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Disclaimer

No warranties 3 express or implied 3 are made
by the distributors or developers that

STARPAC or its constituent parts are free of
error. They should not be relied upon as

the sole basis for solving a problem whose
incorrect solution could result in injury to
person or property . If the programs are
employed in such a manner 3 it is at the
user's own risk and the distributors and
developers disclaim all liability for such
misuse .

Computers have been identified in this paper
in order to adequately specify the sample
programs and test results. Such
identification does not imply recommendation
or endorsement by the National Bureau of
Standards 3 nor does it imply that the

equipment identified is necessarily the best

available for the purpose.



Preface

STARPAC, the Standards Time Series arid Regression Package, is a library
of Fortran subroutines for statistical data analysis developed by the

Statistical Engineering Division (SED) of the National Bureau of Standards
(NBS), Boulder, Colorado. Earlier versions of this library were distributed
by the SED under the name STATLIB [Tryon and Donaldson, 1978] . Chapter 1 and

chapter 9 of this document were previously distributed as NBS Technical Notes
1068-1 and 1068-2, respectively [Donaldson and Tryon, 1983a and 1983b].

STARPAC incorporates many changes to STATLIB, including additional statistical
techniques, improved algorithms and enhanced portability.

STARPAC consists of families of subroutines for nonlinear least squares
regression, time series analysis (in both time and frequency domains)

,
line

printer graphics, basic statistical analysis, and linear least squares
regression. These subroutines feature:

o ease of use, alone and with other Fortran subroutine libraries;

© extensive error handling facilities;

® comprehensive printed reports;

© no problem size restrictions other than effective machine size; and

• portability.

Notation, format and naming conventions are constant throughout the

STARPAC documentation, allowing the documentation for each family of

subroutines to be used alone or in conjunction with the documentation for

another.

The code for STARPAC was developed at the U.S. Department of Commerce
Boulder Laboratories on a CDC CYBER 180/840 under NOS 2.3. All examples
presented in this documentation were executed in this environment using the

FTN 5.1+617 compiler with rounding.

STARPAC is written in ANSI Fortran '77 [American National Standards
Institute, 1977] using the Hollerith Extension. Workspace and
machine-dependent constants are supplied using subroutines based on the Bell
Laboratories "Framework for a Portable Library" [Fox et al. 1978a] . We have
also used subroutines from LINPACK [Dongarra et al. 1979] ,

from the "Basic
Linear Algebra Subprograms for Fortran Usage” [Lawson et al. 1979], from
DATAPAC [Filliben, 1977] and from the portable special function subroutines of
Fullerton [1977]. The analyses generated by several of the subroutine
families have been adapted from OMNITAB II [Hogben et al. 1971]; users are
directed to Peavy et al. [1985] for information about OMNITAB 80, the current
version of OMNITAB.

Computer facilities for the STARPAC project have been provided in part by
the National Oceanic and Atmospheric Administration Mountain Administrative
Support Center Computer Division, Boulder, Colorado, and we gratefully
acknowledge their support. The STARPAC subroutine library is the result of

v



the programming efforts of Janet R. Donaldson and John E. Koontz, with
assistance from Ginger A. Caldwell, Steven M. Keefer, and Linda L. Mitchell.
Valuable contributions have also been made by each of the members of the
Statistical Engineering Division in Boulder, and from many within the STARPAC
user community. We are grateful for the many valuable comments that we have
received on early drafts of the STARPAC documentation; we wish especially to

thank Paul T. Boggs, Ginger A. Caldwell, Sally E. Howe, John E. Koontz, James
T. Ringland, Ralph M. Slutz, and Dominic F. Vecchia. Finally, we wish to

thank Lorna Buhse for excellent manuscript support.

Janet R. Donaldson
Peter V. Tryon (deceased)

October 1985
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STARPAC

The Standards Time Series and Regression Package

Janet R. Donaldson and Peter V. Tryon

National Bureau of Standards
Washington, DC 20234

STARPAC, the Standards Time Series and Regression Package, is a

library of Fortran subroutines for statistical data analysis

developed by the Statistical Engineering Division of the National
Bureau of Standards, Boulder, Colorado. Earlier versions of this
library were distributed by the SED under the name STATLIB [Tryon

and Donaldson, 1978], STARPAC incorporates many changes to STATLIB,

including additional statistical techniques, improved algorithms and
enhanced portability.

STARPAC emphasizes the statistical interpretation of results,
and, for this reason, comprehensive printed reports of auxiliary
statistical information, often in graphical form, are automatically
provided to augment the basic statistical computations performed by

each user-callable STARPAC subroutine. STARPAC thus provides the

best features of many stand-alone statistical software programs
within the flexible environment of a subroutine library.

Key words: data analysis; nonlinear least squares; STARPAC;

statistical computing; statistical subroutine library; statistics;
STATLIB; time series analysis.
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CHAPTER 1

INTRODUCTION TO USING STARPAC

A. Overview of STARPAC and Its Contents

STARPAC is a portable library of approximately 150 user-callable ANSI '77

Fortran subroutines for statistical data analysis. Designed primarily for

time series analysis and for nonlinear least squares regression, STARPAC also
includes subroutines for normal random number generation, line printer plots,
basic statistical analyses and linear least squares. Emphasis has been placed
on facilitating the interpretation of statistical analyses, and, for this
reason, comprehensive printed reports of auxiliary statistical information,
often in graphical form, are automatically provided to augment the basic
statistical computations performed by each user-callable STARPAC subroutine.
STARPAC thus provides the best features of many stand-alone statistical
software programs within the flexible environment of a subroutine library.

STARPAC is designed to be easy to use; in many situations, only a few
lines of elementary Fortran code are required for the users' main programs. A
fundamental STARPAC philosophy is to provide two or more user-callable
subroutines for each method of analysis: one which minimizes the complexity
of the CALL statement, automatically producing a comprehensive printed report
of the results; and one or more others which provide user control of the
computations, allow suppression of all or part of the printed reports, and/or
provide storage of computed results for further analyses.

STARPAC has been developed and is maintained by the Statistical
Engineering Division of the National Bureau of Standards, Boulder, Colorado.
Users' comments and suggestions, which have had significant impact already,
are highly valued and always welcomed. Comments and suggestions should be

directed to:

Janet R. Donaldson
National Bureau of Standards
Mail Code 714

325 Broadway
Boulder, CO 80303.

B. Documentation Conventions

The documentation for the various STARPAC subroutine families uses a

standard format description of the information needed to use a STARPAC
subroutine, including one or more examples.

References to chapter sections within the STARPAC documentation are made
using the symbol §, and refer to the identified section within the current
chapter unless explicitly stated otherwise. Figures are identified by the
section in which they occur. For example, figure C-2 refers to the second
figure in §C of this chapter (chapter 1).



Names of INTEGER and REAL STARPAC subroutine arguments are consistent
with the implicit Fortran convention for specifying variable type. That is,

variable names beginning with I through N are type INTEGER while all others
are type REAL unless otherwise explicitly typed DOUBLE PRECISION or COMPLEX.
All dimensioned variables are explicitly declared in STARPAC documentation by

means of INTEGER, REAL, DOUBLE PRECISION, or COMPLEX statements, as

appropriate. The convention used to specify the dimension statements is

discussed below in §D.2.

Currently, only the single precision version of the STARPAC library is

supported by the Statistical Engineering Division. However, a double
precision version can be generated relatively easily. The precision of the

STARPAC library is indicated in the printed reports generated by STARPAC: an
S following the STARPAC version number in the output heading indicates the

single precision version is being used, while a D indicates the double
precision version. The STARPAC documentation is designed for use with both
single and double precision versions. Subroutine arguments which are double
precision in both versions are declared DOUBLE PRECISION; similarly, arguments
which are single precision in both versions are declared REAL. Arguments
whose precision is dependent upon whether the single or double precision
version of STARPAC is being used are declared <real>. If the double precision
version of the STARPAC library is being used, then the user should substitute
DOUBLE PRECISION for <real>; if the single precision version is being used,

then the user should substitute REAL for <real>. Other precision-dependent
features are discussed as they occur.

C. A Sample Program

The sample program shown in figure C-l illustrates the use of STARPAC
subroutines. This example was executed on the CDC CYBER 180/840 at the U.S.

Department of Commerce Boulder Laboratories under the NOS 2.3 operating system
using a single precision version of the STARPAC library. The code shown is

portable ANSI '77 Fortran. Section D below uses this example to discuss
Fortran programming as it relates to STARPAC.

The data used in this example are 84 relative humidity measurements taken

at Pikes Peak, Colorado. STARPAC subroutine PP, documented in chapter 2,

plots the data versus time-order (fig. C-2) and STARPAC subroutine STAT,

documented in chapter 4, prints a comprehensive statistical analysis of the

data (fig. C-3).
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OOOOOOOOOO

MAIN PROGRAM! PROGRAM EXAMPL

OAT At

DEMONSTRATE STAT ANO PP USING SINGLE PRECISION VERSION OF STaRPAC
RUN ON CYBER 190/840.

OUTPUT UNIT IS 6 (AUTOMATICALLY EOUATED TO FILE T API 6 ON CYRERS)
ISEE CHAPTER 1* SECTION D.43

N.B. DECLARATION OF Y AND X MUST BE CHANGED TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL Y(100), X(IOO)
DOUBLE PRECISION DSTAM100)

C

COMMON /CSTAK/ OSTAK
COMMON /ERRCHK / I ERR

C

c define ldstak, the length of dstak
c

IDSTAK 100
c

C READ NUMBER OF OBSERVATIONS INTO N AND
C DATA INTO VECTOR Y

READ 100* N

READ 101* ( Y ( I ) » I-1*N>
C

C CREATE A VECTOR OF QROER INDICES IN X

C

DO 10 I-l*N
X( I) - I

10 CONTINUE
C

C PRINT TITLE* PLOT OF DATA ANO ERROR INDICATOR
C

WRITE (6* 102)
CALL PP t Y * X* N)
WRITE (6* 101) IERR

C

C PRINT TITLE* STATISTICAL ANALYSIS OF DATA ANO ERROR INDICATOR
C

WRITE (6* 102)
CALL STAT (T* N* LOSTAK)
WRITE (6* 103) IERR

C
STOP

c

C FORMAT STATEMENTS
C

100 FORMAT
101 FORMAT
102 FORMAT
103 FORMAT

END

(19)
(12F7.4)
( UOAVIS-HARRI SON PIKES PEAK RELATIVE HUMIOITY DATA 8

!

(• IERR • •» ID

84
0.6007 0.6087 0.6086 0.6134 0.6108 0.6138 0.6129 0.6122 0.6110 0.6104 0. 7213 Oo 707a
0.7021 0.7004 0.6981 0.7242 0.7268 0.7418 0.7407 0.7199 0.6229 0.6294 0.6292 0.6267
0.6218 0.6178 0.6216 0.6192 0.6191 0.6290 0.6188 0.6233 0.6229 0.6204 0.6207 0.6166
0.6141 0.6291 0.6231 0.6222 0.6292 0.6308 0.6376 0.6330 0.6303 0.6301 0.6390 0.6423
0.6300 0.6260 0.6292 0.6298 0.6290 0.6262 0. 9992 0.9991 0.6314 0.6440 0. 6439 0.6326
0.6192 0.6417 0.6412 0.6930 0.6411 0.6199 0.6344 0.6623 0.6276 0.6307 0.6394 0.6197
0.6193 0.6140 0.6318 0.6284 0.6162 0.6292 0.6349 0.6344 0.6361 0.6373 0.6137 0.6383

Figure C-l

STARPAC sample program and data
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D. Using STARPAC

The following subsections provide general information needed when using
STARPAC, including a discussion of Fortran programming as it relates to

STARPAC usage. Although only elementary knowledge of Fortran is required to

use STARPAC, users may still have to consult with a Fortran text and/or their
Computing Center staff when questions arise.

D. 1 The PROGRAM Statement

The PROGRAM statement is used to name the user's main program. The name
EXAMPL is assigned to the main program in this example. The program name
cannot be the name of any variable in the user's main program and, in

addition, cannot be the name of any other subroutine or function called during
execution of the user's code. Specifically, it cannot be the name of any
subroutine within STARPAC. To ensure that the name of a STARPAC subroutine is

not inadvertently chosen for the name of the main program, users should
consult with the local installer of STARPAC to obtain a list of the STARPAC
subroutine names.

D.2 The Dimension Statements

The user's program must include dimension statements to define the sizes

and types of the vectors, matrices and three-dimensional arrays required by

each STARPAC subroutine used; STARPAC itself has no inherent upper limit on

problem size.

Within the STARPAC documentation for the subroutine declaration and CALL
statements, italicized lowercase identifiers in the dimension statements
represent integer constants which must equal or exceed the value of the
identically-spelled uppercase argument. For example, if the documentation
specifies the minimum dimension of a variable as <real> XM (n,m) y and if the

number of observations N is 15, and the number of columns of data M is 3, then
(assuming the single precision version of STARPAC is being used) the minimum
array size is given by the dimension statement REAL XM(15,3).

