLED life-cycle-
phase, named CONTROLLED-LIFE-CYCLE-PHASE . CONTROLLED
entities are used in operational systems.

o ARCHIVED — there is only one ARCHIVED life-cycle-
phase, named ARCHIVED-LIFE-CYCLE-PHASE. As the name
implies, archived entities are no longer used in
operational systems, but are retained for historical or
audit purposes

.

In the Core IRDS, life-cycle-phases pertaining to the
contents of the IRD (as opposed to the contents of the IRD
Schema) are primarily for documentation purposes. Specific
integrity rules and customization facilities to control the
movement of entities through the life cycle are features of
Module 4 (The Extensible Life-Cycle-Phase Facility) of the
IRDS Specifications. See section 11.3.

3.4.3 Quality-Indicators

IRDS quality-indicators are similar in application to
IRDS life-cycle-phases. A quality-indicator denotes such
things as: (1) the level of standardization of element
entities (e.g., program standard, agency or organization
standard, national standard, or international standard) ; or
(2) the degree to which the entity satisfies the organiza-
tion's quality assurance or quality testing methodology.
Each organization can define the quality-indicator names to
be used with their IRDS.

3.4.4 IRD-Views

An IRD-view is a "window" or "gateway" into a life-
cycle-phase that helps support project-oriented activities.
For example, in the initial phases of Requirements Analysis
for a large organizational system, different project teams
or different analysts could use different IRD-views of the
overall IRD to simp?.ify and control their work.

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 31

3.4.5 Correspondence Between Views and Life-Cvcle-Phases

There may be many overlapping IRD-views acting as
windows into a given life-cycle-phase. Entities in a given
life-cycle-phase thus may appear in many IRD-views. For
example, the phase supporting Requirements Analysis may
include multiple IRD-views for one or more project teams.
However, all entities in a designated view must be in the
same life-cycle-phase.

3.5 IRDS MODULES

As stated in the Introduction, the IRDS Standard
includes specifications for five Modules that extend the
capabilities of the Core Module. Although these Modules
interface with the Core, they are independent of one
another. Organizations may not need any of the Modules, or
they may prefer to acquire and use any number and combina-
tion of the five. The five Modules are:

o Basic Functional Schema.

o IRDS Security.

o Extensible Life-Cycle-Phase Facility,

o Procedure Facility,

o Application Program Interface.

An additional Module, called the IRDS Services Inter-
face, is currently under development.

3.5.1 Basic Functional Schema

The Basic Functional Schema was introduced in section
2.4, and is described in more detail in Appendix B.

3.5.2 IRDS Security

This Module defines an access control facility that
allows organizations to restrict access to the IRD and IRD
Schema content and functionality. The facility provides for
two levels of access control:

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 32

o Global Security, which is based on functionality, type,
and view. Read-only permission to access the IRD or
IRD Schema, or more comprehensive levels of permission,
may be granted. Access can also be controlled at the
entity-type level (e.g., an organization might allow a

certain user to read entities of all types, but to add,
modify, and delete only ELEMENTS.

o Entity-Level Security, which controls access to
individual entities. This feature operates as an
additional layer of security beyond (lobal Security.
An organization using Entity-Level Security can assign
IRDS users READ and/or WRITE privileges for specific
entities. For users not having the appropriate READ
permission, any entity with the additional security is
treated as though it does not exist in the view in
which the user is working. For users having READ but
not WRITE permission, secured entities can be examined
but not modified or deleted.

3.5.3 Extensible Life-Cvcle-Phase Facility

This Module extends the life-cycle-phase facilities of
the Core IRDS by implementing integrity rules and customi-
zation features needed to control the movement of entities
through the life-cycle. The structure of the life-cycle
itself can be customized to match the organization's
preferred methodology. Based on this structure, entities
can be moved from UNCONTROLLED to CONTROLLED phases, from
CONTROLLED to ARCHIVED phases, and from CONTROLLED to
UNCONTROLLED phases, with the organization retaining full
control over the integrity constraints that regulate this
movement

.

3.5.4 Procedure Facility

This Module provides the ability to define, store,
maintain, and execute procedures involving the IRD and the
IRD Schema. These procedures are composed of IRDS Commands,
along with flow-control and assignment statements. A
procedure may also call another procedure. A set of built-
in functions is provided with this Module for character and
numerical manipulations, and to extract system information.

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 33

The operation of this Module requires the presence of
the Command Language interface.

3.5.5 Application Program Interface

This Module provides an interface through which IRDS
Commands and resulting output can be passed between the IRDS
and programming languages that have a CALL feature. • An
organization can develop software to use IRD, data for
special purposes. In this situation, the IRDS is treated by
the user-developed application as a subroutine.

3.5.6 IRDS Services Interface

This Module defines a specific protocol for an interface
through which software external to an IRDS can directly
access the IRD and IRD Schema. It provides the means to
construct an environment in which the IRDS can be truly
"active.

"

Chapter 3 - OVERVIEW OF IRDS FUNCTIONS AND PROCESSES

Page 34
-

Page 35

4. POPULATING AND MAINTAINING THE IRD

This chapter describes the functions specified as part
of the Core IRDS to add, modify, and delete entities and
relationships in the IRD. The copy function is also
described.

4 . 1 ENTITIES

This section presents a technical summary of the IRDS
functions that: add or create new entities in the IRD?
modify an existing entity by adding, changing, or deleting
the entity's attributes and attribute-groups; and delete an
entity and its associated attributes and attribute-groups.

4.1.1 Adding Entities

Using this function, a user can add new entities to the
IRD. The most important aspects of creating a new entity
are:

o Declaring the type of the entity. This designated
entity-type must be one that exists in the IRD schema.
The type may be in the IRDS Minimal Schema, the Basic
Functional Schema (if present) , or may have been added
to the IRD schema by the user organization.

o Designating the assigned access-name of the entity.

o Optionally, assigning a descriptive-name to the entity.

o Declaring attributes and attribute-groups for the new
entity.

As discussed in Chapter 2 , the access-name and the
descriptive-name each have two parts: the assigned access-
name or descriptive-name and the version-identifier. Two
methods exist for assigning an access-name to the entity.
Either the assigned access-name is specified by the user or
it is automatically generated by the IRDS. To be valid, the
user assigned access-name must satisfy the following rules:

1. The character string representing the assigned access-
name must conform to the length and picture rules in

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 36

the IRD schema. For entities of each type, these rules
are specified by MINIMUM-ASSIGNED-ACCESS-NAME-LENGTH

,

MAXIMUM-ASSIGNED-ACCESS-NAME-LENGTH ,
and PICTURE meta-

attributes in the schema.

2 . The name must not exist in the IRD either as an
assigned access-name or an assigned descriptive-name.

3. If the assigned access-name is to be system-generated,
the user must specify the entity-type. The name
assigned by the system will be displayed to the user.

4. ** user-assigned access-name or descriptive-name must
not lead to a potential conflict with a system-
generated assigned access-name. For example, if
ELEMENTS have system generated names RE001 , RE002, . ..,
a conflict could exist if a user assigned an access-
name or descriptive-name of RE004 to a new RECORD
entity. In this situation, the IRDS would not allow
RE004 to be added by a user.

While adding entities, the user may specify an assigned
descriptive-name, to which the above rules 1, 2, and 4 also
apply.

A user may also specify attributes and attribute-groups
for the new entity. The user must provide both the names of
the attribute-types or attribute-group-types and the values
assigned.

4.1.2 Modifying Entities

This function is used to change the attributes and
attribute-groups of an existing entity. Use of this
function is restricted to a single entity at a time (i.e.,
the function does not operate against a list of entities)

.

Execution of the modify entity function may result in:

o Creation of new attributes and attribute-groups.

o Replacing existing attributes or attribute-groups.

o Deletion of existing attributes and attribute-groups.

There is an option on the modify entity function that
causes the existing entity to remain unchanged, and instead
creates a new entity with the specified modifications. This

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 37

new entity has the same assigned access-name as the existing
entity, but has a different version-identifier. A new
descriptive-name for the new version is constructed if the
original entity had a descriptive-name. This new
descriptive-name will have the same assigned descriptive-
name as the one belonging to the original entity, but its
version-identifier will be set equal to the version-
identifier of the access-name of the new entity.

When a new entity is created, new relationships can be
created to correspond to the relationships in which the
original entity participates. These new relationships will
have the same attributes and attribute-groups as the
existing relationships.

4.1.3 Deleting Entities

A user may specify one or more entities to be deleted by
specifying any of the following:

o The access-names of entities to be deleted.

o Entity selection criteria that will result in the
creation of a new entity-list.

o The name of an entity-list created earlier in the
session. The current list may also be specified.

Each entity specified, through whichever of the above
mechanisms, must exist in the IRDS. An option exists to
delete entities that participate in relationships. In this
case, every relationship in which each specified entity
participates will also be deleted from the IRD.

4 . 2 RELATIONSHIPS

This section summarizes the IRDS functions that are
specified to: add relationships between entities; modify
existing relationships; and delete relationships.

4.2.1 Adding Relationships

This function creates new relationships in the IRD. The
most important aspects of creating a new relationship
include designating:

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 38

o The entities that are to be members of the relation-
ship.

o The relationship-type or relationship-class-type.

o Optionally, attributes and attribute-groups for the new
relationship.

In creating a new relationship, if both entities that
are to be members of the relationship exist, the user simply
specifies the access-names of these entities and states the
new relationship. If one entity exists and the other does
not, the user again specifies two access-names, but the one
referring to the non-existing entity includes a specifi-
cation of that entity's type. This will result in the
automatic creation of a new entity identified by the second
access-name.

The designated relationship-type or relationship-class-
type must be one that already exists in the IRD schema.

4.2.2 Modifying Relationships

Using this function, a user can:

o Change a relationship's attributes and attribute-
groups .

o Create new attributes and attribute-groups,

o Delete existing attributes and attribute-groups.

To modify relationships in any of these ways, the user
must specify:

o The type or class-type of the relationship.

o The access-names of the
tionship to be modified.

member entities of the rela-

o The attributes and attribute-groups to
changed, or deleted.

be added.

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 39

4.2.3 Deleting Relationships

Using this function, a user may delete relationships by
specifying any of the following:

o One or more existing relationships.

o Relationship selection criteria. These criteria allow
the user to select relationships for deletion based on:

The entities that participate in the relation-
ships. The entities are specified to designate
the relationship to be deleted, but the entities
themselves are not deleted.

Particular relationship-types or relationship-
class-types .

Certain attributes and attribute-groups associated
with a relationship.

The existence _of a particular character string
within a text attribute associated with a

relationship.

4.3 COPYING ENTITIES AND RELATIONSHIPS

A user can create a new entity with the same attributes,
the same attribute-groups, and the same relationships as an
existing entity. The user must specify:

o The access-name (i.e., the assigned access-name and the
version-identifier) of the entity to be copied.

o The access-name of the entity to be created.

Optionally, the user may also designate:

o That the existing entity's relationships are also to be
copied.

o A descriptive-name for the new entity.

The new entity created by the copy function is desig-
nated in one of the following ways:

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 40

o By specifying a valid assigned access-name that does
not currently exist in the XRD.

o By specifying the new-version option. The existing
entity is copied to a new entity whose assigned access-
name is the same as that of the existing entity but
whose version-identifier is different.

o By specifying a null mark. This is valid only if the
type of the existing entity is defined in the IRD
schema to have system-generated assigned access-names.

The user may specify an assigned descriptive-name for
the new entity. If one is specified, the name must not
exist in the IRD either as an assigned access-name or as an
assigned descriptive-name.

If the user designates that the entity 8 s relationships
are to be copied, a new relationship is established corre-
sponding to each existing relationship. For some exceptions
to this rule, see the IRDS specification of the Copy
function [1].

The new entity's access-name will be the first (or
second, as appropriate) member of any new relationship. The
other member of the new relationship will be the same as
that in the original relationship.

Chapter 4 - POPULATING AND MAINTAINING THE IRD

Page 41

5 . IRD OUTPUT

IRDS users may employ a General Output function to
produce output on IRD entities, their associated relation-
ships, and the attributes of these entities and relation-
ships. The contents of the output, as discussed in Section
5.1, can be specified by the user. The output can be in
response to an on-line query, or in the form of a report.

Another output function, the Impact-of-Change function,
reports on those entities that might be affected in some
manner by a change to a specified entity. An Output Syntax
function produces output on selected entities in the same
format as that used to create the entities using the Command
Language Interface.

5.1 GENERAL OUTPUT

The following six steps are involved in specifying the
execution of an output function. Steps 2 and 4 are always
required, the other steps are optional. System defaults
exist for all optional steps.

1. Specifying the views to which retrieval applies.

2. Selecting the entities. The selection criteria may be
specified by the user at the time the operation is
entered. These criteria include:

The type(s) of entities to be retrieved.

Character strings within the assigned access-names
or descriptive-names.

Character strings within the associated version-
identifiers .

Designated attributes or attribute-groups.

Life-cycle-phases or quality-indicators.

Relationships to other entities.

The selection criteria may also be based on an existing
entity-list. Entity-list functions are explained later
in this chapter.

Chapter 5 - IRD OUTPUT

Page 42

3. Sorting the selected entities. A series of sort
parameters are available to designate the sort order of
the selected entities. Each parameter may be requested
on an ascending or descending basis within that
parameter. The sort parameters include the following:

Entity-Type.

Non-repeating attribute-types associated with
entity-types.

Life-Cycle-Phase.

Assigned Access-Name.

Complete Access-Name.

Assigned Descriptive-Name.

Complete Descriptive-Name.

Version-identifier associated with the assigned
access-name or assigned descriptive-name.

4. Designating what information is to be displayed for
each selected entity. For this show function, the
information includes:

The kinds of entity names (i.e., access-names,
descriptive-names, alternate-names)

.

The life-cycle-phase for each entity.

One or more of an entity's attributes or
attribute-groups. There is an option to show all
attributes. For text attributes, the numbers of
the text lines to be displayed may be specified.

One or more of the relationships in which an
entity participates. There are options to show
all relationships, to show either forward or
inverse relationships, and to show all relation-
ships of a particular relationship-class. The
output of all, some, or none of the relationship's
attributes may be specified.

Chapter 5 IRD OUTPUT

Page 43

5. Routing the output contents to a particular destina-
tion. A system defined destination will be used if no
destination is specified.

6. Assigning a character string to be used as a title for
the output. This title can appear either on the first
page or on every page of the output.

The following example demonstrates a potential use of
the General Output function. The syntax used is that of the
IRDS Command Language:

Suppose a user wished to report on all version-
identifiers associated with an assigned access-
name of PROGRAM-Z. (As discussed in Chapter 3,

the version-identifier consists of two parts: a
variation-name and a revision-number.) The user
would first specify, in the entity selection cri-
teria . the appropriate assigned access-name, and
would use the "wild-card" designation provided to
select all entities with that particular assigned
access-name, as in:

select entities with
access-name = PROGRAM-Z (*:*)

In this example, (*:*) designates all revision-
numbers and all variation-names.

Suppose the user wishes to sort the selected
entities based first on entity-type, then on
variation-name, then assigned access-name, and
finally on revision-number. Logically, this is
specified in the following way:

entity-type (ascending)

,

variation-name (ascending)

,

assigned access-name (ascending)

,

revision-number (descending)

.

Now, using the show capability, the user specifies
the information that is to be output for each of
the selected entities. To see the assigned
access-name, the assigned descriptive-name, and
all attributes of each entity, the user would
specify the following:

Chapter 5 - IRD OUTPUT

Page 44

show assigned access-name
show assigned descriptive-name
show all attributes.