The exact dimensions assigned to some vectors and matrices must be

supplied in the CALL statements to some STARPAC subroutines. For example, the

argument IXM is defined as "the exact value of the first dimension of the

matrix XM as declared in the calling program." Continuing the example from
the preceding paragraph, if the statement REAL XM(20,5) is used to dimension
the matrix XM for a particular subroutine, and IXM is an argument in the CALL
statement, then IXM must have the value 20 regardless of the value assigned to

the variable N.

1-6



Many STARPAC subroutines require a work area for internal computations.
This work area is provided by the DOUBLE PRECISION vector DSTAK. The rules
for defining DSTAK are as follows.

1. Programs which call subroutines requiring the work vector DSTAK must
include the statements

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

where Idstak indicates the integer constant used to dimension DSTAK.

2. Since all STARPAC subroutines use the same work vector, the length of

DSTAK must equal or exceed the longest length required by any of the

individual STARPAC subroutines called by the user's program.

3. The length, LDSTAK, of the work vector DSTAK must be specified in the

CALL statement of any STARPAC subroutine using DSTAK to enable STARPAC
to verify that there will be sufficient work area for the problem.

It is recommended that a variable LDSTAK be set to the length of DSTAK,
and that this variable be used in each CALL statement requiring the length of

DSTAK to be specified. Then, if a future modification to the user's program
requires the length of DSTAK to be changed, the only alterations required in

the existing code would be to the DOUBLE PRECISION dimension statement and to

the statement which assigns the length of DSTAK to LDSTAK.

STARPAC manages its work area using subroutines modeled after those in

ACM Algorithm 528: Framework for a Portable Library [Fox et al. 1978a]

.

Although STARPAC and the Framework share the same COMMON for their work areas,
there are differences between the STARPAC management subroutines and those of

the Framework. In particular, the STARPAC management subroutines
re-initialize DSTAK each time the user invokes a STARPAC subroutine requiring
work area, destroying all data previously stored in DSTAK; the Framework only
initializes DSTAK the first time any of its management subroutines are
invoked, preserving work area allocations still in use. Thus, users must be
cautious when utilizing STARPAC with other libraries which employ the
Framework, such as PORT [Fox et al. 1978b].

The sample program shown in figure C-l provides an example of the use of

dimensioned variables with STARPAC. The REAL vector Y, used by both
subroutines PP and STAT, contains the 84 relative humidity measurements; its
minimum length, N (the number of observations), is 84. The REAL vector X used
by subroutine PP contains the corresponding time order indices of the data;
its minimum length is also 84. The DOUBLE PRECISION vector DSTAK contains the
work area needed by STAT for intermediate computations; its minimum length, 49
in this case, is defined in §D of chapter 4. In this example, the dimensions
of Y, X, and DSTAK, are each 100, exceeding the required minimum values.
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D.3 The CALL Statements

The STARPAC CALL statement arguments provide the interface for specifying
the data to be used, controlling the computations, and providing space for any
returned results. The CALL statements used in the example (fig. C-l) are

CALL PP(Y, X, N) and CALL STAT(Y, N, LDSTAK). Note that scalar arguments may
be specified either by a variable preset to the desired value, as was done in

the example, or by the actual numerical values. For example, CALL
PP(Y, X, 84) and CALL STAT(Y, 84, 100) could have been used instead of the

forms shown. We recommend using variables rather than the actual numerical
values in order to simplify future changes in the program. When variables are
used, changes need to be made in only one place; numerical values have to be

changed every place they occur. The use of variables can also clarify the
meaning of the program.

D. 4 STARPAC Output

Most STARPAC subroutines produce extensive printed reports, freeing the
user from formatting and printing all statistics of interest. The standard
output device is used for these reports. The user has the options of titling
the reports and changing the output device.

The first page of the report from each STARPAC subroutine does not start
on a new page. This allows the user to supply titles. For example,

WRITE (6, 100)

100 FORMAT ( '1DAVIS-HARRIS0N PIKES PEAK RELATIVE HUMIDITY DATA’)
CALL PP (Y, X, N)

will print the title DAVIS-HARRISON PIKES PEAK RELATIVE HUMIDITY DATA on the

top line of a new page, immediately preceding the plot as shown in figure C-2.

Users should note that titles more than one line in length can cause a printed
report designed for one page to extend beyond the bottom of the page.

The unit number, IPRT, of the output device used by STARPAC is returned
by STARPAC subroutine IPRINT. Users can change the output device unit number
by including with their program a subroutine IPRINT which will supersede the

STARPAC subroutine of the same name. The subroutine must have the form

SUBROUTINE IPRINT(IPRT)
IPRT = u

RETURN
END

where u is an integer value specifying the output unit to which all STARPAC

output will be written.

1-8



D. 5 STARPAC Error Handling

STARPAC provides extensive error-checking facilities which include both

printed reports and a program-accessible error flag variable. There are

essentially two types of errors STARPAC can detect.

The first type of error involves incorrect problem specification, i.e.,

one or more of the input arguments in the subroutine statement has an improper
value. For example, the number of observations, N, might have an obviously
meaningless non-positive value. In the case of improper problem specification
STARPAC generates a printed report identifying the subroutine involved, the

error detected, and the proper form of the subroutine CALL statement. The
latter is provided because improper input is often the result of an

incorrectly specified subroutine argument list.

A second type of error can be thought of as a computation error: either
the initiated calculation cannot be completed or the results from the called
subroutine are questionable. For example, when the least squares model and
data are found to be singular, the desired computations cannot be completed;
when one or more of the standardized residuals from a least squares fit cannot
be computed because the standard deviation of the residual is zero, the

results of the error estimates from the least squares regression may be

questionable. If a computation error is detected, STARPAC generates a report
which identifies the error, and, to aid the user in determining the cause of

the error, summarizes the completed results in a printed report.

STARPAC error reports cannot be suppressed, even when the normal output
from the STARPAC subroutine has been suppressed.^ Because of this, users
seldom have to consciously handle STARPAC error conditions in their code.

When proper execution of the user's program depends on knowing whether or

not an error has been detected, the error flag can be examined from within the

user's code. When access to the error flag is desired, the statement

COMMON /ERRCHK/ IERR

must be placed with the Fortran declaration statements in the user's program.
Following the execution of a STARPAC subroutine, the variable IERR will be set
to zero if no errors were detected, and to a nonzero value otherwise; the
value of IERR may indicate the type of error [e.g. , see chapter 9, §D,

argument IERR]. If the CALL statement is followed with a statement of the.

f orm

IF (IERR ,NE. 0) STOP

then the program will stop when an error is detected. (In figure C-l, the
value of IERR is printed following each CALL statement to show the value
returned.

)

^STARPAC output must be directed to a separate output device [see §D.4] when
users do not want any STARPAC reports displayed under any conditions.
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D. 6 Common Programming Errors When Using STARPAC

STARPAC error-checking procedures catch many programming errors and print
informative diagnostics when such errors are detected. However, there are
some errors which STARPAC cannot detect. The more common of these are

discussed below.

1. The most common error involves array dimensions which are too small.

Although certain arguments are checked by STARPAC to verify that array
dimensions are adequate, if incorrect information is supplied to

STARPAC, or if the dimension of an array which is not checked is too
small, the program will produce erroneous results and/or will stop
prematurely. Users should check the dimension statements in their
program whenever difficulties are encountered in using STARPAC.

2. The second most common error involves incorrect CALL statements, that
is, CALL statements in which the STARPAC subroutine name is

misspelled, the arguments are incorrectly ordered, one or more
arguments are omitted, or the argument types (INTEGER, REAL, DOUBLE
PRECISION, and COMPLEX) are incorrect. Users having problems using
STARPAC should carefully check their declaration and CALL statements
to verify that they agree with the documentation.

3. The third most common error involves incorrect specification of the

work vector DSTAK. Programs which call STARPAC subroutines requiring
work area must include both the DOUBLE PRECISION statement dimension
DSTAK and the COMMON /CSTAK/ DSTAK statement.

4. The final common error involves user-supplied subroutines which have

the same name as a subroutine in the STARPAC library. Users should
consult with the local installer of STARPAC to obtain a list of all

STARPAC subroutine names. This list can then be used to ensure that a

STARPAC subroutine name has not been duplicated.

Users who have not found the cause of a problem after checking the

possibilities mentioned above should consult with their Computing Center
advisers.



CHAPTER 2

LINE PRINTER GRAPHICS

A. Introduction

STARPAC contains 36 subroutines for producing 2 basic styles of line

printer plots.

The first, called a page plot, uses a single 11 x 14 inch page of line

printer paper.

The second, called a vertical plot, is designed for plotting time series.
The user specifies only the y-axis values since the x-axis values (independent
variable) are assumed to be equally spaced and ordered consecutively. The
independent variable in the resulting plot is oriented vertically and the plot

will continue over as many pages as necessary to plot one point per line.

Within these two basic styles the user has many options, including
controlling the plot symbol, plotting multivariate values, designating missing
data, using log scales and specifying plot limits and plot size.

Users are directed to §B for a brief description of the subroutines. The
actual declaration and CALL statements are given in §C and the subroutine
arguments are defined in §D. The algorithms used and output produced by these

subroutines are discussed in §E. Sample programs and their output are shown
in §F

.

B . Subroutine Descriptions

PP (.Page Plot) and VP (Vertical Plot) are the simplest of the STARPAC
line printer plot subroutines. For both, plot limits are automatically set by

the range of the data and other control parameters are set to the default
values given in §D. The remaining plotting subroutines are named by adding
letters to the beginning and/or end of PP and VP.

© Prefix S (e.g. ,
SPP) indicates the user controls the plot symbol for

each point.

© Prefix M indicates the subroutine will accept multivariate y-axis
values (e.g., MPP).

© Suffix M subroutines allow data with missing observations to be plotted
(e.g., VPM )

.

© Suffix L indicates log scales can be used (e.g., PPL).

© Suffix C subroutines allow control of the parameters which specify the
plot limits, size, scale, etc. (e.g., VPC).
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The following table, which indicates the capabilities of each of the
STARPAC plotting subroutines, can be used to select f rom the available
subroutines. Subroutine declaration and CALL statements are given in §C

,

listed in the same order as in the table.

Plot
Symbol Multiple Page Vertical Missing Log Control
Control Y-Axis Plot Plot Data Scale Parameters

Name (S) (M) (PP) (VP) (M) (L) (c)

PP /
PPL /

V

/
V

PPC / / /

PPM / /

PPML / / /

PPMC / / /

SPP ~T~ /

SPPL / / /

SPPC / / / /

SPPM / / /
'

SPPML / / /

SPPMC / / / / /

MPP
MPPL
MPPC
MPPM
MPPML
MPPMC
VP
VPL
VPC
VPM
VPML
VPMC
SVP

7 “
7
“

SVPL / / /

SVPC / / / /

SVPM / / /

SVPML / / /

SVPMC / / / / /

MVP
~7~ 7

MVPL / / /

MV PC / / / /

MV PM / / /

MVPML / / / /

MVPMC / / / / /

C. Subroutine Declaration and CALL Statements

NOTE: Argument definitions and s ample programs are given in §D and §F,

respective ly

.

The conventions used to present the following declaration and
CALL statments are given in chapter 1 ,

§B and §D

.



Page Plots

PP: Print Y versus X scatterplot ; linear axes; default control values and
axis limits; no missing values allotted

<real> Y(n), X(n)

#

CALL PP (Y, X, N)

PPL: Print Y versus X scatterplot; log or linear axes; default control

values and axis limits; no missing values allotted

<real> Y(n), X(rc)

S

CALL PPL (Y, X, N, ILOG)

PPC : Print Y versus X scatterplot; log or linear axes; user-supplied
control values and axis limits; no missing values allotted

<real> Y(n), X(n), YLB
,
YUB, XLB

,
XUB

S

CALL PPC (Y, X, N, ILOG, ISIZE, NOUT, YLB, YUB, XLB, XUB)

PPM: Print Y versus X scatterplot; linear axes; default control values and
axis limits; missing values allowed

<real> Y(n), YMISS, X(n), XMISS

CALL PPM (Y, YMISS, X, XMISS, N)

PPML: Print Y versus X scatterplot; log or linear axes; default control
values and axis limits; missing values allowed

<real> Y(n), YMISS, X(n), XMISS

CALL PPML (Y, YMISS, X, XMISS, N, ILOG)
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PPMC: Print Y versus X scatterplot; log or linear oozes; user-supplied,
control values and axis limits; missing values allowed

<real> Y(n), YMISS, X(n), XMISS, YLB
,
YUB

,
XLB

,
XUB

CALL PPMC (Y, YMISS, X, XMISS, N, ILOG, ISIZE, NOUT, YLB, YUB,
1 XLB, XUB)

SPP: Print Y versus X scatterplot with individual plot symbols specified
by user; linear axes; default control values and axis limits; no
missing values allowed

<real> Y(n), X(n)
INTEGER ISYM(rc)

CALL SPP (Y, X, N, ISYM)

SPPL: Print Y versus X scatterplot with individual plot symbols specified
by user; log or linear axes; default control values and axis limits;
no missing values allowed

<real> Y(n), X(n)
INTEGER ISYM(n)

CALL SPPL (Y, X, N, ISYM, ILOG)

SPPC: Print Y versus X scatterplot with individual plot symbols specified
by user; log or linear axes; user-supplied control values and axis
limits; no missing values allowed

<real> Y(n), X(n), YLB, YUB, XLB, XUB
INTEGER ISYM(n)

CALL SPPC (Y, X, N, ISYM, ILOG, ISIZE, NOUT, YLB, YUB, XLB, XUB)
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SPPM: Print Y versus X seatterplot with individual plot symbols specified

by user; linear axes ; default control values and axis limits; missing
values allowed

<real> Y(n), YMISS, X(n), XMISS
INTEGER ISYM(n)

CALL SPPM (Y, YMISS, X, XMISS, N, ISYM)

SPPML: Print Y versus X seatterplot with individual plot symbols specified
by user; log or linear axis; default control values and axis limits;
missing values allowed

<real> Y(n), YMISS, X(n), XMISS
INTEGER ISYM(n)

CALL SPPML (Y, YMISS, X, XMISS, N, ISYM, ILOG)

SPPMC: Print Y versus X seatterplot with individual plot symbols specified
by user; log or linear axes; user-supplied control values and axis
limits; missing values allowed

<real> Y(n), YMISS, X(n), XMISS, YLB
,
YUB, XLB

,
XUB

INTEGER ISYM(n)

CALL SPPMC (Y, YMISS, X, XMISS, N, ISYM, ILOG, ISIZE, NOUT, YLB,
1 YUB, XLB, XUB)

MPP: Print plot of multiple Y vectors versus a common X vector; linear
axes; default control values and axis limits; no missing values
allowed

<real> YM (n,m)
t X(n)

CALL MPP (YM, X, N, M, IYM)
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MPPL: Print plot of multiple Y vectors versus a common X vector; log or
linear axes; default control values and axis limits; no missing values
allowed

<real> YM(nt m)> X(n)

CALL MPPL (YM, X, N, M, IYM
,

ILOG)

MPPC : Print plot of multiple Y vectors versus a common X vector; log or
linear axes; user-supplied control values and axis limits; no missing
values allowed

<real> YM(n,m), X(n), YLB
,
YUB, XLB, XUB

CALL MPPC (YM, X, N, M, IYM, ILOG, ISIZE, NOUT, YLB, YUB, XLB,
1 XUB)

MPPM: Print plot of multiple Y vectors versus a common X vector; linear
axes; default control values and axis limits; missing values allowed

<real> YM (n,m), YMMISS(m), X(n), XMISS

CALL MPPM (YM, YMMISS, X, XMISS, N, M, IYM)

MPPML: Print plot of multiple Y vectors versus a common X
linear axes; default control values and axis limits;
allowed

<real> YM (n,m), YMMISS(m), X(n), XMISS

S

CALL MPPML (YM, YMMISS, X, XMISS, N, M, IYM, ILOG)

MPPMC: Print plot of multiple Y vectors versus a common X
linear axes; user-supplied control values and axis limits; missing
values allowed

<real> YM {n,m)

,

YMMISS(m), X(n), XMISS, YLB, YUB, XLB, XUB

CALL MPPMC (YM, YMMISS, X, XMISS, N, M, IYM, ILOG, ISIZE, NOUT,

1 YLB, YUB, XLB, XUB)

vector; log or

missing values

vector; log or
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Vertical Plots

VP: Print vertical plot of Y versus input order; linear axes; default
control values and axis limits; no missing values allowed

<real> Y(n)

t

CALL VP (Y, N, NS)

VPL: Print vertical plot of Y versus input order; log or linear horizontal

(Y) axis; default control values and axis limits; no missing values
allowed

<real> Y (n

)

1

CALL VPL (Y, N, NS, ILOG)

VPC: Print vertical plot of Y versus input order; log or linear horizontal
(Y) axis; user-supplied control values and axis limits; no missing
values allowed

<real> Y (n ) ,
YLB

,
YUB

,
XLB

,
XINC

i

CALL VPC (Y, N, NS, ILOG, ISIZE, IRLIN, IBAR, YLB, YUB, XLB,
1 XINC)

VPM: Print vertical plot of Y versus input order; linear axis; default
control values and axis limits; missing values allowed

<real> Y(n), YMISS

CALL VPM (Y, YMISS, N, NS)

VFML: Print vertical plot of Y versus input order; log or linear horizontal
(Y) axis; default control values and axis limits; missing values
allowed

<real> Y (n ) ,
YMISS

CALL VPML (Y, YMISS, N, NS, ILOG)
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VPMC: Print vertical plot of Y versus input order; log or linear horizontal
(Y) axis ; user-supplied control values and axis limits ; missing values
allowed

<real> Y(n), YMISS, YLB
,
YUB

,
XLB

,
XINC

CALL VPMC (Y, YMISS, N, NS, ILOG, ISIZE, IRLIN, IBAR, YLB, YUB,

1 XLB, XINC)

SVP: Print vertical plot of Y versus input order with individual plot
symbols specified by user; linear axis; default control values and
axis limits; no missing values allowed

<real> Y(n)
INTEGER ISYM(n)

CALL SVP (Y, N, NS, ISYM)

SVPL: Print vertical plot of Y versus input order with individual plot
symbols specified by user; log or linear horizontal (Y) axis; default
control values and axis limits; no missing values allowed

<real> Y(n)
INTEGER ISYM(n)

CALL SVPL (Y, N, NS, ISYM, ILOG)

SVPC: Print vertical plot of Y versus input order with individual plot
symbols specified by user; log or linear horizontal (Y) axis;
user-supplied control values and axis limits; no missing values
allowed

<real> Y(n), YLB, YUB, XLB, XINC
INTEGER ISYM(n)

CALL SVPC (Y, N, NS, ISYM, ILOG, ISIZE, IREFLN, IBAR, YLB, YUB,

1 XLB, XINC)
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SVPM:

SVPML:

SVPMC:

MVP:

Print vertical plot of Y versus input order with individual plot
symbols specified by user; linear axis ; default control values and

axis limits; missing values allowed

<real> Y(n), YMISS
INTEGER ISYM(tt)

CALL SVPM (Y, YMISS, N, NS, ISYM)

Print vertical plot of Y versus input order with individual plot
symbols specified by user; log or linear horizontal (Y) axis; default

control values and axis limits; missing values allowed

<real> Y(n), YMISS
INTEGER ISYM(n)

CALL SVPML (Y, YMISS, N, NS, ISYM, ILOG)

Print vertical plot of Y versus input order with individual plot
symbols specified by user; log or linear horizontal (Y) axis;

user-supplied control values and axis limits; missing values allowed

<real> Y(n), YMISS, YLB
,
YUB

,
XLB

,
XING

INTEGER ISYM(n)

CALL SVPMC (Y, YMISS, N, NS, ISYM, ILOG, ISIZE, IRLIN, IBAR, YLB,

1 YUB, XLB, XING)

Print vertical plot of multiple Y vectors versus input order; linear
axis; default control values and horizontal (Y) axis limits; no

missing values allowed

<real> YM(n3 m)

CALL MVP (YM, N, M, IYM
,
NS)
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MVPL: Print vertical plot of multiple Y vectors versus input order; log or
linear horizontal (Y) axis; default control values and axis limits; no
missing values allowed

<real> YM (ny m)

CALL MVPL (YM, N, M, IYM, NS, ILOG)

MVPC: Print vertical plot of multiple Y vectors versus input order; log or
linear horizontal (Y) axis; user-supplied control values and axis
limits; no missing values allowed

<real> YM YLB

,

YUB
,
XLB

,
XINC

CALL MVPC (YM, N, M, IYM, NS, ILOG, ISIZE, YLB, YUB, XLB, XINC)

MVPM: Print vertical plot of multiple Y vectors versus input order; linear
axis; default control values and axis limits; missing values allowed

<real> YM (n} m), YMMISS(m)

CALL MVPM (YM, YMMISS, N, M, IYM, NS)

MVPML: Print vertical plot of multiple Y vectors versus input order; log or
linear horizontal (Y) axis; default control values and axis limits;
missing values allowed

<real> YM (n, m ) ,
YMMISS(m)

CALL MVPML (YM, YMMISS, N, M, IYM, NS, ILOG)

MVPMC: Print vertical plot of multiple Y vectors versus input order; log or
linear horizontal (Y) axis; user-supplied control values and axis
limits; missing values allowed

<real> YM(n,m), YMMISS (tf?) ,
YLB, YUB, XLB, XINC

CALL MVPMC (YM, YMMISS, N, M, IYM, NS, ILOG, ISIZE, YLB, YUB,

1 XLB, XINC)
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D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE:

I BAR

I ERR

I LOG

IRLIN

—> indicates that the argument is input to the subroutine and that

the input value is preserved;
<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;

indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
**• indicates that the variable is passed via COMMON.

—> The indicator variable used to designate whether a vertical plot

is to be a bar plot or not. Bar plots connect the plotted points
to the reference line [see argument IRLIN] with a string of plot
symbols. [See, e.g., chapter 12, figure F-lc. ] If IBAR > 1, the

plot is a bar plot. If IBAR < 0, it is not. The default value is

IBAR = 0. When IBAR is not an argument in the subroutine CALL
statement the default value is used.

'** An error flag returned in COMMON /ERRCHK/. [See chapter 1, § D . 5 .

]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided.

IERR = 0 indicates that no errors were detected and that the plot
was completed satisfactorily.

IERR = 1 indicates that improper input was detected or that some

error prevented the plot from being completed.

—> The indicator variable used to designate whether the axes are to

be on a log or linear scale. ILOG is a two-digit integer, pq

,

where the value of p is used to designate the scale of the x-axis
and the value of q is used to designate the scale of the y-axis.
If p = 0 (q = 0) the x-axis (y-axis) is on a linear scale; if

p * 0 (q * 0) the x-axis (y-axis) is on a log scale. For vertical
plots, the value of q is used to specify the scale on the
horizontal-axis and the value of p is ignored. The default value
is ILOG = 0, corresponding to linear scale for both the x-axis and
the y-axis. When ILOG is not an argument in the subroutine CALL
statement the default value is used.

—•> The indicator variable used to designate whether zero or the
series mean is to be plotted as a reference line on the vertical
plots or whether no reference line should be used. If IRLIN < -1,

no reference line is plotted. If IRLIN = 0, a reference line is

plotted showing the location of zero on the plot. If IRLIN > 1, a

reference line is plotted showing the series mean. The default
value is IRLIN = -1. When IRLIN is not an argument in the

subroutine CALL statement the default value is used.

2-1

1



[SIZE —> The indicator variable used to designate the size of a page plot.
ISIZE is a two-digit integer, pq ,

where the value of p is used to

designate the size of the x-axis and the value of q is used to

designate the size of the y-axis. If p = 0 (q = 0) the x-axis
(y-axis) is the maximum possible, 101 columns (51 rows), i.e., 101

(51) plot positions. If p t 0 (q t 0) the x-axis (y-axis) is half
the maximum, or 51 columns (26 rows). For vertical plots, the

value of q is used to specify the size of the horizontal-axis and
the value of p is ignored. The default value is ISIZE = 0,

corresponding to a plot of 51 rows by 101 columns. When ISIZE is

not an argument in the subroutine CALL statement the default value
is used.

ISYM —> The vector of dimension at least N that contains the values
designating the plotting symbol to be used for each point. The

plot symbols designated by each possible integer value are given
below.

IYM

ISYM(* )< 1 + +

I SYM (
« )= 2 - •

I SYM(* )= 3 + *

I SYM ( ° )= 4 -

I SYM ( • )= 5 A
I SYM ( • )= 6 > B

I SYM ( * )= 7 * C

I SYM (
» )= 8 -» D

ISYM( • )= 9 -» E

ISYM( ® )=10 + F

ISYM( » ) = 11 G

ISYM( • ) = 1 2 ->• H

ISYM( • )=1 3 * I

ISYM( ® )=14 * J

I SYM ( ® ) = 1 5 + K

ISYM( • ) = 1 6 -» L

ISYM( « )=1 7 + M
ISYM( • ) = 18 + N

ISYM( • ) = 19 - 0

ISYM( • )=20 + P

ISYM( • )=2 1 * Q
ISYM( • )=22 * R

ISYM(» )=23 + S

ISYM(» )=24 T

I SYM ( • )=25 -v U

ISYM(* )=26 + V

I SYM (
® )=27 W

ISYM(» )=28 ^ Y

ISYM(» )> 29 Z

matrix YM as> The exact value of the first dimension of the

specified in the calling program.