After the user specifies any remaining options,
the IRDS will produce the desired output.

5 . 2 OUTPUT IMPACT-OF-CHANGE

In addition to the facilities discussed in the previous
section, two additional options exist for reporting Impact-
of-Change. The firsu, called the Cumulative Impact-of-
Change option, will produce a single list of all distinct
entities that will be affected by a change to any of the
selected entities. The second, called the Individual
Impact-of“Change option, will produce separate lists of
entities for each of the originally specified entities.
Each of these lists represents the set of entities that will
be affected by a change to that specified entity. An
example of the distinction between these options is:

Suppose the specified entity selection criteria
resulted in an initial list consisting of two
entities, Pers-File and Acct-File. The selection
of the Cumulative Impact-of-Change option would
result in a single list of all distinct entities
that would be affected by a change to either Pers-
File or Acct-File.

The selection of the Individual Impact-of-Change
option, however, would result in the output of two
lists of entities, one containing the entities
that would be affected by a change to Pers-File,
and the second containing the entities that would
be affected by a change to Acct-File.

5.3 OUTPUT SYNTAX
;

The Output Syntax function produces output that in-
cludes, for each entity selected, all the information about
the entity that might have been entered into the IRD with
the use of either the Add Entity or Add Relationship
commands. The output structure for each entity and
relationship will reflect the same basic order and format as
that in which the information might have been originally
input

.

Chapter 5 - IRD OUTPUT

Page 45

The output for this function may be shown in one of two
formats, as requested by the user.

The first format, which displays each entity's relation-
ships immediately after displaying the entity's attributes,
provides the information in the following order:

ENTITY-

1

[All ENTITY-1 information, in the same general
format as that used in the ADD ENTITY command]

RELATIONSHIP- 1 in which ENTITY-1 participates
[All RELATIONSHIP- 1 information, in the same

general format as that used in the ADD
RELATIONSHIP command]

«

RELATIONSHIP- j in which ENTITY-1 participates
[All RELATIONSHIP- j information]

ENTITY-n
[All ENTITY-n information]

RELATIONSHIP- 1 in which ENTITY-n participates
[All RELATIONSHIP-1 information]

RELATIONSHIP-k in which ENTITY-n participates
[All RELATIONSHIP-k information

]

The second format displays all entities and their
attributes first, followed by all distinct relationships in
which the entities participate:

ENTITY-1
[All ENTITY-1 information, in the same general

format as that used in the ADD ENTITY command]

ENTITY-n
[All ENTITY-n information]

Chapter 5 - IRD OUTPUT

Page 46

RELATIONSHIP- 1 in which any entity above participates
[All RELATIONSHIP- 1 information, in the same format
as that used in the ADD RELATIONSHIP command]

RELATIONSHIP-j in which any entity above participates
[All RELATIONSHIP- j information]

The major difference between the two formats is that the
second will not duplicate tha display of any relationships
that are shared by the set of selected entities.

The user, in specifying the report or query contents,
also can designate the relationships that are to be output
along with the specified entities. The relationships may be
specified in one of three ways?

o All relationships. In this case all relationships in
which the specified entities participate will be
output

.

o Relationships of certain types. In this case, the user
may specify one or more valid relationship-types.

o No relationships. If this option is specified, then no
relationships will be output, and thus the designation
of the output format is no longer relevant.

In a given IRDS, the Output Syntax function is available
only if the Command Language Interface has been implemented.

5 . 4 ENTITY-LISTS

The IRDS allows a user to create and manipulate lists of
access-names based on user-specified selection criteria.
These "entity-lists" may then be input to other IRDS output
functions and certain maintenance functions. The entities
contained in an entity-list are always a subset of those
contained in IRD-views specified by and authorized for the
user.

Chapter 5 - IRD OUTPUT

Page 47

5,4.1 Creating New Entity-Lists

To create a new entity-list without using existing
entity-lists, a user will perform the following sequence of
steps:

1. Select a set of entities. This set is specified in one
of the following ways:

By selecting all entities in the view(s) indica-
ted.

By selecting entities by their access-names or a

substring within their assigned access-names.

By selecting entities by their descriptive-names
or a substring within their assigned descriptive-
names .

By selecting entities according to their relation-
ship to other specified entities, and the nature
of the relationship with these other entities
(i.e., either direct or indirect).

2. Enter restriction criteria to reduce the initial set.
These criteria allow restricting the set:

To certain entity-types.

To those entities that participate in particular
relationship-types

.

To those entities that contain certain attributes.

To those entities that contain certain attribute-
groups .

To those entities that have a particular substring
within a certain text attribute.

To certain life-cycle-phases.

To those entities that contain certain audit
attributes

.

To those entities that have a particular
alternate-name

.

Chapter 5 - IRD OUTPUT

Page 48

3. Designate a name for the newly created entity-list.
The specified name must be one that has not previously
been assigned to an entity-list during the same IRDS
session. If the user does not explicitly assign a name
to the new entity-list, the IRDS designates the entity-
list as the current list.

5.4.2 Entitv-List Set Operations

The IRDS allows the set operations of union, inter-
section, difference, and subtraction to be performed on two
(or sometimes more) existing entity-lists to produce a new
entity-list.

To execute any of these operations, the user specifies
the following:

o For union and intersection, the names of two or more
existing entity-lists; for difference and subtraction,
the names of precisely two existing entity-lists. In
each case, one of the input entity-lists may be the
current list.

o The name of an entity-list into which the resulting set
of entities will be placed. If no such name is
specified, the resulting entity-list will be designated
as the current list.

The following are examples of how these functions
operate

:

Suppose that three entity-lists contain the
following entities;

Entitv-List-A

Entity-1
Entity-3
Entity-4
Entity-6
Entity-7

Entitv-List-B

Entity-1
Entity-2
Entity-5
Entity-6

Entitv-List-C

Entity-1
Entity-3
Entity-4
Entity-5

Entity-list union of Entity-List-A, Entity-List-B,
and Entity-List-C will result in the creation of a
new Entity-List-D, which will contain all entities
that appear in any of the input lists, except for

Chapter 5 - IRD OUTPUT

Page 49

duplicates. Specifically, the results of the
entity-list union will be:

Entitv-List-D

Entity-1
Entity-2
Entity-3
Entity-4
Entity-5
Entity-6
Entity-7

Entity-list intersection of Entity-List-A, Entity-
List-B, and Entity-List-C will result in the
creation of Entity-List-E, which will contain
those entities that appear in each of the input
lists. Specifically, the results of the entity-
list intersection will be:

Entitv-List-E

Entity-1

Entity-list difference of Entity-List-A and
Entity-List-B will create the new Entity-List-F,
which will contain precisely those entities that
are not common to both input lists. Specifically,
the results of the entity-list difference will be:

Entitv-List-F

Entity-2
Entity-3
Entity-4
Entity-5
Entity-7

Entity-list subtraction, in which Entity-List-C is
subtracted from Entity-List-A, will result in the
creation of the new Entity-List-G, which will
contain precisely those entities that are in
Entity-List-A but not in Entity-List-C. Specifi-
cally, the results of the entity-list subtraction
will be:

Chapter 5 - IRD OUTPUT

Page 50

Entity-List-

G

Entity-6
Entity-7

5.4.3 Other Entitv-List Functions

The name current list function a3 lows an IRDS user to
assign an entity-list name, (one that does not currently
exist) , to the current list. The current list can be empty.

The output entity-list function is used to display the
contents of a specified entity-list created by a user during
a particular IRDS session. The function will list the
access-names of all entities contained in the entity-list.
The contents of the current list may also be displayed.

The output entity-list names function will display the
names of all entity-lists that a particular user has defined
during the current session. For each entity-list name, the
number of access-names within the entity-list will also be
shown

.

Chapter 5 - IRD OUTPUT

Page 51

6. IRD SCHEMA MAINTENANCE AND OUTPUT

In this chapter, we will expand upon our discussion of
the IRD Schema and its description. These concepts were
introduced in Chapter 2, and illustrated as the two top
layers in Figure 2 . Readers of this overview who are not
interested in the specific mechanisms for changing or
supplementing the Minimal Schema and the Basic Functional
Schema can skip this chapter and proceed to Chapter 7.

We have seen that the IRD schema includes ENTITY-TYPEs,
RELATIONSHIP-TYPEs, RELATIONSHIP-CLASS-TYPEs , ATTRIBUTE-
TYPES, and ATTRIBUTE-GROUP-TYPEs . These types are specified
as meta-entities in the schema. The meta-entities are
linked by meta-relationships, and both meta-entities and
meta-relationships can have meta-attributes and meta-
attribute-groups associated with them.

In the same way that the IRD schema describes the
entities, relationships, relationship-classes, attributes,
and attribute-groups in the IRD, the IRD schema itself is
described using the terms meta-entity, meta-relationship,
meta-relationship-class, meta-attribute, and meta-attribute-
group .

IRD schema maintenance functions are also addressed in
this chapter, including methods for adding, deleting, and
modifying meta-entities and meta-relationships. The chapter
ends with a description of the various modes in which a user
can specify IRD schema output.

6 . 1 THE CONTENT OF THE IRD SCHEMA

As discussed previously, the IRD schema contains
"entities” called meta-entities. These meta-entities can be
linked by meta-relationships, and both meta-entities and
meta-relationships can have meta-attributes and meta-
attribute-groups associated with them.

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 52

6.1.1 Meta-Entities

A meta-entity can be any of the following:

o An ENTITY-TYPE.

O A RELATIONSHIP-TYPE,

o An ATTRIBUTE-TYPE,

o A RELATIONSHIP-CLASS-TYPE,

o An ATTRIBUTE-GROUP-TYPE.

o An ATTRIBUTE-TYPE-VALIDATION-PROCEDURE,

o An ATTRIBUTE-TYPE-VALIDATION-DATA,

o A VARIATION-NAMES-DATA,

o An IRD-PARTITION

.

o A QUALITY-INDICATOR,

o An IRDS-DEFAULTS,

o An IRDS-LIMITS.

o An IRDS-RESERVED-NAMES,

o A NAMES

.

Examples in the Basic Functional Schema of ENTITY-TYPE
meta-entities are ELEMENT and RECORD. Examples of
RELATIONSHIP-TYPE meta-entities are PROGRAM-CALLS-MODULE and
RECORD-CONTAINS-ELEMENT . Examples of ATTRIBUTE-TYPE meta-
entities are DESCRIPTION, LENGTH, and NUMBER-OF-LINES-OF-
CODE. An example of an ATTRIBUTE-GROUP-TYPE meta-entity is
ALLOWABLE-RANGE

.

6.1.2 Meta-Relationships

Meta-relationships are associations between meta-
entities. The name of a meta-relationship-type consists of
the name of the first meta-entity-type, then the name of the
meta-relationship-class-type, followed by the name of the
second meta-entity-type, all connected by . The meta-

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 53

relationship itself is denoted by the name of the first
component meta-entity, the name of the meta-relationship-
type, and the name of the second component meta-entity.

For example, to document the fact that LENGTH is an
allowable attribute-type for ELEMENT (i.e., that ELEMENTS
can have LENGTH attributes) , we need to associate the meta-
entity LENGTH with the meta-entity ELEMENT. In the IRD
Schema, this is done by saying that there exists the meta-
relationship ELEMENT ENTITY-TYPE-CONTAINS-ATTRIBUTE-TYPE
LENGTH. Figure 4A illustrates this meta-relationship.

Similarly, to associate an attribute-type with a

relationship-type, a meta-relationship is constructed. For
example, the attribute-type RELATIVE-POSITION is associated,
in the Basic Functional Schema, with the relationship-type
RECORD-CONTAINS-ELEMENT. (This association documents the
relative position of an ELEMENT in a RECORD.) This is
implemented in the IRD Schema by establishing the meta-
relationship RECORD-CONTAINS -ELEMENT RELATIONSHIP-TYPE-
CONTAINS-ATTRIBUTE-TYPE RELATIVE-POSITION. Figure 4B shows
this meta-relationship.

The fact that two particular entity-types are the
components of a particular relationship-type is represented
in the IRD Schema by two meta-relationships, one linking
each of the two ENTITY-TYPE meta-entities to the
RELATIONSHIP-TYPE meta-entity. For example, PROGRAM-CALLS

-

MODULE is a meta-entity in the schema. Without further
information, however, the IRDS does not infer that PROGRAM,
CALLS, or MODULE are in any way associated with the given
relationship-type. The association must be made explicit,
with one meta-relationship between PROGRAM and PROGRAM-
CALLS-MODULE, and another between MODULE and PROGRAM-CALLS

-

MODULE. This use of two meta-relationships to implement the
association of a relationship-type with its component
entity-types is illustrated in Figure 5.

6.1.3 Meta-Attributes and Meta-Attribute-Groups

Meta-attributes and meta-attribute-groups perform a
descriptive role with respect to meta-entities and meta-
relationships. Generally speaking, there are four kinds of
meta-attributes and meta-attribute-groups:

1. Documentation meta-attributes. Using them, a user can
document the purpose of the meta-entity. For example,

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 54

Examples of Meta-Relationships

Associating Two Meta-Entities

4A. An Entity-Type Associated with an Attribute-Type

meta-entity

RECORD-
CONTAINS-
ELEMENT

(relationship-type)

meta-

relationship

RELATIONSHIP-TYPE^
CONTAINS-

ATTRIBUTE-TYPE

meta-entity

RELATIVE-

POSITION

(attribuxe-type)

4B. A Relationship-Type Associated with an Attribute-Type

KEY

meta-entity meta-relationship

Figure 4

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Example of a Relationship-Type Meta-Entity

Implemented by Two Meta-Relationships

Page 55

meta-entity

PROGRAM

(entity-type)

meta-entity

MODULE

(entity-type)

Figure 5

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 56

the Minimal Schema contains the PURPOSE meta-attribute-
type.

2. Audit meta-attributes and meta-attribute-groups , which
are analogous to the audit attributes and attribute-
groups in the XRD. Examples are the meta-attribute-
types ADDED-BY and NTJMBER-OF-TIMES-MODIFIED and the
meta-attribute-group-type DATE-TIME-ADDED

.

3. XRD Schema control meta-attributes, which provide
certain controls over what can and cannot be done in
the schema. For example, some meta-attributes can be
used to prevent deletion of a meta-entity, or can be
structured to require the use of a privileged function
to delete a meta-entity. Examples are SYSTEM-LOCK and
IMPLEMENTATION-LOCK.

4 . IRD control meta-attributes , which are used to impose
rules on the IRD. These include meta-attributes that
specify:

Allowable lengths (minimum and maximum) of names
of entities of a given type (e.g., MAXIMUM-ENTITY-
ASSIGNED-ACCESS-NAME-LENGTH)

.

Allowable lengths of the attributes of a given
type (e.g., MINIMUM-ATTRIBUTE-LENGTH)

.

Whether a particular entity-type can have more
than one attribute of a given type, and if so,
what the maximum allowable number is (e.g.,
SINGULAR)

.

6.1.4 An Example of Part of an IRD Schema

To illustrate how meta-entities, meta-relationships,
meta-attributes, and meta-attribute-groups work together.
Figure 6 shows a part of the Basic Functional Schema
involving FILE. The entity-type FILE, the relationship-
types FILE-CONTAINS-RECORD and USER-PROCESSES-FILE , the
attribute-type NUMBER-OF-RECORDS , and the attribute-group-
type DATE-TIME-LAST-MODIFIED are all meta-entities.

As the figure shows, the relationship-types FILE-
CONTAINS-RECORD and USER-PROCESSES-FILE are connected to
FILE by means of RELATIONSHIP-TYPE-CONNECTS-ENTITY-TYPE
meta-relationships, indicating that FILE does in fact

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 57

Subset of the IRDS Basic Functional Schema

meta-enti.y

NUMBER-OF-RECORDS

(attribute-type)

i

meta-ei

DATE-TIM
MODIF

(attribute-gr

itity

E-LAST-

IED

oup-type)

Figure 6

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 58

participate in these two relationship-types . The ENTITY-
TYPE-CONTAINS-ATTRIBUTE-TYPE meta-relationship between FILE
and NUMBER-OF-RECORDS indicates that this attribute-type is
associated with FILE. The ENTITY-TYPE-CONTAINS-ATTRIBUTE

-

GROUP-TYPE meta-relationship between FILE and DATE-TIME-
LAST-MODIFIED documents that this audit attribute-group-type
is associated with FILE. Also illustrated are two meta-
attributes: a DATE-TIME-ADDED meta-attribute-group associ-
ated with the meta-entity FILE? and a SINGULAR meta-
attribute, associated with the meta-relationship linking
FILE and NUMBER-OF-RECORDS.

6.1.5 Other IRD Schema Constructs

The IRDS provides facilities that allow an organization
to control the values, or ranges of values, of non-textual
attribute-types. ATTRIBUTE-TYPE-VALIDATION-PROCEDURE meta-
entities represent procedures that can be used to validate
these attributes . ATTRIBUTE-TYPE-VALIDATION-DATA meta-
entities contain sets of valid values for specific
attribute-types

.

The Minimal Schema contains one IRDS-DEFAULTS and one
IRDS-LIMITS meta-entity. These are used to store the
defaults and numerical limits for meta-attributes and IRDS
names, and are used by the IRDS if appropriate values are
not specified by the IRDS user.

The Minimal Schema also contains an IRDS-RESERVED-NAMES
meta-entity, to specify which assigned-access-names of
entities and meta-entities are reserved by the IRDS and
cannot be changed. A single NAMES meta-entity contains a
description of the rules for naming both entities and meta-
entities .

The meta-entities that support the Version-Identifier,
Life-Cycle-Phase, and Quality-Indicator facilities will be
discussed in Chapter 8 , where the IRDS naming and control
facilities are described.

6.2 IRD SCHEMA MANIPULATION

The IRDS user can manipulate and redefine the IRD schema
by adding, modifying, and deleting meta-entities and meta-
relationships .

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 59

6.2.1 Adding Meta-Entities

An IRDS user can add a new meta-entity (and a set of
associated meta-attributes) to the schema. Meta-entities of
the following types may be added:

o ENTITY-TYPE.

o RELATIONSHIP-TYPE.

o RELATIONSHIP-CLASS-TYPE

.

o ATTRIBUTE-TYPE.

o ATTRIBUTE-GROUP-TYPE.

o ATTRIBUTE-TYPE-VALIDATION-PROCEDURE

.

o ATTRIBUTE-TYPE-VALIDATION-DATA.

o VARIATION-NAMES-DATA

.

o IRD-PARTITION

.

o QUALITY-INDICATOR

.

o IRDS-DEFAULTS

.

o IRDS-LIMITS.

o IRDS-RESERVED-NAMES.

o NAMES

.

A new meta-entity may not have the same meta-entity-
ass igned-access-name as an existing meta-entity.

6.2.2 Modifying Meta-Entities

A user can associate new meta-attributes with meta-
entities, and modify and delete existing meta-attributes of
meta-entities. For example, the allowable length of an
assigned-access-name for a particular meta-entity can be
modified by changing the MINIMUM-ENTITY-ASSIGNED-ACCESS-

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 60

NAME-LENGTH and MAXIMUM-ENTITY-ASSIGNED™ACCESS-NAME-LENGTH
meta-attributes for that meta-entity.
6.2.3

Deleting Meta-Entities

A user can delete an existing meta-entity from the
schema

.

Several rules apply to this operation. The meta-entity
to be deleted^

o Must not have instances in the IRD.

o Must not have a value of ON for the SYSTEM-LOCK meta-
attribute. (For each meta-entity, the value of this
meta-attribute is set and maintained by the implementa-
tion. An ON value implies that the presence and
precise definition of the meta-entity is necessary to
the operation of the IRDS. An ON value cannot be
changed by the user organization.)

o Must not have a value of ON for the IMPLEMENTATION-LOCK
meta-attribute. (This meta-attribute allows the
organization to have additional control over the
modification of the IRD schema.)

6.2.4

Adding Meta-Relationships

As stated earlier, meta-relationships are associations
between meta-entities. When adding a new meta-relationship
to the schema, the user specifies the name of the meta-
relationship, and the meta-attributes to be associated with
the meta-relationship.

6.2.5

Modifying Meta-Relationships

A user can change the meta-attributes of an existing
meta-relationship in the schema.

The user supplies the name of the meta-relationship, and
then associates new meta-attributes, or modifies or deletes
existing meta-attributes, of the meta-relationship.

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 61

6,2.6

Deleting Meta-Relationships

To delete an existing meta-relationship from the schema,
the user specifies the name of the meta-relationship.
6.2.7

Modifying Meta-Entitv Names

A modify meta-entity-access-name function is used to
change the assigned-access-name of an existing meta-entity
in the schema. The new meta-entity-assigned-access-name may
not already appear in the IRD schema as a meta-entity-
assigned-access-name or a meta-entity-substitute-name.

The function has the effect of deleting the existing
meta-entity from the IRD schema and creating a new meta-
entity. The new meta-entity will:

o Have the same meta-attributes and meta-attribute-groups
as those of the predecessor meta-entity.

o Participate in the same meta-relationships as the
predecessor meta-entity.

o Have the same IRD instances as did the predecessor
meta-entity.

An analogous • modify meta-entity-descriptive-name
function is used to change the assigned-descriptive-name of
a meta-entity.

6.2.8

Copying Meta-Entities

This function creates a new meta-entity with the same
user specified meta-attributes as an existing meta-entity.

6.2.9

IRD Schema Testing

To allow an organization to test proposed changes to a
schema, the IRDS provides three related functions:

o Deactivate IRDS, which stops all IRDS activity and
restricts access to the IRD Schema to a single user.

o Activate IRDS, which enables IRDS activity by
"cancelling" the Deactivate IRDS. The IRDS-user who

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 62

issues this function must be the same IRDS-user who
issued the Deactivate IRDS function.

o Restore Schema, which restores the IRD schema to its
state as of the last time a Deactivate IRDS function
was issued. The IRDS must be deactivated, and the IRD-
user who issues this function must be the same IRD-user
who issued the Deactivate IRDS function.

6.3 IRD SCHEMA OUTPUT

This function produces generalized output on the
contents of the schema.

The user must select the meta-entities to be displayed.
These meta-entities may be selected by specifying one of the
following:

o That all meta-entities are to be displayed.

o That all meta-entities of one or more specific meta-
entitv types are to be displayed.

o That only the meta-entities whose names are specified
are to be displayed.

The resulting set of meta-entities may then be sorted
based on the standard set of sort parameters. Each para-
meter may be designated as ascending or descending. The
parameters available are:

o Meta-entity-type.

o Meta-entity access-name.

o Non-repeating meta-attribute-types associated with a
meta-entity.

The user also must specify the information that should
be shown for each meta-entity in the output, along with the
sequence in which this information should appear. This
information can include:

o Meta-entity access-names.

o The meta-entity-type.

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 63

o One or more of a meta-entity's meta-attributes. (There
is an option to show all meta-attributes.)

o All, or optionally none, of the meta-relationships in
which a meta-entity participates. The user may request
that only direct, only indirect, or both direct and
indirect meta-relationships be included. (Meta-
entities A and Z are directly meta-related if there is
a meta-relationship between A and Z; they are indi-
rectly meta-related if A is directly meta-related to B,
B is directly meta-related to C, etc., eventually
leading to a meta-entity directly meta-related to Z .

)

The display of all or none of the meta-attributes of
the meta-relationship may also be specified.

The user can specify the destination to which the output
is to be routed. A system default destination will be used
if no destination is specified.

Finally, a character string may be specified to be used
as a title for the IRD schema output. This title can be
specified to appear on either the first page or every page
of the output.

Chapter 6 - IRD SCHEMA MAINTENANCE AND OUTPUT

Page 64 ’’

Page 65

7. THE IRD-IRD INTERFACE

The IRD-IRD Interface is an important feature of the
IRDS because it is the only controlled means for moving data
from one IRD to another. If an organization has two or more
IRDs, each under the control of a Standard IRDS, this
facility allows the organization to select and transport
some or all of the entities and relationships (along with
their attributes) from one IRD to another.

This facility supports the transportability of IRD data,
even in the case where the two Standard IRDSs were developed
by different vendors and are resident on different hardware
systems at different locations. In this latter case, it is
assumed that either a communications link exists between the
two computer systems or that some other means of physically
moving the data (e.g., transport of tapes) is employed. The
IRDS Standard does not address how this physical movement
takes place. It is assumed that the details of the IRD-IRD
Interface data representation are known to both systems

.

This chapter describes problems that may arise when an
IRD-IRD transfer is attempted, and presents the transfer
methodology that overcomes these problems. The IRD from
which the data is exported is called the "source IRD," and
the IRD into which the data is imported is the "target IRD."
The schema of the source IRD is the "source IRD schema," and
the schema of the target IRD is the "target IRD schema."

7 . 1 INTEGRITY CONSIDERATIONS

This section discusses the types of incompatibilities
that may exist between the source and target IRD schemas and
the associated source and target IRDs.

7.1.1 IRD Schema Incompatibility

Since the IRDS provides facilities that allow an
organization to customize an IRD schema, both the source and
target schemas may have been customized in a manner that
will make them "incompatible." If such differences exist
and are not resolved before the data transport, they can

Chapter 7 - THE IRD-IRD INTERFACE

Page 66

affect the integrity of the target IRD. The following are
examples where the source and target schemas may not be
compatible:

o The source IRD might contain an entity-type that does
not exist in the target schema. In this case, an
entity of this type could not be stored in the target
IRD.

o Even if the source and target schemas contain the same
entity-types, an entity-type in the source might have
associated with it an attribute-type that does not
exist in the target schema. It would be possible to
import a corresponding entity into the target IRD
without the particular attribute. However, a loss of
information would occur.

o Each of the schemas may contain different rules for the
minimum and maximum lengths of assigned access-names
for entities of a given type. Consider the following
example:

The
c
minimum length for an assigned access-

name of an ELEMENT entity is 6 characters in
the source IRD schema and 8 characters in the
target IRD schema.

The maximum length for such names is 3 6

characters in the source IRD schema, and 3 2

characters in the target IRD schema.

When an ELEMENT is extracted from the source
IRD, the length of the assigned access-name
of this entity may be 7 characters, although
this is not legal in the target IRD. The
same situation occurs if the length of this
name is 34 characters, since the maximum
allowable length in the target IRD schema is
32.

o An IRD schema may contain a list of the legal
attributes or ranges of attributes for an attribute-
type. Problems in the import of data exist if a value
is legal in the source but not in the target.

Some differences between two IRD schemas, however, may
not be significant. Consider, for example, the audit meta-
attributes and meta-attribute-groups, such as DATE-TIME

-

Chapter 7 - THE IRD-IRD INTERFACE

Page 67

ADDED, associated with the same meta-entity in two different
IRD schemas. They will in general be distinct, but that
does not make any difference to the importing of data, since
the target values will be used.

Thus, there is "IRD schema compatibility" between the
source and target IRD schemas when:

1. Every CONTROLLED meta-entity (see section 8.2) in the
source IRD schema, except for NAMES, IRDS-RESERVED-
NAMES, IRDS-LIMITS , and IRD-PARTITIONS , has the same
assigned-access-name as a meta-entity in the target IRD
schema

.

2. The integrity rules (in the source IRD schema) for the
data in the source IRD are compatible with the
integrity rules (in the target IRD schema) for the data
in the target IRD.

7.1.2 IRD Incompatibility

The above discussion concerned incompatibilities between
source and target IRD schemas . Incompatibilities regarding
content differences between the source and target IRDs can
also exist. The following examples illustrate such
situations

:

o The descriptors that implement IRDS-USER identifi-
cations, the view entities, and the assignment of the
views to IRDS users reside in the IRD, rather than the
IRD schema. When the data from the source is brought
into the target IRD, the IRD-IRD Interface facility
must be able to establish such access control in the
target IRD.

o The revision-numbers of entities with the same assigned
access-name in the source and target IRDs may not be
the same, since more modifications may have taken place
in one IRD than the other.

o Importing the source IRD audit attributes and
attribute-groups such as DATE-TIME-ADDED and ADDED-BY
is not meaningful, because the date/time of creation
and the responsible users will be different for the
target IRD. As discussed in section 7.2, the IRD-IRD
Interface facility will reset these attributes to

Chapter 7 - THE IRD-IRD INTERFACE

Page 68

reflect the import date and the IRDS user who performed
the importing.

7.2 THE INTERFACE PROCEDURE

The IRD-IRD Interface facility can be used, together
with some user actions, to correct incompatibilities between
the source and target IRD schemas and dictionaries. The
following steps are required to export data from a source
IRD, and to then import it into a target IRD;

1. The IRDS user specifies the subset to be exported by
designating an entity-list.

2. The subset is exported from the source IRD using the
export IRD function. The source IRD schema is also
extracted, because it will be necessary to check its
compatibility with the target IRD schema. At this
point the IRD subset exists in IRD Export format, and
the IRD schema in IRD Schema Export format. (The IRDS
Specifications define the sequence of entities,
relationships, etc., in an exported IRD subset, and the
sequence of meta-entities, meta-relationships, etc., in
an exported IRD schema .) The exported IRD subset and
IRD schema are each in a physical format specified by
encoding rules based on Abstract Syntax One (ASN . 1) ,

ISO 8824 [12], and ASN. 1 Basic Encoding Rules . ISO 8825
[13]. These rules are currently being developed.

This format guarantees that the data can be carried or
transmitted from the computer system on which the source IRD
resides to the computer system on which the target IRD
exists. The data being exported is not intended to be
available for user processing while it is in this export
format, because: (a) the required security and integrity
constraints that control IRD access could not be enforced;
and (b) the desired audit trail for such processing would
not be available.

The IRDS will not allow an IRD to be imported unless the
source and target IRD schemas are compatible. If the source
is incompatible with the target (as determined by the check
IRD schema compatibility function) , the following inter-
mediate processing (Steps 3, 4, and 5) will be required to
achieve compatibility. If the source and target IRD schemas
are compatible, Steps 3, 4, and 5 are not necessary.

Chapter 7 - THE IRD-IRD INTERFACE

Page 69

3. The IRD Export subset is loaded into an "empty" IRD

.

At this time an IRD schema corresponding to the subset
is also created. There are two options for designating
the IRD schema to be used:

A file name containing an IRD schema in IRD Schema
Export format.

The Minimal Schema.
/

An "empty" IRD is not empty in the literal sense of the
word. Rather, it contains entities dealing with the IRDS
Control Facilities (see Chapter 8) that will have to be in
effect for this new IRD.

The audit attributes are initialized to the date and time of
creation of the "empty" IRD and corresponding IRD schema.