M --> The number of columns of data in YM.

N —> The number of observations.

NOUT —> The number of points falling outside the plot limits that are to

be listed following the plot. If NOUT > 1 ,
a message giving the

total number of points falling outside the plot limits and a list

of the coordinates of these points (up to a maximum of NOUT or 50,

whichever is smaller) is printed. If NOUT = 0, only a message
listing the number of points falling outside the limits is

printed. If NOUT < 0, no points are listed and no message is

given. The default value is NOUT = 0. When NOUT is not an

argument in the subroutine CALL statement the default value is

used.

NS —> The sampling frequency of the points plotted on a vertical plot.

If NS = 1, every point is plotted; if NS = 2, every second point

is plotted; if NS = 3, every third point is plotted, etc. The

default value is NS = 1. When NOUT < 0 or NS is not an argument
in the subroutine CALL statement the default value is used.
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X dimension at least N that contains the x-axis—> The vector of

values.

XINC —> The increment to be used for labeling the x-axis (i.e., the

vertical-axis) on vertical plots. The x-axis labels are XLB

,

XLB + NS»XINC, XLB + 2»NS*XINC, etc. The default value is

XINC = 1.0. When XINC is not an argument in the subroutine CALL

statement the default value is used.

XLB --> The lower bound for the x-axis.

For page plots:

The default value is the smallest x-axis value within the range

of the y-axis values to be plotted. If XLB > XUB
, the default

value is used.

For vertical plots:

The default value is 1.0.

For both page and vertical plots, when XLB is not an argument in

the subroutine CALL statements the default value is used. (The

plot limits may be adjusted slightly from the user-supplied values
when the plotting subroutine uses a log scale.

)

XMISS —> The missing value code used within the vector X to indicate that a

value is missing. The user must indicate missing observations by

putting the missing value code in place of each missing
observation. Missing data are not indicated on page plots in any

way

.

XUB —> The upper bound for the x-axis. The default value is the largest
x-axis value within the range of the y-axis values to be plotted.
If XLB > XUB or XUB is not an argument in the subroutine CALL
statement the default value is used. (The plot limits may be

adjusted slightly from the user-supplied value when the plotting
subroutines use a log scale.

)

Y --> The vector of dimension at least N that contains the y-axis
values.

YLB --> The lower bound for the y-axis. The default value is the smallest
y-axis value within the range of the x-axis values to be plotted.
If YLB > YUB or YLB is not an argument in the subroutine CALL
statement the default value is be used. (The plot limits may be

adjusted slightly from the user-supplied value when the plotting
subroutines use a log scale.

)

YM —> The matrix of dimension at least N by M whose columns each contain
one of the M sets of N observations to be plotted against a common
X vector.
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YMISS — > The missing value code used within the vector Y to indicate a

value is missing. The user must indicate missing observations by

putting the missing value code in place of each missing
observation. Missing data are indicated on vertical plots by the
word "MISSING" next to the right axis of the appropriate line.
Missing data are not indicated on page plots in any way.

YMMISS —> The vector of dimension at least M that contains the codes used
within each of the M columns of YM to indicate a value is missing,
where the first element of YMMISS is the missing value code for
the first column of YM, etc. The user must indicate missing
observations by putting the appropriate missing value code in

place of each missing observation. Missing data are indicated on
vertical plots by the word "MISSING" next to the right axis of the

appropriate line. Missing data are not indicated on page plots in

any way.

YUB —> The upper bound for the y-axis. The default value is the largest
y-axis value within the range of the x-axis values to be plotted.
If YLB YUB or YUB is not an argument in the subroutine CALL
statement the default value is used. (The plot limits may be

adjusted slightly from the user-supplied value when the plotting
subroutines use a log scale.

)

E . Computational Details

Plotting Symbols . The plotting symbol used depends on the type of plot
and whether or not more than one point falls on a given plot position. If two

to nine points fall on a single plot position, the integer corresponding to

the number of points is used as the plotting symbol. When 10 or more values
fall on a single position the plotting symbol X is used. This is the only way
that integers or X are used as plot symbols.

Subroutines without an S or M prefix use the plotting symbol + to

indicate one point on a single printer position.

For subroutines with an S prefix the user-supplied vector ISYM of integer
values is used to specify the plotting symbol for each data point. The
Fourier spectrum plot shown in chapter 12, figure F-3b, is an example of this

option.

Subroutines with an M prefix use a different letter as the plot symbol
for each column of the matrix of the dependent variables (y-axis): A for the

first, B for the second, ..., Z for columns 25 and beyond, with X still only
used to indicate that 10 or more points fell on a single plot position.
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Continuity of Vertical Plots . Normally, a line printer will

automatically provide margins at the top and bottom of each page, causing a

break in the continuity of a vertical plot or any other output continuing over
two or more pages. However, these automatic page-ejects can be suppressed by

the user on many systems. Appendix A gives the control sequence necessary to

suppress automatic page-ejects on a Cyber computer. Users of other systems

should consult their Computer Center staff for any equivalent method
available.

F . Examples

The example program of figure F-la uses MPP to display the 12 years of

monthly airline data listed on page 531 of Box and Jenkins [1976] versus
month. The year is indicated by the plotting symbol (A = 1949, B = 1950,
etc.). Figure F-lb shows the output from this program.

Other examples of STARPAC plots can be found in the output of many of the

subroutines discussed elsewhere. The output from the complex demodulation
subroutines includes a simple vertical plot (VP) (chapter 11, figure F-lb) and

a vertical plot of multivariate data (MVPC) (chapter 11, figure F-lc); the
output from the autocorrelation and cross correlation subroutines includes
vertical plots using the bar plot, option (VPC) (chapter 12, figure F-lc); and
the output from the Fourier spectrum subroutines (chapter 12, figure F-3b) is

produced using a symbol plot (SPPC).



MAIN PROGRAMI “ROGRAN EXAHPL

DATA I

C

C DEMONSTRATE MPP USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYBER 180/BA0.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYBERS)
C CSEE CHAPTER 1> SECTION D.43
C

C N.B. DECLARATION OF X AND YM MUST BE CHAN6ED TO DOUBLE PRECISION IF
C DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL X ( 20 ) « YN ( 20» 2 0

)

C

C SPECIFY NECESSARY DIMENSIONS
C

I YM « 20
C

C READ NUMBER OF OBSERVATIONS AND NUMBER OF COLUMNS OF DATA
C X-AXIS VALUES
C Y-AXIS VALUES
C

READ 100» N» M

READ 101# (X(Ii» I«1#N»
READ 101# ( t YM ( I # J ) # X«1#N)# J«»l,Mi

C

C PRINT TITLE AND CALL MPP FOR PLOT
C

WRITE (6 # 102)
CALL MPP (YM, X# N* M# I YM

)

C

STOP
C
C FORMAT STATEMENTS
C

100 FORMAT (215)
101 FORMAT J12F6.1)
102 FORMAT (URiSUlTS OF STARPAC PLOT SUBROUTINE HPP»)

END

12 12
1.0 2.0 3.0 5.0 3.0 6.0 7.0 e.o 9.0 10.0 11.0 12.0

112.0 118.0 132.0 129.0 m.o 133.0 158.0 158.0 136.0 119.0 105.0 116.0
115.0 126.0 151.0 135.0 125.0 159.0 170.0 170.0 158.0 133.0 115.0 150.0
155.

0

150.0 178.0 163.0 172.0 178.0 199.0 199.0 185.0 162.0 156.0 166.

0

m.o 180.0 193.0 m.o 183.0 218.0 230.0 252.

0

209.0 191.0 172.0 195.0
196.0 196.0 236.0 233.0 229.0 253.0 265.0 272.0 237.0 211.0 180.0 201.0
205.0 188.0 235.0 227.0 235.0 265.0 302.0 293.0 259.0 229.0 203.0 229.0
252.0 233.0 267.0 269.0 270.0 313.0 365.0 357.0 312.0 275.0 237.0 278.0
285.0 277.0 317.0 313.0 318.0 375.0 513.0 509.0 335.0 306.0 271.0 306.0
313.0 301.0 336.0 358.0 353.0 522.0 563.0 567.0 505.0 357.0 309.0 336.0
350.0 316.0 362.0 358.0 363.0 535.0 591.0 505.0 505.0 359.0 310.0 337.0
360.0 352.0 506.0 396.0 520.0 572.0 358.0 539.0 563.0 507.0 362.0 505.0
517.0 391.0 519.0 561.0 572.0 535.0 622.0 606.0 308.0 561 .0 390.0 532.0

Figure F-la

Example program using MPP
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CHAPTER 3

NORMAL RANDOM NUMBER GENERATION

A. Introduction

STARPAC contains two subroutines for generating pseudo-random numbers
(noise) which obey a normal probability law with mean p and standard deviation
a. Such random numbers are often useful for evaluating data analysis
procedures or computer programs.

Users are directed to §B for a brief description of the subroutines. The
declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithm used by these subroutines is discussed in

§E. A sample program showing the use of these subroutines is given in §F.

B

.

Subroutine Descriptions

STARPAC subroutine NRAND generates a vector of standard (zero mean and
unit standard deviation) normal (Gaussian) random numbers. There is no

printed output from this subroutine.

STARPAC subroutine NRANDC generates Gaussian noise with mean p and
standard deviation a using the transformation

z = ay + p

where

y is a standard normal psuedo-random number;

p is the desired mean (see §D, argument YMEAN); and

o is the desired standard deviation (see §D, argument SIGMA).

There is no printed output from NRANDC.

C

.

Subroutine Declaration and CALL Statements

NOTE: Argument definitions and a sample program are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and D.
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NRAND: Generate a vector of normal pseudo-random numbers with zero mean and
unit standard deviation

<real> Y (n)

CALL NRAND (Y, N, ISEED)

NRANDC: Generate a vector of normal pseudo-random numbers with mean YMEAN and
standard deviation SIGMA

<real> Y («)

CALL NRANDC (Y, N, ISEED, YMEAN, SIGMA)

D. Dictionary of Subroutine Arguments

NOTE: —> indicates that the argument is input to the subroutine and that

the input value is preserved;
<-- indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
-— indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* *

• indicates that the variable is passed via COMMON,

IERR ... An error flag returned in COMMON /ERRCHK/. [See chapter 1, §D.5.]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

ISEED ' —> The basis for the pseudo-random number generation.

For ISEED t 0, use of the same value of ISEED will always
generate the same data set.

For ISEED = 0, a different data set will be produced by each call
to NRAND or NRANDC in the user's program, although
the numbers generated will not differ from run to

run.

N —> The number of random numbers to be generated.
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SIGMA — > The standard deviation of the generated random numbers.

Y <— The vector of dimension at least N that contains the

normal pseudo-random numbers.

YMEAN —> The mean of the generated random numbers.

E . Computational Methods

generated

The normal pseudo-random number generation procedure is that of Marsaglia
and Tsang [1984]. The same pseudo-random numbers (to within final round-off
error) will be generated on any computer. The code was written by Boisvert
and Kahanar of the National Bureau of Standards Scientific Computing
Division.

F . Example

The sample program shown in figure F-la illustrates the use of both NRAND
and NRANDC. NRAND is used to generate a standard normal pseudo-random sample
of size 50 from a normal population with zero mean and unit standard
deviation. NRANDC is then used to generate a sequence of normal pseudo-random
numbers with a mean of 4 and standard deviation 0.5. The same seed is used
for both NRAND and NRANDC. Therefore, the values generated by NRANDC are
YMEAN plus SIGMA times the values generated by NRAND, i.e.

,

YMEAN (I, 2) = YMEAN + S IGMA*YMEAN (1,1) for I = 1 , . . .

,

N.

The generated random numbers are displayed using STARPAC plot subroutine MVP.

Figure F-lb shows the output from MVP. There is no output from NRAND and
NRANDC.
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PROGRAM EXAMPL

DEMONSTRATE NR AND AND NRANDC AND DISPLAT RESULTS WITH MVP USING
SINGLE PRECISION VERSION OF STARPAC RUN ON CYBER 180/8*0.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYBERS)
[SEE CHAPTER 1» SECTION D.A1

N.B. DECLARATION OF YM MUST BE CHANGED TO DOUBLE PRECISION IF
DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL YH ( 100» 2

)

SPECIFY NECESSARY DIMENSIONS

I YH - 100

SET THE SEED
THE NUMBER OF VALUES TO BE GENERATED
THE NUMBER OF SETS OF DATA TO BE GENERATED

ISEEO » 931
N • 90
M 2

GENERATE STANDARD NORMAL PSEUDO-RANDOM NUMBERS INTO COLUMN l OF YH

CALL NR AND (YM(l#lJj> N» ISEEO

»

GENERATE NORMAL PSEUDO-RANDOM NUMBERS WITH MEAN AeO AND
STANDARD DEVIATION 0.5 INTO COLUMN 2 OF YM

YHEAN * A.O
SIGMA * 0.9
CALL NRANDC !YMU»2I«> N» ISElDg YHEAN? SIGNAI

PRINT TITLE AND CALL MVP TO PLOT RESULTS

WRITE (6? 1008
CALL MVP «YM» N» Mg IYH9

STOP

FORMAT STATEMENTS

100 FORMAT C'lRfSULTS OF STARPAC NORMAL PSUIDO-RANDOM NUMBER *

t

1 » GENERATION SUBROUTINES »

t

2 * DISPLAYED WITH STARPAC PLOT SUBROUTINE MVP* >

END

Figure F-la

Example program using NRAND, NRANDC and MVP
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CHAPTER 4

HISTOGRAMS

A. Introduction

STARPAC contains two subroutines for producing histograms. Both
subroutines produce a one-page printout which includes, in addition to the

histogram, a number of summary statistics (mean, median, standard deviation,
cell fractions, etc. ) and several tests for normality.

Users are directed to §B for a brief description of the subroutines. The

declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F

.

B

.

Subroutine Descriptions

HIST provides the analysis described in §A using a preset procedure for
choosing the number of cells. The lower and upper bounds of the histogram are
chosen from the range of the observations.

HISTC provides the same analysis as HIST but allows the user to specify
the number of cells and the upper and lower cell boundaries. Statistics are
based only on the data within the user-supplied bounds.

C

.

Subroutine Declaration and CALL Statements

NOTE; Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and D.

HIST: Compute and print a histogram and summary statistics, with automatic
selection of number of cells and cell boundaries

<real> Y(n)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL HIST (Y, N, LDSTAK)



HISTC: Compute and print a histogram and summary statistics with user
control of number of cells and cell boundaries

<real> Y(n)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL HISTC (Y, N, NCELL, YLB
,
YUB

,
LDSTAK)

D. Dictionary of Subroutine Arguments

NOTE: —> indicates that the argument is input to the subroutine and that
the input value is preserved;

<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
--- indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* * * indicates that the variable is passed via COMMON.

DSTAK. c “ The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The

first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

IERR * * * An error flag returned in COMMON /ERRCHK/. [See chapter 1, §D . 5 .

]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

LDSTAK —> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK
must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,
otherwise P = 1.0. [See chapter 1, § B .

]

For HIST: LDSTAK > (17+N)/2 + 26-P

For HISTC: LDSTAK > (17+N)/2 + max( NCELL, 26)«P

N —> The number of observations.

NCELL —> The number of cells in the histogram. If NCELL < 0 or NCELL is

not an argument in the subroutine CALL statement the subroutine
will choose the number of cells.
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the observedY —> The vector of dimension at least N that contains
data.

YLB —> The lower bound for constructing the histogram. The interval
[YLB, YUB ] is divided into NCELL increments. If YLB > YUB

,
the

lower and upper bounds for constructing the histogram will be the

minimum and maximum observations.

YUB —> The upper bound for constructing the histogram. The interval
[YLB, YUB] is divided into NCELL increments. If YLB > YUB, the

lower and upper bounds for constructing the histogram will be the

minimum and maximum observations.

E . Computational Methods

E . 1 Algorithms

The code and output for the histogram subroutines are modeled after early
versions of MINITAB [Ryan et al. 1974]

.

E „ 2 Computed Results and Printed Output

The output from the histogram family of subroutines includes a summary of

the input data in addition to the actual histogram. This summary includes the

following information, where the actual output headings are given by the
underlined, uppercase phrases. Results which correspond to subroutine CALL
statements arguments are identified by the argument name in uppercase (not

underlined). In the formulas, x \ , X2 , ...» x^ denotes the ordered
observations of Y such that YLB < Y(i) < YUB, i = 1, ..., N, i.e.

,
x^ is the

smallest observation of Y such that YLB < Y(i), x^ is the largest observation
of Y such that Y(i) < YUB, etc. The value of expressions enclosed in square
brackets, e.g. ,

[(k/2) +1], is the largest integer less than or equal to the
value of the expression.

© NUMBER OF OBSERVATIONS
,

N

© MINIMUM OBSERVATION

o MAXIMUM OBSERVATION

© HISTOGRAM LOWER BOUND
,
YLB

© HISTOGRAM UPPER BOUND
,
YUB

o NUMBER OF CELLS
,
NCELL

o OBSERVATIONS USED
,

k, where

k = the number of observations for which
YLB < Y(i) < YUB, i = 1, ..., N
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o MIN. OBSERVATION USED
,

x
L ,

where 1
= the smallest observation such that YLB < Y(i), i = 1, N

p
o MAX. OBSERVATION USED

,
xk ,

where

xk = the largest observation such that Y(i) < YUB, i = 1, ..., N J

o MEAN VALUE
, xmean ,

where

k

^Snean k
I xi

i = l

o MEDIAN VALUE
, Xmedian’ where

xmedian = x [(k+l)/2] if k is odd

xmedian
= °* 5 *( x [k/2] + x [(k/2) + 1]) 1

© 25 PCT TRIMMED MEAN
,
xtritn ,

where

k~[k/4]
xtrim

=
[
k“( 2 * [k/^])]" 1

l x£
i=l+ [k/ 4

]

• STANDARD DEVIATION, s, where

k
9 1/2

s =
(

(k—
1 £ (x-i ^ean' )

i=l

© MEAN DEV. /STD. DEV.

,

r, where

k

r - (s»k)
£ l

xi”xmearJ
i=l

• SQRT(BETA ONE)

,

&l
1/2

,
where

Bl =
(
(k-l)

3
.s

6

)

-1
( l (xi-xmean )

3

)

2
.k

i = l

© BETA TWO

,

g2, where,

8 2 =
(
(k— 1

)

2
« s

4

)

1

l (xi"xmean )

4
.k

i = l

V

V

k is even

11

I

I

I

II

9

I

a

9

I

I
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Information provided for each cell, £ = 1, NCELL, of the histogram

includes the following.

® INTERVAL MID POINT
, cmid ,

where

Cmid = YLB + (YUB-YLB)/ (2* NCELL)

• CUM. FRACT.
,

the cumulative fraction of the observations which are in

cells 1 through £

• 1-CUM. FRACT.
,

the cumulative fraction of the observations which are

in cells £ through NCELL

9 CELL FRACT.
,

the fraction of the observations which are in cell £

9 NO. OBS.
,

the actual number of observations which are in cell £

.

The histogram itself displays the actual number of observations in each
cell when the largest number of observations per cell does not exceed 50.

When the largest number of observations per cell does exceed 50 then the

histogram displays the cell fraction.

F . Example

The example program of figure F-la uses HIST to analyze the 39

measurements of the velocity of light shown on page 81 of Mandel [1964]. The
output from HIST is shown in figure F-lb.
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MAIN PROGRAM! PROGRAM EXAMPL

DATA!

C

C DEMONSTRATE HIST USING SIN6LI PRECISION VERSION OP STARPAC
C RUN ON CYBER 1BO/8AO.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPES ON CYBERS)
C C SEE CHAPTER 1# SECTION D.4J
C

C N.B. DECLARATION OF Y MUST BE CHANGED TO DOUBLE PRECISION IF

C DOUBLE PRECISION VERSION OF STARPAC IS USED*
C

REAL YC2O0S
DOUBLE PRECISION OSTAM2O0)

C

COMMON /CSTAK/ DSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK ® 20©
C

C READ NUMBER OF OBSERVATIONS
C OBSERVED DATA
C

READ 100# M

READ 101# IYCIJ# X-1#N>
C

C PRINT TITLE AND CALL HIST TO ANAL VIE RESULTS
C

WRITE (6# 102

1

CALL HIST ( Y# N# LDSTAK

I

C

STOP
C
C FORMAT STATEMENTS
C

100 FORMAT CIS!
101 FORMAT U3F9.1)
101 FORMAT (URESULTS OF STARPAC HISTOGRAM SUBROUTINE HIST')

END

39
0.4 0.6 1.0 i.e 1.0 0.9 6.6 O.T 1 e 6 0.6 0.2 1.9 0.2
0.4 0.0 -0.4 ®0 © s © 9 © -0.4 -0.1 0.1 -0.1 0.2 -0.9 0.3 -0.1
0.2 “0.2 0.8 © ® t> 0.8 © 8 ? O.T 0.2 0.9 e.T 0.6 1.1

Figure F-la

Example program using HIST
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CHAPTER 5

STATISTICAL ANALYSIS OF A UNIVARIATE SAMPLE

A. Introduction

STARPAC contains 4 subroutines for performing a comprehensive statistical
analysis of a univariate sample. They each compute 53 different statistics
which summarize the sample through measures of location (mean, median, etc),

measures of dispersion (standard deviation, mean deviation, etc. ) and

diagnostic features such as tests for outliers, non-normality, trends and
non-randomness (assuming the input order of the data is a meaningful time

sequence). Common statistics such as Student's t and confidence intervals for

the mean and standard deviation are also included. NBS Technical Note 756, A
User's Guide to the OMNITAB Command "STATISTICAL ANALYSIS ," by H. H. Ku [1973]

provides a complete discussion of the output of these subroutines, which is

the same output as that provided by the OMNITAB II Command STATISTICAL [Hogben
et al. 1971] .

Users are directed to §B for a brief description of the subroutines. The
declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F.

B

.

Subroutine Descriptions

STAT computes and prints the 53 descriptive statistics described in §A.

STATS provides the same analysis as STAT but allows the user to suppress
the printed output and store the computed statistics for further use.

STATW and STATWS perform a weighted analysis and are otherwise identical
to STAT and STATS, respectively.

C

.

Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

5-1



STAT: Compute and print 53 statistics describing the input data

<real> Y(n)
DOUBLE PRECISION DSTAK ( Idstak )

COMMON /CSTAK/ DSTAK

CALL STAT (Y, N, LDSTAK)

STATS: Compute and optionally print 53 statistics describing input data;
return statistics

<real> Y(n), STS(53)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL STATS (Y, N, LDSTAK, STS, NPRT

)

STATW : Compute and print 53 statistics describing weighted input data

<real> Y(n), WT (n)

DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL STATW (Y, WT, N, LDSTAK)

STATWS: Compute and optionally print 53 statistics describing weighted input
data; return statistics

<real> Y (n ) ,
WT(rc), STS(53)

DOUBLE PRECISION DSTAK (Idstak )

COMMON /CSTAK/ DSTAK

CALL STATWS (Y, WT, N, LDSTAK, STS, NPRT)
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D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE:

DSTAK

IERR

LDSTAK

N

NPRT

STS

—> indicates that the argument is input to the subroutine and that

the input value is preserved;
<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
—— indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
**• indicates that the variable is passed via COMMON.

* * * The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The

first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

* * * An error flag returned in COMMON /ERRCHK/. [See chapter 1, § D . 5 .

]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

-~> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK
must equal or exceed (N/2) + 7.

—> The number of observations.

™> The argument controlling printed output.

If NPRT = 0 the printed output is suppressed.

If NPRT £ 0 the printed output is provided.

—> The vector of dimension at least 53 that contains the computed
statistics. The contents of STS are listed below, along with
applicable references; the number in parenthesis is the location
within STS that the given statistic is stored. In the formulas, x

denotes the ordered observations of Y for which the weight is

nonzero, i.e. , xi is the smallest observation of Y with a nonzero
weight, x^ is the largest observation of Y with a nonzero weight,

etc. The weight associated with x-j_ is denoted w^. Zero weighted
observations are not included in the analysis. The value of
expressions enclosed in square brackets, e.g., [(k/2) +1], is the
largest integer less than or equal to the value of the
expression.