Step 3 can be performed at the site where the source IRD is
located, or at the target site, or even at a completely
different location. The availability of a Standard IRDS is
required at the selected location.

4. The source (or target) IRD subset, and its schema, must
be modified so that the two IRD schemas are compatible.
The IRDS contains an IRD schema comparison function.
If the comparison indicates a lack of compatibility,
the IRDS provides the user with an analysis showing the
reasons for the incompatibility. A user must then make
changes to one or both of the IRD schemas using IRD
schema maintenance facilities. This may involve
changing entity names, attribute lengths, etc.

5. Once IRD schema compatibility is achieved, the contents
of the IRD subset and its schema are again exported in
Export format.

6. This new source IRD subset and schema may now be
imported into the target IRD by the importing IRDS.
The IRDS requires that a life-cycle-phase be designated
in the target IRD for the subset to be imported. No
entities can exist in this phase in the target IRD at
the time of import. If the target IRD is not "empty,"
the IRDS will examine the revision-numbers of the
entities in the source IRD and will increase them so
that they are greater than the revision-numbers of any
entities in the target IRD that have the same assigned
access-names and variation-names.

Chapter 7 - THE IRD-IRD INTERFACE

Page 70

During the import, the target IRDS checks the assigned
access-name and variation-name for potential conflict
with system-generated access-names in the target IRD.
The method for checking is the same as that discussed
for the add entity function. If a potential conflict
exists, the entity is written to an error file, for
subsequent resolution by the user.

After all entities, and their associated attributes, of
the import set have been imported, the relationships
and any associated attributes in the import set are
loaded into the target IRD.

Chapter 7 - THE IRD-IRD INTERFACE

Page 71

8. IRDS CONTROL FACILITIES

The Core IRDS contains four facilities that are impor-
tant in populating and maintaining the IRD and in reporting
on the contents of the IRD. These are: (1) Versioning? (2)
Life-Cycle-Phases; (3) Quality-Indicators; and (4) Views.
An overview of these facilities appears in Chapter 3. This
chapter presents more detail on their structure and use.

8 . 1 VERSIONING

A version-identifier is part of the access-name and
descriptive-name of both entities and meta-entities. Every
entity and meta-entity has a version-identifier (by default,
if not explicitly specified) but the use of this facility is
optional

.

8.1.1 Versions of Entity Names

A complete version-identifier is composed of two parts

—

a variation-name and a revision-number. The existence of a
variation-name is optional, i.e., only those entities that
have been explicitly assigned variation-names have them.
All entities have revision-numbers, since a default mecha-
nism allows their specification to be optional. To specify
a complete version-identifier using the Command Language
syntax, the user encloses the version-identifier in paren-
theses and appends it to the assigned access-name and the
assigned descriptive-name. Within these parentheses the
variation-name (if used) is followed by the revision-number,
separated by a colon.

A revision-number of "l" represents the "Oth" revision
(i.e., the initial entity before the first revision). If
the user does not specify a revision-number when creating a
new entity, the revision-number defaults to 1. This default
mechanism operates for all subsequent revisions (i.e., if a
user does not specify a valid new revision-number, the
revision-number default is one greater than the highest
revision-number associated with the assigned access-name and
the variation-name) . The following example illustrates this
facility:

Chapter 8 - IRDS CONTROL FACILITIES

Page 72

Suppose, for example, a certain statistical module
exists that produces results accurate to 5 decimal
places, and a similar statistical module provides
results accurate to 8 places. We can describe
both with the assigned access-name Stat-Module,
and differentiate the two with different
variation-names. Thus, we would have Stat-
Module (Precision-5) and Stat-Module (Precision-8)

.

The sixth revision of the statistical module with
5 digit precision would be represented as Stat-
Module (Precision-5 : 7) . The statistical module
with 8 digit precision and no revisions would be
represented as Stat-Module (Precision-8 : 1)

.

All entity access-names, including those with the same
assigned access-name and different variation-names or
revision-numbers, represent distinct entities. In addition,
the version-identifier associated with an access-name of an
entity must be identical to the version-identifier in the
descriptive-name of that entity. Thus, if there is an
entity with the access-name SSN(4), and this entity has the
assigned descriptive-name Social-Security-Number , then the
full descriptive-name of the entity automatically becomes
Social-Security-Number (4)

.

8.1.2 Versions of Meta-Entitv Names

Meta-entity-access-names and meta-entity-descriptive-
names have version-identifiers that are constructed the same
as those for access-names and descriptive-names in the IRD.
However, in these IRD schema names the variation-name
portion of the version-identifier is always null.

The rules governing IRD schema name versioning are
analogous to those for IRD names.

8 . 2 LIFE-CYCLE-PHASES

The Life-Cycle-Phase facility in the Core IRDS:

o Allows an organization to define, for entities in the
IRD, life-cycle-phases that correspond to the method-
ology used by the organization.

o Provides facilities to assign each IRDS entity to one
of the defined phases.

Chapter 8 - IRDS CONTROL FACILITIES

Page 73

o Provides facilities to assign IRD schema meta-entities
to one of three built-in IRD schema life-cycle-phases.

o Enforces integrity rules controlling the movement of
meta-entities from one IRD schema life-cycle-phase to
another.

8.2.1 IRD Life-Cvcle-Phases in the Core

Each IRD life-cycle-phase is represented as a meta-
entity in the IRD schema. Thus, the specific phases
required by an organization can be created using IRD schema
manipulation, as discussed in Chapter 6.

As will be described more fully in Section 8.4, an IRDS
user always operates in a "IRD-view," and each IRD-view is
associated with a IRD-partition. Hence, when an entity is
added to the IRD, we can say that the entity is "in" the
life-cycle-phase corresponding to the partition associated
with the IRD-view in which the user is working.

Every IRD-partition belongs to a "life-cycle-phase
class," and the Core Standard IRDS recognizes three such
classes:

1. UNCONTROLLED — UNCONTROLLED phases generally represent
"non-operational" stages of a system life cycle, such
as "specification," "design," or "development." The
Minimal Schema contains the UNCONTROLLED IRD-partition
UNCONTROLLED-LIFE-CYCLE-PHASE for this purpose. (The
Minimal Schema also contains the UNCONTROLLED IRD-
partition SECURITY, used for IRDS-USER entities. The
SECURITY partition is not considered a life-cycle-
phase.)

2. CONTROLLED —
> CONTROLLED phases are designed to be used

for entities in the IRD that describe data existing in
"operational" systems. The Minimal Schema contains the
CONTROLLED IRD-partition CONTROLLED-LIFE-CYCLE-PHASE

.

3 . ARCHIVED — ARCHIVED phases are used to document and
classify entities no longer in use. The Minimal Schema
contains the ARCHIVED IRD-partition ARCHIVED-LIFE-
CYCLE-PHASE.

Chapter 8 - IRDS CONTROL FACILITIES

Page 74

IRD-partition meta-entities of any phase class, and
hence the life-cycle-phases corresponding to them, can be
arbitrarily created and deleted. IRD entities may be moved
from one phase to another. A much more powerful IRD change
control facility, that allows the imposition of integrity
rules on the movement of entities within the life-cycle-
phase framework, is contained in Module 4 of the IRDS
Specifications, An Extensible Life Cycle Phase Facility [1],

8.2.2 IRD Schema Life-Cvcle-Phases in the Core

The Core life-cycle-phase facility for the IRD Schema
(i.e., for meta-entities) is similar to that for the IRD,
but is more complete in terms of integrity rules and
control

.

A user modifying the IRD schema always operates in an
"IRD-schema-view, " and each IRD-schema-view is associated
with an IRD schema life-cycle-phase. Thus, meta-entities
added to the IRD schema are "in” the IRD schema life-cycle-
phase associated with the IRD-schema-view in which the user
is working.

The IRD Schema is divided into the three life-cycle-
phases UNCONTROLLED, CONTROLLED, and ARCHIVED. Each meta-
entity is in one and only one of these phases.

Using the UNCONTROLLED IRD schema life-cycle-phase,
users responsible for maintaining the IRD schema can review
and study the potential effect of IRD schema modifications
before making the changes effective. When a set of modifi-
cations to the IRD structure is ready to be made effective,
the meta-entities may be moved to the CONTROLLED IRD schema
life-cycle-phase. Finally, by moving superseded meta-
entities to the ARCHIVED IRD schema life-cycle-phase, the
contents of the ARCHIVED phase would document the prior IRD
structure

.

The Core Standard IRDS enforces specific integrity rules
for meta-entities in either the CONTROLLED or ARCHIVED IRD
schema life-cycle-phases. There are no integrity rules for
meta-entities in the UNCONTROLLED life-cycle-phase.

For movement of a meta-entity from UNCONTROLLED to
CONTROLLED (i.e., the meta-entity is made operational) these
integrity rules enforce a set of constraints exemplified by
the followings

Chapter 8 - IRDS CONTROL FACILITIES

Page 75

o If an entity-type is to be moved, all attribute-types
associated with the entity-type must have already been
moved to CONTROLLED. If a relationship-type is to be
moved, both member entity-types must have already been
moved. Conversely, at the time the attribute-types or
member entity-types were moved, the associated entity-
type (or relationship-type, respectively) , must still
have been UNCONTROLLED.

Similar rules and examples apply to CONTROLLED to
UNCONTROLLED, CONTROLLED to ARCHIVED, and ARCHIVED to
CONTROLLED moves.

8.2.3 Deactivation and Reactivation of the IRDS

If IRD accesses were to continue while these IRD schema
life-cycle-phase modifications were taking place, the
integrity of the IRD could be compromised and IRDS functions
might not operate properly. Thus, all accesses to the IRD
must be suspended while meta-entities are moved between IRD
schema life-cycle-phases. Functions are provided which
support the deactivation and reactivation of the IRDS, along
with a function that restores an original IRD schema.

8 . 3 QUALITY-INDICATORS

The quality- indicator facility in the Core IRDS allows
an organization to define quality-indicators and assign them
to entities. These quality-indicators denote such things
as: (1) the level of standardization of element entities
(e.g., program standard, agency or organization standard,
national standard, or international standard) ; or (2) the
degree to which the entity satisfies the organization’s
quality assurance or quality testing methodology.

Each quality-indicator is a meta-entity in the IRD
schema. The Minimal Schema and Basic Functional Schema do
not include any indicators, so an organization will have to
explicitly define a set of quality-indicator meta-entities
to make use of this facility. Although indicators are not
attributes, they are handled similarly when adding, modify-
ing, or reporting on entities.

These quality-indicators are available for documentation
and search purposes, but no integrity rules are applied.. As

Chapter 8 - IRDS CONTROL FACILITIES

Page 76

discussed in Chapter 11, a future Module could specify
additional functions for the use of these indicators.

8 . 4 VIEWS

The Core XRDS provides for both IRD-views and IRD-
schema-views . A user perceives these as windows or gateways
into life-cycle-phases, and hence as logical subsets of the
IRD and IRD Schema, respectively.

8.4.1 IRD-Views

An XRD-view is specified as:

o A set of entities of specified types, with the enti-
ties' attributes and attribute-groups. All the
entities in the IRD-view are in the same IRD partition
(i.e., either in SECURITY or in an IRD life-cycle-
phase.)

o A set of relationships of specified types, with the
relationships' attributes and attribute-groups, that
exist between the entities in the IRD-view.

Thus, a view defines an environment in which a user
works with an IRD. A view can be shared by many users. A
user may also have access to many views.

8.4.2 IRD-Schema-Views

An IRD-schema-view is specified as:

o A set of meta-entities, with the meta-attributes and
meta-attribute-groups associated with the meta-
entities. All the meta-entities are in the same IRD
schema life-cycle-phase.

o A set of meta-relationships (with the meta-attributes
and meta-attribute-groups associated with the meta-
relationships) , that exist between the meta-entities in
the IRD-schema-view.

o Analogous to IRD-views, an IRD-schema-view can be
shared by many users, and a user may have access to
many IRD-schema-views

.

Chapter 8 - IRDS CONTROL FACILITIES

Page 77

8.4.3 Defining Views

Structurally, IRD-VIEW and IRD-SCHEMA-VIEW are each
entity-types in the IRDS Minimal Schema. We emphasize the
distinction between the entity-type and the IRD or IRD
schema subset: "IRD-VIEW" (or "IRD-SCHEMA-VIEW") is used for
the former and "IRD-view" (or "IRD-schema-view"

) for the
latter. An IRD-VIEW or IRD-SCHEMA-VIEW entity is connected
to IRDS-USER entities to allow these users to access the
view. When a user is assigned more than one IRD-view or
IRD-schema-view, one IRD-view and one IRD-schema-view will
be designated as the '"default IRD-view" and the "default
IRD-schema-view," respectively.

8.4.4 Accessing the IRDS Through a View

When a user accesses the IRD and the IRD Schema, the
default IRD-view and the default IRD-schema-view will be
presented to the user unless the user specifically indicates
that the default view is not to be used. For IRD and IRD
schema output, one or more existing views (to which the user
has access) can be requested by the user. The output
instructions will operate on the union of the entities
contained in multiple views.

Chapter 8 - IRDS CONTROL FACILITIES

Page 78

'

.

Page 79

9. MISCELLANEOUS TOPICS IN THE CORE

The IRDS Specifications contain several utility
functions that allow users to display the session status,
set defaults, obtain help from the system, exit the IRDS,
and switch between IRDS interfaces.

9.1 IRDS SESSION DEFAULTS AND INFORMATION

Default IRD-views and IRD-schema-views exist for each
IRDS user, represented as attributes of the relevant IRDS-
USER-HAS-IRD-VIEW and IRDS-USER-HAS-XRD-SCHEMA-VXEW rela-
tionships.

The code/decode option specifies whether codes or
decoded text will appear in IRD output. The normal default,
decoded . specifies that decoded text will appear as the
values of attribute-types. The code option specifies that
codes will appear instead. Codes are always used for input.
The following example illustrates this option:

Suppose that an organization uses an IRDS to help
design and document an international travel or
transportation system. Names of airports might be
important in this application and the organization
might want to document the allowable code values
in the IRD. Thus, some possible values of the
LOCATION attribute-type might be LHR and CDG. The
respective decoded values would be London Heathrow
for LHR and Charles de Gaulle for CDG. The
organization then could use the decode option to
prepare reports for managers and users who are not
familiar with the codes used in the IRD.

9.1.1 Displaying the Session Status

A user can display the current status of the IRDS,
including:

o The defaults in effect,

o The name of the IRD currently in use.

Chapter 9 - MISCELLANEOUS TOPICS IN THE CORE

Page 80

o The IRD-views and IRD-schema-views to which the user
has access.

Other implementor-defined session information may also
be displayed.

9.1.2 Setting the Session Defaults

A user can set and change the following defaults in
effect for the current IRDS session:

o IRD-view and IRD-schema-view

o Code/decode.

The IRDS implementor may define additional defaults that
can be set and changed using this function.

The user may "save" the session defaults. If saved,
these defaults will be in effect for that user for subse-
quent sessions until the defaults are reset and saved again.

9.2 HELP

The IRDS contains a Help facility that enables a user to
obtain assistance during an interactive session. This
facility allows a user to obtain help on any IRDS function
or on the most recent IRDS error or warning message. While
it is likely that several levels of help will be available
to the IRDS user, the precise nature of the facility will be
determined by the implementor. The user may specify a
function name, error condition, or warning condition for
which help is desired, and the system will provide appropri-
ate explanatory information.