(1) NUMBER OF OBSERVATIONS, N

(2) NUMBER OF NONZERO WEIGHTS, k
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(3) UNWEIGHTED MEAN [Dixon and Massey, 1957, p. 14],

^Snean k
I xi

i = l

(4)

WEIGHTED MEAN [Brownlee, 1965, pp. 95-97],

l_ (
wi* xi)

xwtdmean ~ ili-

—

, . - . n

k

I wi
i=l

(5) MEDIAN [Dixon and Massey, 1957, p. 70],

xmedian = x [(k+l)/2] if k is odd

xmedian
= °’ 5 *( x [k/2] + x [(k/2) + 1]) if k is even

(6) MID-RANGE [Dixon and Massey, 1957, p. 71],

xmid = 0 ' 5 *( x
i

+ xk>

(7) 25 PCT UNWTD TRIMMED MEAN [Crow and Siddiqui, 1967],

k-[k/4]
xtrim

=
I
k~( 2 * W^])]~ l

l xi
i=l+ [k/4]

(8) 25 PCT WTD TRIMMED MEAN,

k-[k/4]

l (wi'Xi)
xwtdtritn

=
___

k-[k/4]

l w
i

i=l+ [k/4]

(9) WEIGHTED STANDARD DEVIATION [Snedecor and Cochran, 1967,

P* 44]

,

s
(

(k 1) I wi*^ x i Xwtdmean^ )

i=l

(10)

WTD S«D. OF MEAN [Brownlee, 1965, p. 80],

smean = s ' ( I w
i)

W2

i=l
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(11)

RANGE [Snedecor and Cochran, 1967, p. 39],

xrange xk X
1

(12)

MEAN DEVIATION [Duncan, 1965, p. 50],

k
_ 1 V I

i

xmeandev ~ x
L I

x i
-xwtdmean

I

i=l

(13) VARIANCE [Snedecor and Cochran, 1967, p. 44],

k

s
2 = (k- 1)" 1

l (Xi-Xvtdmean^
2

i = l

(14) COEF. OF VAR. (PERCENT) [Snedecor and Cochran, 1967, p. 62],

cvar =
|

100 -s/xwtdmean |

(15) LOWER CONFIDENCE LIMIT, MEAN [Natrella, 1966, pp. 2-2, 2-3],

xmean ~ t 0.025* smean

where tQ 025 is the appropriate t-statistic with (k- 1 )

degrees of freedom

(16)

UPPER CONFIDENCE LIMIT, MEAN [Natrella, 1966, pp. 2-2, 2-3],

xmean + t0.025* smean

where tQ Q 25 is the appropriate t-statistic with (k- 1 )

degrees of freedom

(17) LOWER CONFIDENCE LIMIT, S.D. [Natrella, 1966, p. 2-7],

s*( (k-l)/x
2
o o 97 5 )

1/2

where x
2
0 975 i s t ^ie appropriate chi-square statistic with

(k- 1 ) degrees of freedom

(18) UPPER CONFIDENCE LIMIT, S.D. [Natrella, 1966, p. 2-7],

, . . 9 > 1/2
s *l (k-l)/xz

0 . 02 5J

where x
2
0 025 :*' s t ^ie appropriate chi-square statistic with

(k- 1 ) degrees of freedom

(19) SLOPE [Fisher, 1950, p. 136],

= ( k* (k 2 -l )

)

-1
k

12 l i-

i = l

(x- ^td mean •
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(20) S.D. OF SLOPE,

[( 12 ,I ^i-Xwtdmean)
2

)
~ B2 * k- (k2 -1

)]

1 72

S B = Llli

(k« (k 2 -1 )
- (k-2)) 1/2

(21) SLOPE/S. D. OF SLOPE = T,

tQ = B / sg with (k-2) degrees of freedom

(22) PROB EXCEEDING ABS VALUE OF OBS T [Brownlee, 1965, p. 344],

Pr{t < —
|

tQ
I

and t > +
1

1 q |
}

(23) NO. OF RUNS UP AND DOWN [Brownlee, 1965, p. 223], r

(24) EXPECTED NO. OF RUNS [Bradley, 1965, p. 279],

E (r ) = (2k— 1 )/3

(25) S.D. OF NO. OF RUNS [Bradley, 1965, p. 279],

rsd = [ ( 1 6k—2 9 ) / 9 0

]

(26) MEAN SQ SUCCESSIVE DIFF [Brownlee, 1965, p. 222],

k-1

D = (k-l)~l
l (xi+1

-
Xi )

i=l

(27) MEAN SQ SUCC DIFF/VAR [Brownlee, 1965, p. 222],

2 . 2
D /s

(28) NO. OF + SIGNS,

u = number of times sign of (x d
""xwtcjmean ) is positive

(29) NO. OF - SIGNS,

v = number of times sign of (x^-x^j ) is negative

(30) NO. OF RUNS [Brownlee, 1965, p. 224],

RUNS = 1 + number of changes in sign of (x^'x^^ )

(31) EXPECTED NO. OF RUNS [Brownlee, 1965, p. 227],

E(RUNS) = 1 + (2«u«v)/k
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(32) S.D. OF RUNS [Brownlee, 1965, p. 230],

RUNSgd = ( [ (u+v) 2
• (k-1

) ]

1 • 2» u» v» ( 2» u» v - u - v))
1/2

(33) DIFF . /S.D. OF RUNS [Brownlee, 1965, p. 230],

[RUNS - E(RUNS)] / RUNSgd

(34) MINIMUM [Natrella, 1966, p. 19-1],

xj = smallest value with nonzero weight

(35) MAXIMUM [Natrella, 1966, p. 19-3],

= largest value with nonzero weight

(36) BETA ONE [Snedecor and Cochran, 1967, p. 86],

lc

61 =
(
(k-D^s

6 )" 1

( l (x i
~xwtdmean )

3

)

2
ck

i = l

(37) BETA TWO [Snedecor and Cochran, 1967, p. 87],

lc

62 = ((k-1) *s
) £ ^x i

_xwtdmean^ * k
i=l

(38) WTD SUM. OF VALUES,

k

l wi*
x
i

i=l

(39) WTD SUM OF SQUARES,

k

I wr x
i

i=l

(40) WTD SUM OF DEVS SQUARED,

k
2

I wi
e

( xi"xwtdme an^
i=l

(41) STUDENT'S T [Brownlee, 1965, p. 296],

k
1/2

t =
( l w

d )
• / s with (k-1) degrees of freedom

i = l
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(42) WTD SUM ABSOLUTE VALUES,

k

l wi* |

|

i=l

(43) WTD AVE ABSOLUTE VALUES,

I wi* l

xil
i=l

k

I wi
i=l

(44-53) FREQUENCY DISTRIBUTION [Freund and Williams, 1958, p. 17].

WT <-- The vector of dimension at least N that contains the weights. A

zero weight excludes the corresponding observation from the

analysis. If the weights are all equal to 1.0, the resulting
analysis is equivalent to an unweighted analysis.

Y --> The vector of dimension at least N that contains the observations.
The tests for trend and randomness will not be meaningful unless
the sample is ordered with respect to time or some other relevant
variable.

E . Computational Methods

E . 1

,

Formulas for the computed statistics are given in §D under argument STS.

The code for the statistical analysis subroutines is adapted from OMNITAB II

[Kogben, et al. 1971].

E .

2

. Computed Results and Printed Output

The output consists of a one-page display of the 53 statistics listed for

argument STS in §D. The argument, NPRT, controlling the printed output is

discussed in §D.

F . Example

The example program of figure F-la uses STAT to analyze the 39

measurements of the velocity of light shown on page 81 of Mandel [1964]. The
output from STAT is shown in figure F-lb.



ci

n

n

ci

MAIN PROGRAM! PROGRAM E X AM PL

DATAI

C

C DEMONSTRATE STAT USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYBER 180/0*0.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EOUATED TO FILE TAPE6 ON CYBERS)
C [SEE CHAPTER 1# SECTION 0.*]
C

C N.B. DECLARATION OF Y MUST BE CHANGED TO DOUBLE PRECISION IF

C DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y ( 200

)

DOUBLE PRECISION DSTAM200I
C

COMMON /CSTAK/ OSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK • 200

READ NUMBER OF OBSERVATIONS
OBSERVED DATA

READ 100* N
READ 101* CYIII* I-1»N)

C

C PRINT TITLE AND CALL STAT TO PERFORM STATISTICAL ANALYSIS
C

WRITE (6# 102)
CALL STAT (Y» N* LDSTAK)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (15)
101 FORMAT (13F5.1)
102 FORMAT C'lRESULTS OF STARPAC STATISTICAL ANALYSIS'*

* • SUBROUTINE STAT')
END

30
0.* 0.6 1.0 1.0 1.0 0.5 0.6 0.7 1.0 0.6 0.2 1.9 0.2
0.* 0.0 -0.* -0.3 0.0 -0.4 -0.3 0.1 -0.1 0.2 -0.5 0.3 -0.1
0.2 -0.2 O.S 0.5 0.6 0.8 0.7 0.7 0.2 0.5 0.7 0.8 1.1

Figure F-la

Example program using STAT
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CHAPTER 6

ONE-WAY ANALYSIS OF VARIANCE

A. Introduction

STARPAC contains two subroutines for one-way analysis of variance. The

output from these subroutines includes the usual analysis of variance table
plus the robust Kruskal-Wallis rank test. Comprehensive summary statistics
are also given, including means, standard deviations, standard deviations of

the mean and confidence intervals for the mean of each group. Within group
standard deviations, standard deviations of the mean and 95-percent confidence
intervals for the mean are given assuming fixed effects and random effects
models and also assuming ungrouped data. The output also includes pair-wise
multiple comparisons using the Newman-Keuls and Scheffe techniques; the

Cochran's C, the Bartlett-Box F and variance ratio tests for homogeneity of

variances; and the random effects model components of variance estimate. The
analysis performed by these subroutines is the same as that performed by the

OMNITAB II command ONEWAY [Hogben et al. 1971]. A reference for one-way
analysis of variance is Brownlee [1965], chapter 10.

Users are directed to §B for a brief description of the subroutines. The
declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F

.

B . Subroutine Descriptions

Subroutine A0V1 computes and prints the one-way analysis of variance
described in §A.

Subroutine A0V1S provides the same analysis as A0V1 but allows the user
to suppress the printed output and to store the number of observations in each
group, the group means and the group standard deviations.

C . Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.
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A0V1: Compute and print a one-way analysis of variance of the input data

REAL Y(n)
,

TAG(rc)

DOUBLE PRECISION DSTAK (Idstak)

COMMON / CSTAK/ DSTAK

CALL A0V1 (Y, TAG, N, LDSTAK)

AOV1S: Compute and optionally print a one-way analysis of variance of the
input data; return tag value of each group, number of observations in
each groups group averages, and group standard deviations

REAL Y(n) , TAG(n), GSTAT(igs tat, 4)

DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK

CALL AOV1S (Y, TAG, N, LDSTAK, NPRT, GSTAT, IGSTAT, NG)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: --> indicates that the argument is input to the subroutine and that

the input value is preserved;
<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* * * indicates that the variable is passed via COMMON.

DSTAK **• The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

GSTAT <— The matrix of dimension at least NG by four whose columns contain,
in order, the tag value of the group, number of observations in

the group, group average and group standard deviation. The groups
are in order of ascending tag values.

I ERR **• An error flag returned in COMMON /ERRCHK/
.

[See chapter 1, § D . 5
.

]

Note that using (or not using) the error flag will not affect the
printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.
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IGSTAT —> The exact value of the first dimension of the matrix GSTAT as

specified in the calling program.

LDSTAK --> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK

must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P =0.5,
otherwise P = 1.0 [see chapter 1, § B ]

.

For AOV 1 : LDSTAK > 22 + N + (8«NG+N)*P

For AOV 1 S : LDSTAK ^ 22 + N + (4*NG+N).P

N —> The total number of observations (all of the groups combined).

NG <-- The number of distinct groups, that is, the number of different
positive tag values.

NPRT —> The parameter controlling printed output.

If NPRT = 0 the printed output is suppressed.

If NPRT t 0 the printed output is provided.

TAG —> The vector of dimension at least N that contains the tag value for
each observation. The tag values may be any REAL number. Groups
are formed from observations having the same positive tag value.
Observations having a zero or negative tag value will not be

included in the analysis.

Y —> The vector of dimension at least N that contains the observed
data. The order of the observations in Y is arbitrary since
groups are specified by the values in the corresponding elements
of vector TAG.

E . Computational Methods

E . 1 Algorithms

The code and output for the one-way analysis of variance subroutines are

adapted from OMNITAB II [Hogben et al. 1971]. The computations performed are
discussed below.

E . 2 Computed Results and Printed Output

The argument controlling the printed output, NPRT, is discussed in §D.

Each of the five sections of automatic printing is described below under
the headings which appear on the printed page as shown in example F-lb. The
discussion is taken from the OMNITAB II User's Reference Manual [Hogben et

al. 1971], pages 122 to 124.
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ANALYSIS OF VARIANCE . The traditional analysis of variance for a one-way
classification is printed. This shows the sources of variation, the degrees
of freedom, the sums of squares, the mean squares, the F-ratio for testing for
differences between group means and the significance level of the F-ratio.
The usual assumptions of normality, independence and constant variance of

measurement errors are made. A discussion of the statistical treatment of a

one-way classification can be found in §10.2 of Brownlee [1965],

If the significance level of the F ratio (F PROB . ) for

F = (Between Groups Mean Square) / (Within Groups Mean Square)

is less than 0.10 and the number of groups exceeds two, the between groups
(means) sum of squares is separated into two components: the first associated
with the slope (one degree of freedom) and the second representing deviations
about the straight line regression of group averages on group number. This
information, which does not appear in a traditional analysis of variance, can
be used to examine the effect of time. A discussion of some of the
statistical aspects of this procedure are found in §11.12 of Brownlee [1965].

Following the above mentioned analysis of variance, the results for the
Kruskal-Wallis non-parame t ri c H-~test for testing for differences between group
means (averages) are printed. The value of H is printed along with its

significance level (F PROB.). The H-test uses the ranks of the measurements
and avoids any assumption about the distribution of measurement errors.
Details of this test may be found in §7.7 of Brownlee [1965].

E STIMATES . The following items are printed for each group:

(1) group number,

(2) number of observations in the group,
(3) mean,

(4) within standard deviation,

(5) standard deviation of the mean,

(6) minimum (i.e., smallest) observation,

(7) maximum (i.e., largest) observation,

(8) the sum of the ranks of the observations, and

(9) a 95-percent confidence interval for the mean.

The results are printed with the group numbers (tags) in consecutive,

increasing order regardless of the order in which the numbers were entered.

In printing the means and standard deviations of the groups, the
characters + and - are put immediately after the high (largest) and low

(smallest) values. If two or more values are tied for the largest value, the

character + is put immediately after all of the tied values. Ties for the

smallest values are handled in an analogous manner using the character -. If

the number of observations in a group equals one, ESTIMATE NOT AVAILABLE is

printed under WITHINS S.D. and S.D. OF MEAN. Also, ********** TO **********

appears under 95PCT CONF INT FOR MEAN.

The total number of observations, mean, minimum observation and maximum
observation are also printed for the whole dataset combined. In addition, the

within standard deviation, standard deviation of the mean and 95-percent
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confidence interval for the mean are printed for three different models: a

fixed effects model (Model I), a random effects model (MODEL II) and a model

which assumes that all observations are from a single group. The confidence
limits are formed by taking the grand mean plus (and minus) the product of the

percentage point of Student's t distribution and the standard deviation of the

mean. Let k be the number of groups and n be the total number of observations
with postitive tag. Then, the standard deviation of the mean is the square

root of the variance of the mean formed as follows:

Model Variance Variance of

Mean
Degrees of

Freedom

I Vj = Within groups mean square V
x
/n n-k

II vn * I (Yd) - T)
2
/0-l)

i=l

vn/k
t—

ii

Ungrouped Vu = Total mean square Vn n-1

PAIRWISE MULTIPLE COMPARISON OF MEANS . This section only appears if the

significance level (value of F PROB.) of the between groups F-ratio is less

than 0.10. The Newman-Keuls-Hartley procedure is not performed if the number
of measurements with positive tag is less than four plus the number of

groups.

The purpose of this comparison is to divide the groups in such a way that
the group means within a division are not significantly different at the 0.05
significance level, whereas the group means in different divisions are

significantly different at the 0.05 level. Two different procedures are used:

the Newman-Keuls-Hartley method and the Scheffe" method. The two methods are
similar but not identical and frequently give slightly different results. The
Newman-Keuls-Hartley method is described in §10.6 of Snedecor [1956] and §10.8
of Snedecor and Cochran [1967]. The Scheffe^ method is discussed in §10.3 of
Brownlee [1965] . Groups are separated by a string of five asterisks. If two

divisions have no group means in common, the two divisions are separated by

two strings of five asterisks.

Both the Newman-Keuls-Hartley method and the Scheffe^ method require
percentage points of the studentized range: an approximation developed by
Mandel is used to compute them. Since the Newman-Keuls-Hartley method is

designed for use when the number of observations in each group is the same,

the number of observations in each of the two groups is approximated by m,

where

1/m = (
1
/ 2

)*(l/m
i + 1/m j

)

and m^ and m^ are the actual number of measurements in each of the two

g roups.

TEST FOR HOMOGENEITY OF VARIANCES . The usual analysis of variance for a

one-way classification assumes that the variances of all groups are the same.
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This section of output provides information for assessing the validity of this

assumption. Small values of the significance level P indicate lack of

homogeneity of variance. The Cochran's C statistic printed is discussed on
page 180 of Dixon and Massey [1957] and in more detail in chapter 15 of

Eisenhart et al. [1947]. The Bartlett-Box F-test is a modification of

Bartlett's test which uses the F-distribution rather than the chi-squared
distribution and is less sensitive to non-normality. It is discussed on pages
179 and 180 of Dixon and Massey [1957], A table of critical values of

(maximum variance) / (minimum variance) for equal sample sizes is given on pages
100 and 101 of Owen [1962].

If either P value is less than or equal to 0.10, the approximate between
mean F-test in the presence of heterogeneous variance and its significance
level P are also printed. This approximate F-test for testing for differences
between means is described on pages 287-289 of Snedecor [1956] . This
information does not appear in figure F-lb because both P values (significance
levels) exceed 0.10.

MODEL II - COMPONENTS OF VARIANCE . This is the usual analysis of

variance estimate for the between component in a random effects model (Model
II). For a discussion of this analysis, see §10.6 and §10.7 of Brownlee
[1965].

The example program of figure F-la uses A0V1 to analyze 16 determinations
of the gravitational constant, grouped according to the material used to make

the measurements. Figure F-lb shows the output from this example. A

discussion of this example can be found on pages 314-316 of Brownlee [1965].



MAIN PROGRAMI PROGRAM EXANPL

DATA 8

C

C DEMONSTRATE AO VI USING SINGLE PRECISION VERSION OP STARPAC
C RUN ON CYBER 180/BA0.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EOUATED TO FILE T A P E 6 ON CYRERS)
C [SEE CHAPTER 1# SECTION D.AI
C

C N.B. DECLARATION OF Y AND TAG MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y ( 2 0 ) > T AG ( 20

)

DOUBLE PRECISION DSTAM200)
C

COMMON /CSTAK/ DSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK 200
C

C RE AO NUMBER OF OBSERVATIONS
C OBSERVED DATA
C TAG VALUES
C

READ 100, N

READ 101, ( Y ( I ) » I«1,N)
READ 101, ( TAG ( I ) , I 1 » N )

C

C PRINT TITLE AND CALL A0V1 FOR ANALYSIS OF VARIANCE
C

WRITE (6, 102)
CALL A0V1 (Y, TAG, N, LDSTAK)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (15)
101 FORMAT (20F5.U
102 FORMAT ( '1RESULTS OF STARPAC ONE-WAY ANALYSIS OF VARIANCE',

* • SUBROUTINE AOVl'J
ENO

16
83.

0

81.0

1.0

1.0

76.0

78.0

1.0

1.0

79.0

72.0

1.0

1.0
61. 0 61.0

2.0

2.0

67.0

67.0

2.0

2.0
6 A . 0 78.0
2.0 3.0

71.0

75.0
3.0 3.0

72. C 7 A .

0

3.0 3.0

Figure F-la

Example program using AOV

1
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CHAPTER 7

CORRELATION ANALYSIS

A. Introduction

STARPAC contains two subroutines for correlation analysis of a multivari-
ate random sample. The analysis provided by these subroutines consists of

seven tables, which, when used together, aid the user in using correlation
techniques effectively for prediction and model building. The analysis is the

same as that provided by the OMNITAB II command CORRELATION [Hogben et al.

1971], For further information on correlation techniques users should consult
Kendall and Stuart [1973], Brownlee [1965] and Anderson [1958].

Users are directed to §B for a brief description of the subroutines. The

declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F

.

B

.

Subroutine Descriptions

Subroutine CORR computes and prints 1) the simple correlation matrix and

2) the significance levels of the simple correlation coefficients; 3) the

partial correlation coefficients and 4) their significance levels; 5) the
Spearman rank correlation coefficients; 6) a test for a quadratic relationship
among the variables; and 7) 95-percent and 99-percent confidence intervals for

the simple correlation coefficients.

Subroutine CORRS provides the same analysis as CORR but returns the

variance-covariance matrix used to compute the correlation coefficients. The
user can also optionally suppress the printed output.

C

.

Subroutine Declaration and CALL Statements

NOTE; Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

CORR: Compute and print a correlation analysis of a multivariate random
sample

<real> YM (n,m)
DOUBLE PRECISION DSTAK (Idstak)
COMMON / CSTAK/ DSTAK

CALL CORR (YM, N, M, IYM
, LDSTAK

)
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CORRS: Compute and optionally print a correlation analysis of a multivariate
random sample; return variance-oovarianee matrix

<real> YM(n, m)
>

VC

DOUBLE PRECISION DSTAK (l dstak )

COMMON /CSTAK/ DSTAK

t

CALL CORRS (YM, N, M, IYM, LDSTAK, NPRT, VCV
,

IVCV)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: —> indicates that the argument is input to the subroutine and that

the input value is preserved;
<-- indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;—- indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* *

• indicates that the variable is passed via COMMON.

DSTAK The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

IERR ' *
* An error flag returned in COMMON /ERRCHK/. [See chapter 1, §D.5.]
Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

IVCV -—> The exact value of the first dimension of the matrix VCV as

specified in the calling program.

IYM —> The exact value of the first dimension of the matrix YM as

specified in the calling program.

LDSTAK —> The length of the double precision workspace vector DSTAK. LDSTAK
must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,
otherwise P = 1.0. [See chapter 1, §B.]

— continued —
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For CORR:

LDSTAK > (47+max(N,M)) /2 + (max(N,M)+N« (M+3)+M+7«

M

2
) «P

For CORRS:

LDSTAK > (47+IO«max(N,M)) /2 + 10
•
(max(N,M)+N» (M+3)+M+6* M2 ) •

P

where 10 = 0 if NPRT = 0 and 10 = 1 if NPRT t 0

M —> The number of variables measured for each observation, that is,

the number of columns of data in YM.

N --> The number of observations, that is, the number of rows of data in

YM.

NPRT --> The argument controlling printed output.

If NPRT = 0 the printed output is suppressed.

If NPRT t 0 the printed output is provided.

VCV <— The matrix of dimension at least M by M that contains the

variance-covariance matrix,

N

VCV ( j ,
k) = (N-l)" 1

l (YM(i,j) - Y0(YM(i,k) - Y
fc )

i=l

N _ N
where Y- = N” 1

. J YM(i,j) and Yk = N" 1
. J YM(i,k).

i=l i=l

YM --> The matrix of dimension at least N by M that contains the observed
multivariate data. The element in the i

1-*1 row and column is

the i c ^ observation on the variable.

E . Computational Methods

E . 1 Algorithms

Formulas for the computed tables are given in §E.2. The code and output
for the correlation analysis subroutines are adapted from OMNITAB II [Hogben
et al. 1971] .

E . 2 Computed Results and Printed Output

The argument controlling the printed output, NPRT, is discussed in §D.
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STARPAC correlation analysis subroutines compute and print a seven-part
correlation analysis. The output for each part is discussed individually
below; the text for this discussion is taken from the OMNITAB II User’s
Reference Manual [Hogben et al. 1971],

The Simple Correlation Coefficient Matrix . The (j,k) t ^1 entry of this
matrix is the simple (product moment) correlation coefficient, rjk> between
the data in columns j and k defined by

r ik = VCV(.j,k)
t

(VCV(j,j).VCV(k,k))l / 2

Note that when more than two variables are under study, the simple correlation
coefficient can be seriously distorted by the effect of other variables. The
partial correlation coefficient (see below) can be used to identify such
distortion.

The Significance Levels of the Simple Correlation Coefficients . The
(jjk)"^ entry of this table is the significance level, Sr ( j , k) of the

corresponding partial correlation coefficient, rj k ,

S r (j,k) = probability of exceeding Fq(1,N-2)

where Fq is an F-statistic with 1 and N-2 degrees of freedom,

(N-2)r ik
2

F0 ( 1 ,N-2) =—
(
l“ r

jk
2

)

If the “true" correlation coefficient is equal to zero, then S r
(j,k) is the

probability that in a random sample (of the same size) the absolute value of a

sample correlation coefficient will exceed the absolute value of the observed
correlation coefficient, rj^..

The Partial Correlation Coefficients . The partial correlation
coefficient, Pj k > between the data in columns j and k, j*k, with the remaining

variables fixed, i.e., held constant, is given by

Pjk
~ “cjk^ c

j j
* ckk^

where Cj k denotes the (j,k) t '1 element of the inverse of the simple correlation
matrix. Because the partial correlation coefficient measures the correlation
between two variables after eliminating the effect of the remaining variables,
it may avoid the distortion suffered by the simple correlation coefficient
when more than two variables are under study. The user should therefore
compare the simple correlation coefficients with the partial correlation
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coefficients. Any "large" discrepancy indicates that one or more of the

remaining variables is having an important effect on the relationship. [See

Kendall and Stuart, 1961, §27.5, page 318.]