9.3 EXITING THE IRDS

The exit function allows the user to leave the IRDS.
The following occurs upon execution:

o Where appropriate, session statistics are accumulated,
logged, and displayed.

o A message indicating completion of the IRDS session is
provided.

Chapter 9 - MISCELLANEOUS TOPICS IN THE CORE

Page 81

o The user is logged off the IRDS.

9.4 ENTERING OTHER INTERFACES

IRDS implementations containing more than one user
interface (e.g., a Command Language and a Panel Interface)
have facilities for switching from one interface to another.
Thus, a person using the Command Language can switch to the
Panel Interface, and a person using the Panel Interface can
invoke the "command option" to gain access to the Command
Language

.

Chapter 9 - MISCELLANEOUS TOPICS IN THE CORE

Page 82
-

o

Page 83

10. USER INTERFACES

This chapter discusses the two IRDS user interfaces: the
Command Language Interface and the Panel Interface. An IRDS
implementation may include either interface, or both. Both
interfaces provide the full capabilities of the IRDS.

10.1 THE COMMAND LANGUAGE

The Command Language supports user interaction with the
IRDS in both batch and interactive modes. The collection of
commands corresponds closely with the collection of
"functions" discussed elsewhere in this publication. The
Command Language is explained and illustrated in Using the
Information Resource Dictionary System Command Language
(Second Edition) [8]

.

10.2 THE PANEL INTERFACE

The Panel Interface provides the IRDS user with a set of
logical screens (or panels) . The Panel Interface may be
considered "user-friendly," in that it leads the user
through the appropriate panels to accomplish the desired
function. The specified traversal paths are equivalent to
the execution of IRDS commands and all their associated
clauses

.

Although the IRDS Specifications for the Panel Interface
assume that a screen-oriented display exists, they cannot
specify the physical characteristics of either the devic.e or
the screen. Thus, a panel is defined as a "logical screen,"
and it is the implementor's responsibility to map each panel
tree (as defined below) into one or more panels, and to map
each of these panels into one or more physical screens on
the device or devices that the implementor supports.

10.2.1 Structure of the Panel Interface

Each distinct panel has a name, unique among the set of
all panel names, that may be used to reference the panel. A
function also exists that allows an organization to rename
the panels to customize them to the particular environment
in which the IRDS is installed.

Chapter 10 - USER INTERFACES

Page 84

The Panel Interface has an inherent "inter-panel
structure," that defines a default progression of panels
displayed to the user when performing certain IRDS
functions. This default progression may always be over-
ridden by a user by transferring control to another named
panel in the Panel Interface, as long as this does not
affect IRD integrity.

Conceptually, the Home Panel is the topmost panel of the
interface, and it is the panel from which the user is able
to traverse the entire inter-panel structure.

10.2.2 Panel Trees and Panel Areas

The structure of the Panel Interface is defined in terms
of panel trees and panel areas.

A panel tree is defined as a collection of one or more
panels used to represent the semantics of a single function
in the IRDS. There is a one-to-one correspondence between
the set of panel trees and the set of IRDS commands. Each
panel tree has a "root" node, which is the logical beginning
point from which the remainder of the tree may be traversed.

A panel area is a portion of a panel that is always
identified with a particular category of information, and
that deals with a particular aspect of user interaction with
the IRDS. A panel area may, for example, be implemented as
a permanent window within a panel in a fixed physical area,
or it may be displayed using a special key or action code.
At least six specific panel areas exist in the Panel
Interface:

o State Area — The State Area informs the user about the
name of the IRD being accessed, what is being done with
the current panel (e.g., Adding a RECORD; Deleting an
ELEMENT; Creating an entity-list) , or what the IRDS may
be doing (e.g., Updating the IRD; Retrieving
information) . The State Area also displays the system
defaults in effect (e.g., default view;).

o Data Area — The Data Area supports the user in one of
two ways: It displays labels that guide the user during
data entry, showing the placement of the information to
be input; and if the user is retrieving information, it
displays the results of the requested output function.

Chapter 10 - USER INTERFACES

Page 85

o IRD Schema Area —
- The IRD Schema Area is primarily

used during IRD updating operations. The IRD schema
contains information that controls the actions a user
can take. The IRD Schema Area displays the available
options or the limitations in effect. One way in which
this panel area can be used is to flag labels displayed
in the Data Area for which relevant IRD schema infor-
mation exists. Thus, the user can request this IRD
schema information by selecting a flagged item. The
appropriate IRD schema information would then be
displayed in the IRD Schema Area. For example, when a

user is adding an entity, the IRD Schema Area might
successively display:

- The list of all valid entity-types.

- The naming rules for entities of the selected
type.

The names of attribute-types that may be associ-
ated with entities of the selected type.

The allowable values or ranges for attributes
being entered.

o Action Area — The IRDS displays in the Action Area the
options that exist to move from the current panel to
another panel. This panel area also contains the
COMMIT function, by which the user instructs the IRDS
that the specified IRD updates or retrievals are to be
performed.

o Message Area — The IRDS displays in this panel area
any error and warning messages.

o Help Area — Information that the system can provide in
response to a request for "Help" is displayed in the
Help Area. Although the responsibility for the precise
design and wording resides with the implementor, Help
information will include:

- a general overview of the purpose and operation of
each panel

.

information about the actions that will take place
upon selecting any of the operations in the Action
Area of a particular panel.

Chapter 10 - USER INTERFACES

Page 86

information relating to the options available for
transferring to other panels.

specific actions which may be taken to overcome
error conditions displayed in the Message Area.

An example of how the panel trees might be mapped to a
panel structure is given in Figures 7 through 13 . Circles
represent collections of panel trees, ovals drawn with solid
lines represent panel trees that directly correspond to
Command Language commands, and dotted ovals represent
auxiliary panel trees used to help specify IRD and IRD
schema output.

10.2.3 Special Features

There are two features found in the Panel Interface that
provide special capabilities to an IRDS user:

o Saving a panel. The panel on which the user is working
can be saved. If this is done at system log-off, the
last panel worked on (and, in some cases, certain
associated panels) will be saved in their current form
for retrieval at the beginning of the next IRDS
session. An example of this feature might be the case
where a user is creating an entity-list. If the user
requests this option, the IRDS will save the entity-
list panel on which the user was operating and all
associated panels related to the creation of the
entity-list. During the next session, the user may
request the saved panel. At this point, the original
panel, and all associated panels, will be restored to
their former state.

o Marking a panel. At any point during a Panel Interface
session, a user may specify that the current panel is
to be ''marked." This feature allows the user to move
to any other panel that displays IRDS information. The
marked panel remains intact and available to be
referenced directly at any time later in the session.
After marking a panel, movement to a panel that
modifies the IRD or IRD Schema is not allowed, because
such modification could affect the integrity of the
contents of the marked panel.

Chapter 10 - USER INTERFACES

Page 87

The Panel Interface -- Overall Structure

Figure 7

Chapter 10 - USER INTERFACES

Page 88

IRD Maintenance Panel Trees

KEY

O = set of panel trees

= panel tree corresponding to

Command Language command

Figure 8

Chapter 10 - USER INTERFACES

Page 89

IRD Output Panel Trees

Figure 9

Chapter 10 - USER INTERFACES

Page 90

IRD Entity-List Panel Trees

KEY

o = set of panel trees

C 3 = panel tree corresponding to

Command Language command

Figure 10

Chapter 10 USER INTERFACES

Page 91

IRD Schema Maintenance Panel Trees

Figure 11

Chapter 10 - USER INTERFACES

Page 92

IRD Schema Output Panel Tree

KEY

O = panel tree corresponding to

Command Language command

= auxiliary panel tree used

in output panel trees

Figure 12

Chapter 10 - USER INTERFACES

Page 93

IRD-IRD Interface Panel Trees

KEY

o = set of panel trees

= panel tree corresponding to

Command Language command

Figure 13

Chapter 10 - USER INTERFACES

Page 94

i

-

‘

Page 95

11. IRDS MODULES

The IRDS Standard contains specifications for five
Modules, in addition to the Core:

1. Basic Functional Schema (Module 2)

2. IRDS Security (Module 3)

3. Extensible Life-Cycle-Phase Facility (Module 4)

4. Procedure Facility (Module 5)

5. Application Program (Call) Interface (Module 6)

These Modules are discussed in sections 11.1 through 11.5.

Section 11.6 discuses the IRDS Services Interface, a
"low-level" external software interface that is currently
under development.

Section 11.7 discusses several additional dictionary
software features that have been identified as candidates
for development as future Modules.

11.1 BASIC FUNCTIONAL SCHEMA

The Basic Functional Schema, the "starter set" of
entity-types, relationship-types, attribute-types,
attribute-group-types, and other IRD schema descriptors, was
discussed in some detail in Section 2.4, and has been
continually used as a source of examples. Appendix B
contains a more complete discussion.

11.2 IRDS SECURITY

This Module provides facilities that allow an organiza-
tion to restrict access to IRD and IRD schema content and
functionality. There are two levels of access control:

o Global Security, with restrictions and permissions
based on type and partition. Global Security applies
to both the IRD and the IRD schema.

Chapter 11 - IRDS MODULES

Page 96

o Entity-Level Security, based on the "locking" of
individual entities. Entity-level Security applies
only to the IRD.

An operation on the IRD issued by an IRDS user is first
checked by the Global Security facility. If the operation
passes this check, it is then passed to the Entity-level
Security facility for checking. Both levels use the IRD
view concept, which is extended and strengthened over the
view facility defined in the Core IRDS.

11.2.1 Global Security

The general mechanism that implements Global Security
consists of the following:

1. For each authorized user of the IRDS, one IRDS-USER
entity exists. Associated with this entity are
attributes that define the user's level of access
(e.g., permission to use the Command Language Inter-
face, if one exists, and permissible access to the IRD
schema)

.

2. Associated with each IRD-VIEW and IRD-SCHEMA-VIEW
entity are attributes and attribute-groups that define
the permissions and restrictions that apply to all IRDS
users allowed to use the views. These include the
abilities (independently specified for each entity-type
and meta-entity-type) to read, add to, modify, and
delete the entities and meta-entities that comprise the
IRD-view and IRD-schema-view, respectively.

3. Finally, each IRDS-USER entity is linked (via IRDS-
USER-HAS -IRD-VIEW and IRDS-USER-HAS-IRD-SCHEMA-VIEW
relationships) to those IRD-VIEW and IRD-SCHEMA-VIEW
entities representing views that the user can access.

11.2.1.1 Access Permissions to the IRD

Most IRD access permissions are associated with IRD-VIEW
entities, and, for each corresponding IRD-view, the permis-
sions apply to all entities within the view. Each per-
mission consists of several parts, including:

Chapter 11 - IRDS MODULES

Page 97

o The name of the entitv-tvpe for which the permissions
are specified.

o An indicator showing if permission exists to read
entities of the specified type.

o An indicator showing if permission exists to add
entities of the specified type. This permission also
allows relationships to be added

,
provided that the

permission exists for the entity-types of both entities
in the relationship. The ability to copy entities also
can be allowed. In addition, this permission enables
all entities of the specified type to be accessed and
used when building an entity-list.

o An indicator showing if permission exists to delete
entities of the specified type. As above, relation-
ships can be deleted if this permission exists for both
entities of the relationship. If a relationship spans
views, the relationship can be deleted only if the user
has permission to delete the entities in both views.
Read permissions are also granted as above.

o An indicator showing if permission exists to modify the
life-cycle-phase of entities of the specified type.
Since a life-cycle-phase modification creates an entity
in another life-cycle-phase, the user must have both
the phase modification permission and permission to
create entities in the view corresponding to the phase
into which the entity is being moved.

These permissions are stored in the IRD as an IRD-
PERMISSIONS attribute-group. Multiple such permissions can
be assigned to any one IRD-view. A separate attribute
identifies those relationship-types for which no permissions
are granted.

11.2.1.2 Access Permissions to the IRD Schema

In a manner analogous to IRD access permissions, most
IRD schema permissions are associated with IRD-SCHEMA-VIEW
entities. Each permission consists of several parts,
including:

o The name of the meta-entity-type for which permissions
are specified.

Chapter 11 - IRDS MODULES

Page 98

An indicator showing if permission exists to read meta-
entities of the specified type.

An indicator showing if permission exists to add meta-
entities of the specified type.

An indicator showing if permission exists tc modify
meta-entities of the specified type.

An indicator showing if permission exists
meta-entities of the specified type.

to delete

These permissions are stored in the IRD as an IRD-
SCHEMA-PERMISSION attribute-group. Multiple such permis-
sions can be assigned to any one IRD-schema-view. A
separate attribute identifies those meta-relationship-types
for which no permissions are granted.

11.2.2 Entity-Level Security

This facility allows an organization to- assign read or
write privileges for individual entities . Read or write
"locks" are associated with each entity to be secured.
Users attempting to access a secured entity must have an
appropriate read or write "key."

This facility operates as an extension to the Global
Security facility. This means, for example, that even
though a user working in a IRD-view may have access to all
entities of a given type (e.g., all ELEMENTS) in that view,
the organization can use Entity-level Security to specify
that the user must have additional permission to access
certain specific entities (e.g., specific ELEMENTS).

To accomplish Entity-level Security, the facility
introduces the new entity-type ACCESS-CONTROLLER, and a set
of SECURED-BY relationship-types that allow an ACCESS-
CONTROLLER entity to be connected with entities of all other
types (except IRDS-USER, IRD-VIEW, IRD-SCHEMA-VIEW, or
ACCESS-CONTROLLER) . Four new attribute-types are intro-
duced:

o Associated with the ACCESS-CONTROLLER entity-type are
the attribute-types:

READ-LOCK
WRITE-LOCK.

Chapter 11 - IRDS MODULES

Page 99

These locks are 10 digit numbers assigned and con-
trolled bv the IRDS .

o Associated with the IRD-VIEW entity-type are the attri-
bute-types :

READ-KEY
WRITE-KEY.

These keys are also 10 digit numbers.

To secure an entity, a relationship is established
between that entity and an ACCESS-CONTROLLER entity. This
can be done at the time the secured entity is added to the
IRD, or at any later time. The read-lock and write-lock on
the access-controller serve to protect the entity. The
organization can then instruct the IRDS to assign, to
selected views, a read or write key matching the respective
lock on the access-controller.

Suppose that a user, accessing the IRD through a given
IRD-view, attempts to access a protected entity. A write
access will cause the IRDS to attempt to find a write-key (a
WRITE-KEY attribute of the IRD-VIEW entity) that matches the
WRITE-LOCK attribute of the ACCESS-CONTROLLER protecting the
entity being accessed. If such a WRITE-KEY attribute is
found, the operation will be executed. Otherwise, the
entity will be treated as though it did not exist in the
IRD-view. A similar sequence of events takes place if a
read is attempted. However, since write access also
provides read privileges, matches of both read-keys and
write-keys are attempted against read-locks and write-locks,
respectively.

The precise 10 digit number representing a key or a lock
is never visible to an IRDS user.

This mechanism can be illustrated by the following
example:

Suppose that it is decided to restrict access to
the following entities in the IRD-view Payroll-
View:

o A FILE called Payroll-File,

o A RECORD called Payroll-Record.

Chapter 11 - IRDS MODULES

Page 100

o An ELEMENT called Employee-Salary.

The organization connects the three entities to
the ACCESS-CONTROLLER entity Payroll-Controller,
which has a read-lock (IRDS assigned) value of
1234567890, and a write-lock (IRDS assigned) value
of 9876543210. Suppose an IRDS user named Jones
attempts to access one or more of these entities
through the IRD-view named Payroll-View. Jones
will be granted access to these entities if the
required keys have been assigned to Payroll-View.
If only the read-key 1234567890 is available,
Jones is able to read these entities; if the
write-key 9876543210 is also available, Jones will
be allowed to both read and modify any of these
entities. Figure 14 illustrates this example.

11.3 EXTENSIBLE LIFE-CYCLE-PHASE FACILITY

This Module provides facilities for flexible, controlled
life-cycle management of the contents of the IRD. The Core
IRDS, while providing integrity rules and customization
features for life-cycle management of the IRD schema, allows
only limited, uncontrolled documentation level facilities
for the life-cycle management of IRD entities and relation-
ships .

As in the Core, this Module:

o Provides a single controlled life-cycle-phase designed
to be used for entities that describe "operational
data."

o Provides a single archived phase, used to document and
classify entities no longer in use.

o Allows the definition of an arbitrary number of
uncontrolled phases that generally represent "non-
operational" stages of a system life-cycle.

In addition, this Module allows an organization to:

o Organize all the life-cycle-phases into a hierarchy,
within which a given phase could be said to be "greater
than" another. The archived phase is greater than the
controlled phase, which is greater than all

Chapter 11 - IRDS MODULES

Page 101

The Protection of Individual Entities

USER ACCESS PERMISSIONS ACCESS CONTROL OF ENTITIES

Figure 14

Chapter 11 - IRDS MODULES

Page 102

uncontrolled phases. Thus, the "development” phase
might be greater than "design," which in turn is
greater than "specification."

o Use the formally defined concept of "phase sensitivity
structure" to categorize certain relationship-types and
their instances as "phase-related."

o Be able to say that an arbitrary entity "depends on"
another entity, if the two entities are connected by an
appropriate phase-related relationshio. Thus, if the
relationship F INANCE - DEPARTMENT-RES PONS IBLE-FOR-
PAYROLL-SYSTEM exisis, and RESPONSIBLE-FOR is phase-
related, then FINANCE-DEPARTMENT would "depend on"
PAYROLL-SYSTEM.

The basic life-cycle-phase integrity rules can then be
stated as:

1. For an entity being moved to the controlled IRD life-
cycle-phase, each entity that it depends on must
already be in the controlled life-cycle-phase.

2. For an entity being moved to the archived life-cycle-
phase, each entity that it depends on must already be
in the archived life-cycle-phase.

These integrity rules can best be illustrated by an
example:

Suppose that an entity named Payroll-File exists
in the IRD, and that this FILE contains the RECORD
Payroll-Record. This association would be
represented by a FILE-CONTAINS-RECORD relationship
with members Payroll-File and Payroll-Record.

It would be reasonable to expect that if the
Payroll-File is operational, Payroll-Record must
also describe records in an operational system.
Likewise if Payroll-Record contained the field
Employee-Salary, one would expect that, for the
record to be operational, the entity Employee-
Salary (of type ELEMENT) would also have to be
operational

.

Therefore, if the IRD is constructed so as to
assure that FILE-CONTAINS-RECORD and RECORD-
CONTAINS-ELEMENT are phase-related, then Payroll-

Chapter 11 - IRDS MODULES

Page 103

File will depend on Payroll-Record and Payroll-
Record will depend on Employee-Salary. The IRDS
will then enforce the appropriate integrity rules.

11.4 IRDS PROCEDURE FACILITY

This Module provides a mechanism for defining and
executing procedures on the IRDS. The procedures contain
IRDS commands, as well as flow control and assignment
statements. They may also contain substitutable parts whose
values are set at execution time.

An IRDS procedure may be used for a variety of purposes.
It may, for example, be used to store a lengthy (and
frequently used) IRDS command for subsequent use. It may be
used to store a command, with the ability to alter, at
execution time, one or more of the terms of that command.
It may be used to simplify entry of repetitive commands, or
to hold the set of commands necessary to accomplish a
particular task.

It should be noted that the Procedure Module requires
the presence of the IRDS Command Language Interface.

11.4.1 Using IRDS Procedures

The Procedure facility defines the ENTITY-TYPE meta-
entity IRDS-PROCEDURE . Instances of this entity-type (which
are created and maintained using the standard IRD
maintenance functions) represent IRDS procedures. Attri-
butes of type DEFINITION, associated with IRDS-PROCEDUREs

,

are used to store the statements of the procedure.

IRDS procedures are executed by issuing a Run IRDS
Procedure statement. Arguments may be passed to the
procedure to set run-time options and values.

11.4.2 IRDS Procedure Statements

The following are the allowable types of statements that
may be contained within a procedure:

o IRDS Commands. These include all the commands speci-
fied in the Core IRDS.

Chapter 11 - IRDS MODULES

Page 104

o Assignment Statements, to assign values to variables.

o Arg Statements, to retrieve the values of the arguments
passed to the procedures and to specify the names by
which the arguments will be identified within the
procedure.

o Do Statements, to group instructions together and,
optionally, to execute them repetitively.

o If Statements, to conditionally execute a procedure
statement or group of statements.

o Case Statements, to conditionally execute one of
several alternate statements

.

o Nop Statements, which have no effect.

o Return Statements, to unconditionally terminate
execution of a procedure.

These statements are supported by a collection of procedure
functions and rules for constructing statements.

11.4.3 Example of an IRDS Procedure

The following example illustrates the passing of
parameters to set run-time options. It, and other examples,
can be found in Annex 5B of Module 5 of the IRDS Specifi-
cations .

Defining the procedure:

ADD ENTITY Out-T-Elem
ENTITY-TYPE = IRDS-PROCEDURE
DESCRIPTIVE-NAME = Output Test Elements
WITH ATTRIBUTES
DESCRIPTION =
"Procedure to output highest or specified revision

of elements in Test Phase."
DEFINITION =
" VIEW (IRD, Div-101)
/* Set revision-number to passed value */
REVNO = ARG (1)

?

/* If no passed value, use highest revision */
IF ARG (1,0) THEN REVNO = HIGHEST;

Chapter 11 - IRDS MODULES

Page 105

OUTPUT IRD SELECT ALL ENTITIES WHERE
ENTITY-TYPE = ELEMENT
AND REVISION = REVNO
AND PHASE = TEST

SHOW ALL;
RETURN; " ;

Executing the procedure:

RUN IRDS-PROCEDURE Out-T-Elem PASSING 5;

would be equivalent to executing the IRDS command

OUTPUT IRD
SELECT ALL ENTITIES WHERE

ENTITY-TYPE = ELEMENT
AND REVISION = 5

AND PHASE = TEST
SHOW ALL;

11.5 APPLICATION PROGRAM (CALL) INTERFACE

An implementation of the specifications of this Module
will provide an interface from a standard programming
language to the IRDS. An organization could develop
software in, for example, COBOL, FORTRAN, or PL/I to access
the data in the IRD.

The interface is accomplished by using the Call feature
of the programming language. The IRDS is thus treated by
the application as a subroutine. Parameters are passed
through the Call, including:

o A quoted string of characters denoting a syntactically
correct IRDS command or sequence of commands.

o A parameter for receiving any IRD or IRD schema output
generated by the operation.

o A parameter for receiving any error condition returned
by the IRDS. The application must decode the condition
to provide the user with a meaningful error message.

This interface enforces all IRDS integrity and security
rules. To use this Module, the Command Language Interface
must be present.

Chapter 11 - IRDS MODULES

Page 106

11.6 IRDS SERVICES INTERFACE

This Module, currently under development, defines a
specific protocol for an interface through which any
software external to an IRDS can access the IRD and IRD
schema. It provides the means to construct an environment
in which the IRDS can be truly "active.”

The Services Interface uses data structures that are
more basic than those used by the Command Language or Panel
Interfaces, and is more flexible and potentially much more
efficient (if more complicated) than the Application Program
Interface. Examples of external software that could make
use of the provided services are:

o Programming language compilers directly extracting data
definitions

.

o SQL [14] and NDL [15] database management systems main-
taining database definitions.

o Information locator/retrieval systems.

o Text editors.

o Report writers.

o Open System Interconnection (OSI) systems maintaining
directory information.

The design of the Services Interface was influenced by
certain objectives and constraints, some of which differed
from those of the Application Program Interface. These
objectives and constraints include:

o Complete IRDS Functionality, as defined by the Core
IRDS and the other IRDS Modules. No limits are then
placed on the types of applications that the Services
Interface can support, and IRDS implementors could
conceivably write their Command and Panel interfaces on
top of the Services Interface, thus reducing the
overall implementation effort.

o Transactional Processing, so that when the IRDS is used
actively through the Services Interface, the system
should provide a recovery mechanism to protect the

Chapter 11 - IRDS MODULES

Page 107

integrity of the IRD and IRD schema from system or
hardware failure.

o The use of Normalized Data Structures, so that enti-
ties, relationships, and attributes (and meta-entities,
meta-relationships, and meta-attributes) are trans-
ferred across the interface one occurrence at a time.

o Subschema Level Processing, whereby subschemas of the
IRD schema can be defined to correspond to particular
host applications, with the Services Interface defining
new supporting security entity-types to help provide
the host application with a level of isolation from
changes to the IRD schema.

o Native Language Interface, whereby facilities are
specified in terms of external procedures that can be
invoked by any language capable of invoking an external
subroutine, rather than in terms of a special purpose
imbedded language.

o Set Oriented Processing, similar to that in SQL,
whereby "cursors" are opened and closed, and are used
to establish position on a member of a set (of meta-
entities, meta-relationships, plural meta-attributes,
entities, relationships, and plural attributes)

.

o Host-Controlled Error Message Format, whereby all
diagnostic messages generated by activity against the
IRDS are placed in a buffer by the interface and are
returned to the host application on request.

The specification of an external software interface of
this type must include three things:

1. An explicit definition of the data content of the IRDS
as seen via the interface .

2. The data definitions for the various parameters used by
the interface.

3. The definition of the services provided by the Module
and the concrete protocol used in invoking them.

Chapter 11 - IRDS MODULES

Page 108

11.6.1
Definition of the IRDS Data Content

The Services Interface, which is a "low-level" interface
to the IRDS, needs a more detailed and structured descrip-
tion of the IRDS data content than does the Command Language
Interface. For the purpose of the Services Interface , this
Module presents the data content definition as a set of SQL
tables. The use of SQL DDL for this purpose does not imply
that a compliant IRDS must be implemented as an SQL appli-
cation. Nor does it imply that compliant implementations
that are based in SQL must use the specified table defini-
tions. SQL DDL was chosen as the definition language for
the IRDS data content because it is tl e most widely accepted
and understood database definition language.11.6.2

The Interface Data Structures

The Services Interface specifies the data constants and
types that can be used to create the various parameters used
by the Module. These includes

o Basic Data Constants, such as name length limits,
entity classes, attribute formats, life-cycle-phases,
etc.

o Basic Data Types, such as date and time, name types,
control identifiers, etc.

o IRD Schema Object Data Types, including the key and
record types for meta-entities, meta-relationships, and
meta-attributes

.

o IRD Object Data Types, including the key and record
types for entities, relationships, and attributes.

11.6.3

The Interface Protocols

The Services Interface specifies a collection of
services (i.e., low-level "commands") used to access the
IRDS, and includes the concrete protocol for invoking them.
These services include;

o Operational Services, which are used to control the
initiation and termination of processes. The services
are Open, Close, Commit, and Rollback.

Chapter 11 - IRDS MODULES

Page 109

o IRD Schema Services, which are used to add, delete,
modify, and retrieve objects in the IRD schema.

o IRD Services, which are used to add, delete, modify,
and retrieve objects in the IRD.

These services resemble limited, more navigational
versions of analogous IRDS Commands. For example, instead
of a powerful General Output command, there are separate
Retrieve Entity, Retrieve Relationship, and Retrieve
Attribute services, each utilizing a collection of required
parameters, and each returning simply the "next" object
satisfying the given criteria.

The Module's data structures and protocols are presented
using ISO Standard Pascal [16]. Pascal was chosen because
of its wide recognition and its ability to clearly define
data types and procedure parameter types. The Services
Interface Module does have appendices containing equivalent
data structure definitions and calling sequences in COBOL,
PL/ I, FORTRAN, C, and Ada.

11.7 POTENTIAL MODULES

Technical Committee X3H4 and participants at workshops
sponsored by the Institute for Computer Sciences and
Technology of the National Bureau of Standards have iden-
tified several modules that would enhance the IRDS capabili-
ties. These potential modules are discussed in the follow-
ing sections.

11.7.1 Data Management Support Module

This module will provide additional support for: (1)
standardization of data elements? and (2) the location of
data in an IRD when a user does not know the appropriate
access-name or descriptive-name. Support for data element
standardization must occur throughout the standardization
life-cycle. Once an ELEMENT is identified during the
analysis and design phases, facilities will be required to
assure that:

o The name associated with the ELEMENT is used consist-
ently throughout the life-cycle. For example, when an
ELEMENT is referred to in a programming or database
language, only the standard name applicable to that

Chapter 11 - IRDS MODULES

Page 110

environment should be used. This requires enforcement
of usage based on the ALTERNATE-NAME and ALTERNATE-
NAME-CONTEXT attributes of the ELEMENT.

o The usage of the ELEMENT is proper for the given
context. That is, just as the proper name must be
used, the proper characteristics must also be used.
For example, the attribute-types BIT-STRING, CHARACTER-
STRING, FIXED-POINT, and FLOAT that are used to
describe the characteristics of ELEMENTS must be
checked

.

o During the operational phase, validation criteria
associated with the standard data element and the
variety of usage environments for the standard must be
controlled and available to the facilities that perform
validation. For example, if a user linked a data entry
screen to a validation facility, the validation
criteria associated with the elements entered on the
screen should come from the IRD.

A requirement also exists to verify that any subset of a
group of standard data elements uses the appropriate
validation criteria. For example, "Countries of the World"
would be associated with a table of codes and names repre-
senting all of the countries of the world. A subset of
these might be "Countries of the Western Hemisphere." In
this case, the set of legal codes for the Western Hemisphere
should be a subset of the standard codes for countries of
the world.

The second major function of this module will increase
the support for indexing or classifying entities in an IRD.
An attribute-type, CLASSIFICATION, currently appears in the
Basic Functional Schema. A series of keywords can appear as
values of this attribute-type. Many organizations want to
index entities with specific keywords as well as with
broader or more generic keywords to help its users locate
data when they do not know specific entity names. We expect
that this module will specify "thesaurus" software functions
or specify an interface to such software to help organiza-
tions resolve synonym and homonym problems and develop a
"controlled" or consistent keyword vocabulary.

For example, keywords for Finance-Department might be
Accounting and Payroll. A user could locate the Finance-
Department entity by specifying Accounting or Payroll.

Chapter 11 - IRDS MODULES

Page 111

In addition, support for the development and manipu-
lation of data structures to facilitate organizational
modeling and logical and physical database design may be
provided in this module or in another module.

11.7.2 Support of Distributed Databases and Applications
Module

A module for these environments will include extensions
to the IRD schema to support network directory functions.
These facilities will document what exists in the network,
what the dependencies are between processes and data ±n the
network, and where in the network the processes and data
reside. This module also must support or help support all
traffic management within the network.

Other special features of this module might include:

o Mappings between database structures and mappings among
database languages when the network allows processing
across heterogeneous database systems.

o Scheduling information with regard to query and
application processing.

11.7.3 Life-Cvcle and Configuration Management Support
Module

Specifications for this module might include:

o Integration of the Life-Cycle-Phase and Quality-
Indicator facilities. Such integration would allow
metrics to be associated with IRD entities based on
their life-cycle-phase and quality-indicator values.
This combination could then be used to determine the
"suitability" of moving entities to another phase.

o A facility to:

establish and manage configurations (i.e.,
treating assemblages of processes and data as a
structure)

.

establish baselines associated with life-cycle-
phases, and rules to control movement across these
baselines, in both directions.

Chapter 11 - IRDS MODULES

Page 112

11.7.4 N-arv Relationship Module

The Core IRDS is specified in terms of binary relation-
ships. That is, the description of the IRD schema, the IRD,
and all associated functions are specified in terms of
relationships and meta-relationships with precisely two
members. This provides a model appropriate for use in a
wide range of user environments. This model, however, does
not readily support certain more complex environments such
as those involving control flow, or some aspects of program-
ming and database languages structure semantics.

X3H4 recognized the need for an n-ary module for some
users of the IRDS and unanimously adopted the following
statements regarding development of the specifications for
such a module:

o An n-ary module is not included in this Standard. It
is the intent of X3H4 to continue the development of a
module with n-ary capability (n>2) for a future release
of the Standard.

o X3H4 recognizes that situations exist where the lack of
a n-ary facility may inhibit transportability and may
impact some users.

o It is felt that it would not be in the best interest of
the majority of potential users to hold back the
release of the Standard until a module with n-ary (n>2)
capability is specified.

It is intended that specifications for this module will
support n-ary schema extensibility and will include the
schema descriptors necessary to describe an n-ary schema.

Chapter 11 - IRDS MODULES

Page 113

APPENDIX A: THE MINIMAL SCHEMA

Appendix A describes the IRDS Minimal Schema and its
structural characteristics. The Minimal Schema consists of
those meta-entities, meta-relationships, meta-attributes,
meta-attribute-groups, and other IRD schema descriptors
necessary to establish controls over the IRD Schema and the
IRD. The Minimal Schema is included in every implementation
of the IRDS.

A. 1 ATTRIBUTE-TYPES AND ENTITY-TYPES

This section presents the attribute-types and attribute-
group-types associated with each entity-type. The following
are the entity-types in the Minimal Schema:

o IRDS-USER (DUSER)

o IRD-VIEW (DVIEW)

o IRD-SCHEMA-VIEW (SVIEW)

The following table displays the attribute-types and
attribute-group-types associated with the entity-types
identified above. Attribute-group-types can be identified
by the existence of their component attribute-types, which
are indented and immediately follow the attribute-group-type
name. At the intersection of a row and column, S denotes
that an entity of the given type can have at most a single
attribute of the given type.

(ATTRIBUTE-GROUP-TYPE)
and

ATTRIBUTE-TYPE

ENTITY-TYPE

DUSER DVIEW SVIEW

ADDED-BY
(DATE-TIME-ADDED)
SYSTEM-DATE
SYSTEM-TIME

(DATE-TIME-LAST-MODIFIED)
SYSTEM-DATE
SYSTEM-TIME

IRD-PARTITION-NAME
LAST-MODIFIED-BY
NUMBER-OF-TIMES-MODIFIED
IRD-SCHEMA-PHASE-NAME

S
S

S

s
s

s
s

s

s
s
s

s

s

s

s
s
s

APPENDIX A: THE MINIMAL SCHEMA

Page 114

A. 2 RELATIONSHIP—CLASS—TYPES AND RELATIONSHIP-TYPES

The Minimal Schema contains the single relationship-
class-type HAS, with inverse-name OF.

The Minimal Schema contains the two relationship-types:

o IRDS-USER-HAS-IRD-VIEW, with inverse-name IRD-VIEW-OF-
IRDS-USER, first member entity-type IRDS-USER, and
second member entity-type IRD-VIEW.

o IRDS-USER-H^S-IRD-SCHEMA-VIEW, with inverse-, tame IRD-
SCHEMA-VIEW-OF- IRDS-USER, first member entity-type
IRDS-USER, and second member entity-type IRD-SCHEMA-
VIEW.

A. 3 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES

The relationship-types IRDS-USER-HAS-IRD-VIEW and IRDS-
USER-HAS-IRD-SCHEMA-VIEW are associated with the attribute-
type DEFAULT-VIEW, which can have, at most, a single
attribute per relationship. The Minimal Schema does not
contain any attribute-group-types associated with any
relationship-type

.

A. 4 ATTRIBUTE-TYPE-VALIDATION-DATA META-ENTITIES

The Minimal Schema contains one attribute-type-
validation-data meta-entity: YES-OR-NO-VALUE , used to
validate that an attribute is either YES or NO.

A. 5 ATTRIBUTE-TYPE-VALIDATION-PROCEDURE META-ENTITIES

The Minimal Schema contains the following two attribute-
type-validation-procedures :

o RANGE-VALIDATION, used to restrict the attributes of a
given attribute-type to a specified range of values.

o VALUE-VALIDATION, used to restrict the attributes of a
given attribute-type to a predefined set of values.

APPENDIX A: THE MINIMAL SCHEMA

Page 115

A. 6 IRD-PARTITION META-ENTITIES

The Minimal Schema contains four IRD-partition meta-
entities. These are:

o UNCONTROLLED-LIFE-CYCLE-PHASE, the IRD-partition in
which entities may be added and modified.

o CONTROLLED-LIFE-CYCLE-PHASE , the IRD-partition into
which are placed entities used in an operational
environment.

o ARCHIVED-LIFE-CYCLE-PHASE, the IRD-partition into which
are placed entities no longer in use.

o SECURITY, the IRD-partition used for those entities of
type IRDS-USER.

A. 7 IRDS-DEFAULTS META-ENTITIES

There is one IRDS-DEFAULTS meta-entity in the Minimal
Schema. This meta-entity, called EXISTING-IRDS-DEFAULTS , is
used to establish organizational defaults for assigned name-
lengths, for the number of occurrences for entities of a
particular type, and for attribute-lengths.

A. 8 IRDS-LIMITS META-ENTITIES

There is one IRDS-LIMITS meta-entity in the Minimal
Schema. This meta-entity, called EXISTING-IRDS-LIMITS , is
used to establish organization defined limits and initial
values for name-lengths, dates and times, and values of
other meta-attribute-types.

A. 9 IRDS-RESERVED-NAMES META-ENTITIES

The Minimal Schema contains one IRDS-RESERVED-NAMES
meta-entity, called STANDARD-RESERVED-NAMES. This meta-
entity specifies the assigned-access-names of those entities
and meta-entities that are required by the IRDS Specifi-
cations.

APPENDIX A: THE MINIMAL SCHEMA

Page 116

A. 10 NAMES META-ENTITIES

The Minimal Schema contains one NAMES meta-entity,
called NAMING-RULES. This meta-entity contains a descrip-
tion of the rules for naming entities and the rules for
naming meta-entities. It is intended for user document-
ation.

APPENDIX A: THE MINIMAL SCHEMA

Page 117

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Appendix B describes the Basic Functional Schema and its
structural characteristics. The Basic Functional Schema is
the "starter set" of entity-types, relationship-types,
attribute-types, attribute-group-types, and other IRD schema
descriptors used to support intra- and inter-organizational
communication about information resources. While the Basic
Functional Schema satisfies the requirements of many IRDS
environments, an organization can customize its IRD Schema
using IRD schema extensibility, as discussed in previous
chapters

.

B.l ATTRIBUTE-TYPES AND ENTITY-TYPES

In this section, the attribute-types and attribute-
group-types associated with each entity-type are given. The
following are the entity-types in the Basic Functional
Schema:

o USER (USR)

o SYSTEM (SYS)

o PROGRAM (PGM)

o MODULE (MDL)

o FILE (FIL)

o DOCUMENT (DOC)

o RECORD (REC)

o ELEMENT (ELE)

The following table presents the attribute-types and
attribute-group-types associated with the entity-types
listed above. Attribute-group-types can be identified by
the existence of their component attribute-types, which are
indented and immediately follow the attribute-group-type
name. At the intersection of a row and column, the follow-
ing denote that an entity of the given type:

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 118

S Can have at most a single attribute of the given type.

P Can have multiple (plural) attributes of the given
type.

Those attribute-types designated with a suffix of
" (M.S.) V< are defined in the Minimal Schema.

(ATTRIBUTE-GROUP-TYPE)
ENTITY-TYPE

and
ATTRIBUTE-TYPE USR SYS PGM MDL FIL DOC REC ELE

ADDED-BY (M.S.)

(ALLOWABLE-RANGE

)

LOW-OF-RANGE
HIGH-OF-RANGE

ALLOWABLE-VALUE

CLASSIFICATION

S S S S S S S S

P

% P

P P P P P P P P

CODE-LIST-LOCATION P

COMMENTS S S S S S S S S

DATA-CLASS S

(DATE-TIME-ADDED) (M.S.

)

SYSTEM-DATE
SYSTEM-TIME

S S S S S S S s

(DATE-TIME-LAST-
MODIFIED) (M.S.)

SYSTEM-DATE
SYSTEM-TIME

S S S S S S S S

DESCRIPTION S S S S S S S s

DOCUMENT-CATEGORY S

(DURATION) S S S

DURATION-VALUE
DURATION-TYPE

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

ENTITY-TYPE

Page 119

(ATTRIBUTE-GROUP-TYPE

)

and
ATTRIBUTE-TYPE

EXTERNAL-SECURITY

(IDENTIFICATION-NAMES

)

ALTERNATE-NAME
ALTERNATE-NAME-CONTEXT

LAST-MODIFIED-BY (M.S.)

LENGTH

LOCATION

NUMBER-OF-LINES-OF-CODE

NUMBER-OF-TIMES-
MODIFIED (M.S.)

NUMBER-OF-RECORDS

PRECISION

RECORD-CATEGORY

SCALE

SYSTEM-CATEGORY

USAGE

USR SYS PGM MDL FIL DOC REC ELE

S S S S S s

s

p p p

s

p p

s

p

s s s s s s

s

s s

s

s

s

s

p

B . 2 RELATIONSHIP-CLASS-TYPES AND RELATIONSHIP-TYPES

This section presents the relationship-class-types and
relationship-types in the Basic Functional Schema. The
relationship-class-types, where they exist, are provided in
parentheses as headers for the relationship-types to which
they apply. The inverse-name (which allows the specifica-
tion of the member entity-types in reverse order) and
substitute inverse-name are given for each relationship-
class-type. Where no relationship-class-type applies to a
particular relationship-type, its inverse-name and substi-
tute inverse-name are given directly.

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 120

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE
SUBSTITUTE-

NAME INVERSE-NAME
SUBSTITUTE-

INVERSE-NAME

(CONTAINS)

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS -PROGRAM
SYSTEM-CONTAINS-MODULE

PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE

MODULE-CONTAINS-MODULE

FILE-CONTAINS-FILE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT

DOCUMENT-CONTAINS

-

DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS

-

ELEMENT

CON CONTAINED—IN

SYS-CON-SYS
SYS-CON-PGM
SYS-CON-MDL

PGM-CON-PGM
PGM-CON-MDL

MDL-CON-MDL

FIL-CON-FIL
FIL-CON-DOC
FIL-CON-REC
FIL-CON-ELE

DOC-CON-DOC

DOC-CON-REC
DOC-CON-ELE

RECORD-CONTAINS-RECORD REC-CON-REC
RECORD-CONTAINS-ELEMENT REC-CON-ELE

ELEMENT-CONTAINS -ELEMENT ELE-CON-ELE

CON-IN

(PROCESSES)

USER-PROCESSES-FILE
USER-PROCESSES-DOCUMENT
USER-PROCESSES-RECORD
USER-PROCESSES-ELEMENT

SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES-

DOCUMENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES-ELEMENT
PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES

-

DOCUMENT

PR PROCESSED-BY

USR-PR-FIL
USR-PR-DOC
USR-PR-REC
USR-PR-ELE

SYS-PR-FIL
SYS-PR-DOC

SYS-PR-REC
SYS-PR-ELE
PGM-PR-FIL
PGM-PR-DOC

PR-BY

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 121

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE
SUBSTITUTE- SUBSTITUTE-

NAME INVERSE-NAME INVERSE-NAME

PROGRAM-PROCESSES-RECORD PGM-PR-REC
PROGRAM-PROCESSES

-

ELEMENT
PGM-PR-ELE

MODULE-PROCESSES-FILE
MODULE-PROCESSES-

MDL-PR-FIL
MDL-PR-DOC

DOCUMENT
MODULE-PROCESSES-RECORD MDL-PR-REC
MODULE-PROCESSES-ELEMENT MDL-PR-ELE

(RESPONSIBLE-FOR) R-FOR RESPONSIBILITY-OF R-OF

USER-RESPONS IBLE-FOR-
SYSTEM

USR-R-FOR-SYS

USER-RESPONSIBLE-FOR-
PROGRAM

USR-R-FOR-PGM

USER-RESPONS IBLE-FOR-
MODULE

USR-R-FOR-MDL

USER-RESPONS IBLE-FOR-
FILE

USR-R-FOR-FIL

USER-RESPONS IBLE-FOR-
DOCUMENT

USR-R-FOR-DOC

USER-RESPONSIBLE-FOR-
RECORD

USR-R-FOR-REC

USER-RESPONSIBLE-FOR-
ELEMENT

USR-R-FOR-ELE

(RUNS) RUNS RUN-BY RUN-BY

USER-RUNS-SYSTEM
USER-RUNS -PROGRAM
USER-RUNS-MODULE

USR-RUNS-SYS
USR-RUNS-PGM
USR-RUNS-MDL

(GOES-TO) TO COMES-FROM FR

SYSTEM-GOES-TO-SYSTEM SYS-TO-SYS

PROGRAM-GOES-TO-
PROGRAM

PGM-TO-PGM

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 122

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE
SUBSTITUTE- SUBSTITUTE-

NAME INVERSE-NAME INVERSE-NAME

MODULE-GOES-TO-MODULE MDL-TO-MDL

(DERIVED-FROM)

DOCUMENT-DERIVED-FROM-
FILE

DOCUMENT-DERIVED-FROM-
DOCUMENT

DOCUMENT-DERIVED-FROM-
RECORD

D—FR PRODUCES

DOC-D-FR-FIL

DOC-D-FR-DOC

DOC-D-FR-REC

PRD

ELEMENT-DERIVED-FROM-
FILE

ELEMENT-DERIVED-FROM-
DOCUMENT

ELEMENT-DERIVED-FROM-
RECORD

ELEMENT-DERIVED-FROM-
ELEMENT

ELE-D-FR-FIL

ELE-D-FR-DOC

ELE-D-FR-REC

ELE-D-FR-ELE

FILE-DERIVED-FROM- FXL-D-FR-DOC
DOCUMENT

FILE-DERIVED-FROM- FIL-D-FR-FIL
FILE

RECORD-DERIVED-FROM- REC-D-FR-DOC
DOCUMENT

RECORD-DERIVED-FROM- REC-D-FR-FIL
FILE

RECORD-DERIVED-FROM REC-D-FR-REC
RECORD

(CALLS) CLS

PROGRAM-CALLS-PROGRAM PGM-CLS“PGM
PROGRAM-CALLS-MODULE PGM-CLS-MDL

CALLED-BY CLD-BY

MODULE-CALLS-MODULE MDL-CLS-MDL

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 123

(RELATIONSHIP-CLASS-TYPE)
and SUBSTITUTE-

RELATIONSHIP-TYPE NAME INVERSE-NAME
SUBSTITUTE-
INVERSE-NAME

ELEMENT-STANDARD-FOR-
ELEMENT

ELE-ST-FOR- ELEMENT-STANDARD

-

ELE OF-ELEMENT
ELE-ST-
OF-ELE

FILE-HAS-SORT-KEY-
ELEMENT

FIL-H-S-K-
ELE

ELEMENT-SORT-KEY-
OF-FILE

ELE-S-K-
OF-FIL

FILE-HAS-ACCESS-KEY-
ELEMENT

FIL-H-A-K-
ELE

ELEMENT-ACCESS-KEY-
OF-FILE

ELE-A-K-
OF-FIL

The last three relationship-types are not members of a
relationship-class, and so are listed separately.

B. 3 ENTITY-TYPES AND RELATIONSHIP-TYPES

The following table depicts the entity-types participa-
ting as members of the relationship-types in the Basic
Functional Schema. The following notation is used to denote
that the entity-type is:

1 The first member of the relationship-type.

2 The second member of the relationship-type.

R Both the first and second member of the relationship-
type (i.e., the relationship is recursive).

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

(CONTAINS)

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM
SYSTEM-CONTAINS-MODULE

R
1 2

1 . 2

PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE

R
1 2

MODULE-CONTAINS-MODULE R

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 124

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

FILE-CONTAINS-FILE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT

12 ..
1 . 2 .

1 . . 2

DOCUMENT-CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS-ELEMENT

R
1 2

1 . 2

RECORD-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT

R
1 2

ELEMENT-CONTAINS-ELEMENT R

(PROCESSES)

USER-PROCESSES-FILE 1

USER-PROCESSES-DOCUMENT 1

USER-PROCESSES-RECORD 1

USER-PROCESSES-ELEMENT 1

2

2

SYSTEM-PROCESSES-FILE . 1

SYSTEM-PROCESSES-DOCUMENT . 1

SYSTEM-PROCESSES-RECORD . 1

SYSTEM-PROCESSES-ELEMENT . 1

2

2

PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES-ELEMENT

2

2

MODULE-PROCESSES-FILE
MODULE-PROCESSES-DOCXJMENT
MODULE-PROCESSES-RECORD
MODULE-PROCESSES-rELEMENT

12 ...
1 . 2 ..
1 . . 2

1 . . . 2

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 125

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

(RESPONSIBLE-FOR)

USER-RESPONS IBLE-FOR-SYSTEM 1

USER-RESPONSIBLE-FOR-PROGRAM 1

USER-RESPONSIBLE-FOR-MODULE 1

USER-RESPONSIBLE-FOR-FILE 1

USER-RESPONSIBLE-FOR-DOCUMENT 1

USER-RESPONSIBLE-FOR-RECORD 1

USER-RESPONSIBLE-FOR-ELEMENT 1

(RUNS)

USER-RUNS-SYSTEM 1

USER-RUNS-PROGRAM 1

USER-RUNS-MODULE 1

(GOES-TO)

SYSTEM-GOES-TO-SYSTEM

PROGRAM-GOES-TO-PROGRAM

MODULE-GOES-TO-MODULE

(DERIVED-FROM)

FILE-DERIVED-FROM-FILE
FILE-DERIVED-FROM-DOCUMENT

DOCUMENT-DERIVED-FROM-FILE
DOCUMENT-DERIVED-FROM-DOCUMENT
DOCUMENT-DERIVED-FROM-RECORD

RECORD-DERIVED-FROM-DOCUMENT
RECORD-DERIVED-FROM-FILE
RECORD-DERIVED-FROM-RECORD

APPENDIX

2 • • • •

• 2 • • •

• © 2 • •

e © © 2 •

© © • • 2

• • • e c 2

• • • • • • 2

2 • o • • • «

• 2 • • © • •

• © 2 • o © •

R © • • © • •

• R • • • • •

• • R • • • •

• • R © ©

e • 1 2 •

• e 2 1 •

• o © R •

© • • 1 2

• • c 2 1

• • 2 • 1

• • c R

: THE BASIC FUNCTIONAL SCHEMA

Page 126

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

ELEMENT-DERIVED-FROM-FILE
ELEMENT-DERIVED-FROM-DOCUMENT
ELEMENT-DERIVED-FROM-RECORD
ELEMENT-DERIVED-FROM-ELEMENT

2 . . 1
2 . 1

2 1

« e .

(CALLS)

PROGRAM-CALLS-PROGRAM
PROGRAM-CALLS-MODULE

MODULE-CALLS-MODULE

ELEMENT-STANDARD-FOR-ELEMENT

FILE-HAS-SORT-KEY-ELEMENT

FILE-HAS-ACCESS-KEY-ELEMENT

1 2

The last three relationship-types are not members of a
relationship-class, and so are listed separately.

B.4 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES

The following are the attribute-types associated with
the relationship-class-types and relationship-types in the
Basic Functional Schema:

o The relationship-types

- SYSTEM-PROCESSES“FILE
- PROGRAM-PROCESSES-FILE
- MODULE-PROCESSES-FILE

have the single-valued attribute-type ACCESS-METHOD
associated with them.

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 127

o All PROCESSES and RUNS relationship-types have the
single-valued attribute-type FREQUENCY associated with
them.

o The relationship-type RECORD-CONTAINS-ELEMENT has the
single-valued attribute- type RELATIVE-POSITION
associated with it.

APPENDIX B: THE BASIC FUNCTIONAL SCHEMA

Page 128

'

*

'

.

Page 129

INDEX

42-44
, 56, 59-62, 66

,

67, 70-72, 109
22, 24, 47, 110, 119

Conformance
Core . . .

Access-name

American National Standard iii, 2

American National Standards Institute 1

ANSI 1

Application Program Interface . . . 7, 32 , 33
, 95, 105, 106

Attribute-group-type . 14, 15, 27, 52, 56, 58, 113, 117-119
Attribute-type . . . 12, 14, 15, 18, 21, 27, 52, 53, 56, 58,

66, 79, 110, 113, 114, 118, 119, 126, 127
Basic Functional Schema . 15, 18-22, 24, 31, 35, 51-53, 56,

75, 95, 110, 117, 119, 123, 126
Code 4, 26, 29, 52, 79, 84, 118, 119
Command Language . .4, 7-9, 11, 23, 25, 26, 33, 41, 43, 46,

71, 81, 83, 86, 96, 103, 105, 106, 108
. 8

6, 7, 15, 25, 29-32, 35, 71-76, 79, 95, 96, 100,
103, 106, 112

Data dictionary system’. iii, 1, 3, 6, 9

Decode 79, 80, 105
Descriptive-name . . . 22, 23, 26, 29, 35-37, 39, 40, 42-44,

61, 71, 72, 104, 109
Entity-level security 32, 96, 98
Entity-list 26, 27, 37, 41, 46-50, 68, 84, 86, 97
Entity-type . . 15, 21, 23, 26, 27, 29, 32, 35, 36, 42, 43,

52, 53, 56, 58, 62, 66, 75, 77, 96-99, 103-105,
113, 114, 117-119, 123

Export IRD 68
Extensibility 18, 27, 112, 117
Federal Information Processing Standard iii, 1-3, 6

FIPS iii, 1-3, 6

General output . 25, 26, 41, 43, 109
Global security 32, 95, 96, 98
ICST 1-7, 109
Impact-of-change 41, 44
Information Resource Dictionary schema 14
Information Resource Dictionary System . . . iii, 1, 2, 4-9,

11, 12, 15, 18, 21-33, 35-37, 40, 41, 43, 44,
46, 48, 50, 52, 53, 58-62, 65, 67-77, 79-81,
83-86, 95, 96, 98-100, 103-109, 112-115, 117

Institute for Computer Sciences and Technology . . 1, 2, 109
International Organization for Standardization . iii, 2, 7,

28, 68, 109
IRD output 41, 79

INDEX

Page 130

IRD schema . 14, 15, 18, 25, 27-33, 35, 36, 38, 40, 51, 53,
56, 58, 60-63, 65-69, 72, 73-77, 85, 86, 95-97,

100, 105-107, 109, 111-113, 117
IRD-IRD Interface 7, 22, 28, 65, 67, 68

export IRD 68
IRD schema comparison 69
IRD schema compatibility . 28, 67-69

IRD-schema-view 18, 74, 76, 77, 79, 80, 96-98, 114
IRD-view 18, 30, 73, 76, 77, 79, 96-100, 114
IRDS . . . iii , 1, 2, 4-9, 11, 12, 15, 18, 21-33, 35-37, 40,

41, 43, 44, 46, 48, 50, 52, 53, 58-62, 65,
67-77, 79-81, 83-86, 95, 96, 98-100, 103-109,

112-115, 117
IRDS Security 7, 31, 95

entity-level security 32, 96, 98
global security 32, 95, 96, 98

IRDS Specifications . iii, 2, 6, 9, 15, 18, 30, 68 , 74, 79,
83 , 104, 115

ISO iii , 2, 7 , 28 , 68, 109
Life-cycle-phase . . 29-32, 42, 58, 69, 72-76, 95, 97, 100,

102, 111, 115
Meta-attribute . . . 27, 51, 53, 56, 58, 60-62, 66, 76, 113,

115
Meta-attribute-group 51, 56, 58
Meta-entity . . . 27, 28, 51-53, 56, 58-63, 67, 68, 71-76,

96-98, 103, 107, 108, 113-116
Meta-relationship 51-53, 58, 60, 61, 63, 98

. . 15, 18, 28, 35, 51, 56, 58, 69, 73, 75,
77, 113-116, 118

Minimal Schema

Names
access-name 22-24, 26, 29, 35-40, 42-44, 56, 59-62,

descriptive-name

Institute for Computer Sciences and Technology

NBS
NDL

66, 67, 70 -72, 109
22, 24, 47, 110, 119
, 29, 35-37, 39, 40,
61, 71, 72, 104, 109

. 1, 2, 18, 23 , 109
, Technology . 1 , 2,

109
. 1, 2, 18, 23 , 109

106
106
106

Open System Interconnection .

OSI
Output

general output 25 , 26 , 41 , 43 , 109
impact-of-change 41, 44
IRD output 41, 79
output syntax 41, 44, 46

Output syntax 41, 44, 46

INDEX

Page 131

Panel Interface 7 , 8, 25 , 81, 83, 84, 86
Procedure 32, 52 , 58 , 59 , 68 , 95 , 103-105, 109, 114
Prototype
Quality-indicator . . . 30, 52, 58, 75, 111
Relationship-class-type 19, 38, 52, 114, 119-126
Relationship-type . 14

,

15, 20, 21, 27, 38, 52, 53, 56, 75,
114, 119-127

Revision-number 29, 43, 71, 104
Services Interface . . . 31, 95 , 106-109
SQL
Version-identifier . . . 22, 23 , 35

,

37, 39, 40, 42, 43, 58,
71, 72

Versioning 25, 29, 71, 72
revision-number . . 29, 43, 71, 104
variation-name . .

version-identifier • • 22, 23, 35, 37, 39, 40, 42, 43,
58, 71, 72

Views
IRD-schema-view . . 18, 74, 76, 77, 79 , 80, 96-98, 114
IRD-view 18, 30, 73, 76, 77, 79, 96-100, 114

Workshops .

X3
X3H4 •7, 18, 23, 109, 112

INDEX

Page 132

''

.

Page 133

REFERENCES

1. ANSI, American National Standard X3-138-1988. Informa-
tion Resource Dictionary System . American National
Standards Institute, New York, 1988.

2. Application Systems Division, Prospectus for Data
Dictionary Standard . NBSIR 80-2115, National Bureau of
Standards, Gaithersburg, MD, September, 1980.

3. Goldfine, A. H. , Editor, Data Base Directions: Informa-
tion Resource Management—Strategies and Tools . NBS
Special Publication 500-92, National Bureau of Stan-
dards, Gaithersburg, MD, September, 1982.

4. Fong, E. N. and Goldfine, A. H. , Editors, Data Base
Directions; Information Resource Management—Making It
Work . NBS Special Publication 500-139, National Bureau
of Standards, Gaithersburg, MD, June, 1986.

5. Konig, P. A. and Newton, J. J., Federal Requirements
for a Federal Information Processing Standard Data
Dictionary System . NBSIR 81-2354, National Bureau of
Standards, Gaithersburg, MD, September, 1981.

6. Konig, P. A., Goldfine, A. H. , and Newton, J. J. ,

Editors, Functional Specifications for a Federal
Information Processing Standard Data Dictionary System .

NBSIR 82-2619, National Bureau of Standards, Gaithers-
burg, MD, January, 1983.

7. Chipman, M. L. and Fiorello, M. , Cost-Benefit Analysis
of a Prospective Data Dictionary System Standard ,

prepared for the Institute for Computer Sciences and
Technology, National Bureau of Standards, Gaithersburg,
MD, October, 1983.

8. Goldfine, A. H., Using the Information Resource
Dictionary System Command Language (Second Edition) .

NBSIR 88-3701, National Bureau of Standards, Gaithers-
burg, MD, 1988.

9 . Law , M . H . , Guide to Information Resource Dictionary
System Applications: General Concepts and Strategic
Systems Planning . NBS Special Publication 500-152,

REFERENCES

Page 134

National Bureau of Standards, Gaithersburg, MD, 1988.

10. Dolk, D. R. and Kirsch, R. A., A Relational Information
Resource Dictionary System . Communications of the ACM
30, 1, January, 1987, 48-61.

11. Newton, J. J., Guide on Data Entity Naming Conventions .

NBS Special Publication 500-149, National Bureau of
Standards, Gaithersburg, MD, October, 1987.

/

12. ISO, Abstract Syntax One (ASN.l) . ISO 8824, American
National Standards Institute, New York.

13. ISO, ASN.l Basic Encoding Rules . ISO 8825, American
National Standards Institute, New York.

14. ISO, International Standard Database Language SOL . ISO
9075, American National Standards Institute, New York,
1987.

15. ISO, International Standard Database Language NDL . ISO
8907, American National Standards Institute, New York,
1987.

16. ISO, Pascal Computer Programming Language . ISO 7185,
American National Standards Institute, New York

REFERENCES

NBS«114A (rev. 2 -ac)

U.S. DEPT. OF COMM.U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NBSIR 88-3700 JANUARY 1988

4. TITLE AND SUBTITLE

A Technical Overview of the Information Resource Dictionary System
(Second Edition)

5. AUTHOR(S)

Alan Goldfine, Patricia Konig

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

national bureau of standards
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State . ZIP)

10. SUPPLEMENTARY NOTES

This document supersedes NBSIR 85-3164, A Technical Overview of the Information
Resource Dictionary System.

| |

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey , mention it here)

This publication provides a technical overview of the computer software
specifications for an Information Resource Dictionary System (IRDS). It

summarizes the data architecture and the software functions and processes of
the IRDS. The IRDS Specifications are an American National Standard, a U.S.
Federal Information Processing Standard, and a Draft Proposal within the
International Organization for Standardization (ISO). This Overview also
provides background information on the development of the IRDS software
specifications.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

American National Standard; computer software; data dictionary; data dictionary
system; data management; Federal Information Processing Standard; FIPS; Informatior
Resource Dictionary System; IRDS; information resource management; IRM; Internatior

13. availability standard.

C*|u nl imited

1]

For Official Distribution. Do Not Release to NTIS
~| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

[Xj Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

142

15. Price

$18.95

USCOMM-OC 6043-P80

'

i.

I