The Significance Levels of the Partial Correlation Coefficients . The

entry of this table is the significance level, Sp( j , k) of the

corresponding partial correlation coefficient, pj k ,

Sp(j,k) = probability of exceeding Fq(1,N-M)

where Fq is an F-statistic with 1 and N-M degrees of freedom,

(N-M)p

j

k
2

Fq(1,N-M) = •

(1-Pjk
2

)

If the "true" partial correlation coefficient is equal to zero, then Sp(j,k)
is the probability that in a random sample (of the same size) the absolute
value of a partial correlation coefficient will exceed the absolute value of

the observed partial correlation coefficient, Pj k *

Spearman Rank Correlation Coefficient . The rank correlation coefficient
does not require the assumption that the data have a bivariate normal
distribution. The Spearman rank correlation coefficient, Sj k ,

for the data in

columns j and k is computed from

where

/(A - 2Tj ) (A - 2Tk )

N

Dj k
2 =

l [
rank ( YM ( i , j ) )

- rank( YM(i ,k))
]

2
,

i = l

A = (N— l)(N)(N+l)/6,

Tj > (l/12)g(t
J
-l)(tj)(t

j
+l)),

j

Tk = (l/12)K(t k-D(tk )(tk+l»,
k

tj - number of ties in a set of tied values in column j of YM
,

and

t k = number of ties in a set of tied values in column k of YM.
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If there are noThe quantities Tj and adjust for ties in the ranks,

ties, Tj and equal zero and

Sjk - 1 ~ (Djk / A).

A comparison should be made between the rank correlation coefficients and the

corresponding simple and partial correlation coefficients. Again, a "large"

discrepancy between two comparable coefficients is an indicator of some

abnormality in the data. See Kendall [1948] for further details.

Significance Level of Quadratic Fit over Linear Fit . Underlying the use

of a correlation coefficient is the assumption that the two variables are

linearly related. The results in this part are useful in assessing the

validity of this assumption of linearity. The variables are all assumed to be

normally distributed. The numbers printed are the significance levels for a

F-test of the hypothesis that the quadratic term in a quadratic model is zero.

The F-statistic used is

Fq(1,N-3) = RSS(linear model) - RSS(quadratic model)

RSS(quadratic model) / (N-3)

with 1 and (N-3) degrees of freedom, where RSS is the residual sum of squares
function. The values of 1 and (N-3) are printed in the heading. The
significance level, Sq, is then computed as

Sq = Pr(F > Fq).

Small values of the significance level (less than 0.05, for example) indicate
lack of linearity. The test results differ depending upon which variable of a

pair is considered the dependent variable and which one is considered the

independent (or predictor) variable. Hence, the entire table is printed,
rather than just the lower triangle. The diagonal entries are always equal to

one and have no particular relevance. Tests of hypotheses in linear
regression are discussed in §13.8 of Brownlee [1965].

Confidence Intervals For Simple Correlation Coefficients . Both 95-percent
and 99-percent confidence intervals for the simple correlation coefficients
are printed in this two-way table. There are two entries in each cell of the

table. The values 0.95 and 0.99 are printed along the upper left to lower
right diagonal. The 95-percent confidence limits are printed below the
diagonal and the 99-percent confidence limits are printed above the diagonal.
The number in the lower left of each cell is the lower confidence limit and

the number in the upper right is the upper confidence limit.

The confidence intervals are based on a normal approximation. [See

Morrison, 1967, chapter 3, page 101.] They are computed as follows:

Lower confidence limit: tanh[z-u//N-3]

Upper confidence limit: tanh [z+u//N-3]
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where

and

tanh 1 (r

0.50 loge [ ( l+rjk )/(l-rj k )

]

u

1.96

I

2.58

for 95-percent

for 99-percent

confidence

confidence

interval

interval.

F . Example

The
data are
study to

relative
4) . The

sample program shown in figure F-la illustrates the use of CORR. The

taken from Draper and Smith [1968], page 216. The data are part of a

determine the effect of relative urbanization, educational level, and

income (columns 1, 2, and 3, respectively) on product usage (column
output from CORR is shown in figures F-lb and F-lc.
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MAIN PROGRANI PR06RAH EXAMPl
C

C DEMONSTRATE CORR USING SINGLE PRECISION VERSION OP STARPAC
C RUN ON CYBER 180/840.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO PILE TAPE6 ON CYBERS)
C ESEE CHAPTER 1# SECTION D.43
C

C N.Be DECLARATION OP YM MUST BE CHANGED TO DOUBLE PRECISION
C IP DOUBLE PRECISION VERSION OF STARPAC IS USED,
C

REAL YN ( 20» 6 )

DOUBLE PRECISION DSTAM200S
C

COMMON /CSTAK / DSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK • 206
I YM = 20

C

C READ NUMBER OP OBSERVATIONS AND NUMBER OF VARIABLES
C OBSERVED NULTIVARIATi DATA
C

READ 160s Ns M

READ 101# ( (YH(Z#J)» J«1#HI» I«1#NJ
C

C PRINT TITLE AND CALL CORR TO PERFORM CORRELATION ANALYSIS
C

NR I Ti ( 6# 162

)

CALL CORR < YM# N# H# 1 YM# LOST AK

I

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (215)
101 FORMAT (AFfe.li

102 FORMAT (URESULTS OF STARPAC*#
* » CORRELATION ANALYSIS SUBROUTINE CORR*)
END

D AT A l 9 A
42.2 11 ©2 31 © 9 167.1
48©6 10© 6 13.2 174.4
42 ©6 10 ©6 26.7 160.8
39.0 10©4 26.1 162.0
34o? 9.3 30©1 14C.8
44 = 5 10©8 8.5 174.6
39.1 10c7 24.3 163.7
40© 1 1 0 © 0 18©fe 174.5
45 ©9 12.0 20.4 IBS .7

Figure F-la

Example program using CORR
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CHAPTER 8

LINEAR LEAST SQUARES

A. Introduction

STARPAC contains eight subroutines for linear least squares analysis.
For four of these, the user specifies the model by supplying the design matrix
(the matrix whose columns are the independent variables plus a column of ones
if a constant term is being estimated). The other four perform the same
analysis for the special case of a polynomial model, where the need for the
user to explicitly create the design matrix is eliminated.

Each of the subroutines described in this chapter assumes that the

observations of the dependent variable, y^, which are measured with error, are

modeled by

NPAR

Yi =
[ I 6(j)*x

i (j)] + for i = 1, ..., N,

j = l

where

N is the number of observations;

NPAR is the number of parameters;

x-^(j) is the j
1-^1 element of the i

c ^ row of the design matrix (for the
user-specified model, x^(j) = XM(i,j) for i = 1, ..., N and j

= 1

,

NPAR, while for the polynomial model, x.j_(j) = X(i)d“l for i = 1,

. . «

,

N and j — 1, NPAR^

;

8 is the vector of the NPAR unknown parameters (coefficients); and

e i
is the random error in the i th observation.

A

The least squares solution, B, is that which minimizes (with respect to B) the
residual sum of squares function

N

RSS(B) = l [e 1
2 -wt

i ]

i = l

N - NPAR
=

l [(Yi "
[ l 3(j )*x

i (j ) ])
2 •wt

i ]

i=l j=l

where carat (
A

) denotes the estimated quantity, and

wt
t

is the weight assigned to the i th observation (wt-
L

= 1.0 in the
"unweighted" case). Appendix B discusses several common applications
for weighted least squares.
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Users are directed to §B for a brief description of the subroutines. The
declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these

subroutines are discussed in §E. Sample programs and their output are shown
in §F

.

B . Subroutine Descriptions

The linear least squares estimation subroutines permit both weighted and
unweighted analysis. The user has two levels of control over the computations
and printed output.

• In level one, a four-part printed report is automatically provided
and the residuals are returned to the user via the subroutine
argument list.

• Level two also returns the residuals. It. allows the user to specify

the amount of printed output, and, in addition, returns the

following estimated values via the argument list:
- the estimated parameters;
- the residual standard deviation;
- the predicted values;
- the standard deviations of the predicted values;
- the standardized residuals; and
- the variance-covariance matrix of the estimated parameters.

The simplest of the linear least squares subroutines are LLS for the

user-specified model and LLSP for the polynomial model. They perform
unweighted analyses, provide a four-part printed report and return the

residuals via the argument list (level one control). The other six
subroutines provide greater flexibility by adding the weighting and/or level
two control features. These features are each indicated by a different suffix
letter on the subroutine name (e.g., LLSS_ and LLSPWS )

.

• Suffix W indicates user-supplied weights.

• Suffix S indicates level two control of the computations and output.

C. Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F

,

respectively. The conventions used to present the following declaration and
CALL statements are given in chapter 1, §B and §D.
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LLS: Compute and print a four-part unweighted linear least squares
analysis with user-specified model (design matrix); return residuals

<real> Y (n ) ,
XM (n,npar), RES(n)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLS (Y, XM, N, IXM, NPAR, RES, LDSTAK)

LLSS: Compute and optionally print a four-part unweighted linear least
squares analysis with user-specified model (design matrix); return
residuals, parameter estimates, residual standard deviation, predicted
values, standard deviations of the predicted values, standardized
residuals, and variance-covariance matrix of parameters

<real> Y (n ) ,
XM (n y

npar)

,

RES(n)
<real> PAR(npar), PV(rc), SDPV(n), SDRES(n), VCV(npar,npar)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSS (Y, XM, N, IXM, NPAR, RES, LDSTAK,
1 NPRT, PAR, RSD, PV, SDPV, SDRES

,
VCV

,
IVCV)

LLSW: Compute and print a four-part weighted linear least squares analysis
with user-specified model (design matrix) ; return residuals

<real> Y(n), XM (n ,npar)

,

RES(n)
<real> WT(rc)

DOUBLE PRECISION DSTAK (Idstak.)
COMMON /CSTAK/ DSTAK

CALL LLSW (Y, WT, XM, N, IXM, NPAR, RES, LDSTAK)
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LLSWS: Compute and optionally print a four-part weighted linear least

squares analysis with user-speaified model (design matrix) ; return
residuals

,
parameter estimates , residual standard deviation,

predicted
values , standard deviations of the predicted values, standardized
residuals, and variance-covariance matrix of parameters

<real> Y (n ) ,
XM (n,npar), RES (n)

<real> WT(n), PAR (npar), PV(n), SDPV(n), SDRES(n), VCV (npar ,npar

)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSWS (Y, WT, XM, N, IXM, NPAR, RES, LDSTAK,
1 NPRT, PAR, RSD, PV, SDPV, SDRES

,
VCV, IVCV)

LLSP: Compute and print a four-part unweighted linear least squares
analysis with polynomial model (design matrix) ; return residuals

<real> Y(n), X(n), RES(n)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSP (Y, X, N, NDEG, RES, LDSTAK)

LISPS: Compute and optionally print a four-part unweighted linear least
squares analysis with polynomial model (design matrix); return
residuals, parameter estimates, residual standard deviation, predicted
values, standard deviations of the predicted values, standardized
residuals, and variance-covariance matrix of parameters

<real> Y(n), X(n), RES(n)
<real> PAR(npar), PV(n), SDPV(n), SDRES (n), VCV (npar ,npar )

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSPS (Y, X, N, NDEG, RES, LDSTAK,
1 NPRT, LPAR, PAR, NPAR, RSD, PV, SDPV, SDRES, VCV, IVCV)
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LLSPW : Compute and print a four-part weighted linear least squares analysis
with polynomial model (design matrix) ; return residuals

<real> Y(n), X(n), RES(rc)

<real> WT(n)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSPW (Y, WT, X, N, NDEG, RES, LDSTAK)

LLSPWS: Compute and optionally print a four-part weighted linear least
squares analysis with polynomial model (design matrix); return
residuals ,

parameter estimates, residual standard deviation, predicted
values, standard deviations of the predicted valuess standardized
residuals, and variance-covariance matrix of parameters

<real> Y (n ) ,
X(n), RES(n)

<real> WT(n), PAR (npar), PV(n), SDPV(n), SDRES(n), VCV (npar,npar)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL LLSPWS (Y, WT, X, N, NDEG, RES, LDSTAK,
1 NPRT, LPAR, PAR, NPAR, RSD, PV, SDPV, SDRES

,
VCV

,
IVCV)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: —> indicates that the argument is input to the subroutine and that

the input value is preserved;
<-- indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
• * * indicates that the variable is passed via COMMON.

DSTAK *** The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.
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IERR

IVCV

IXM

LDSTAK

LPAR

N

NDEG

NPAR

** An error flag returned in COMMON /ERRCHK/. [See chapter 1, § D . 5 .

]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected and that the

least squares solution was found.

IERR = 1 indicates that improper input was detected.

IERR = 2 indicates that the model is computationally singular,
which may mean the model has too many parameters. The

user should examine the model and data to determine and

remove the cause of the singularity.

IERR = 3 indicates that at least one of the standardized residuals
could not be computed because its standard deviation was

zero. The validity of the variance-covariance matrix is

questionable.

-> The exact value of the first dimension of the matrix VCV as

specified in the calling program.

—> The exact value of the first dimension of the matrix XM as

specified in the calling program.

—> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK
must equal or exceed the value given below, where if the single
precision version of STARPAC is being used P = 0.5, otherwise
P = 1.0. [See chapter 1, §B.]

LDSTAK > 28 +
[
6® N+l + 5® NPAR+NPAR* N+2« NPAR2 ]«P

-> The actual length of the vector PAR as specified in the calling
program.

—> The number of observations.

-> The degree of the polynomial model. The number of estimated
parameters is NPAR = NDEG + 1.

— The number of parameters to be estimated. NPAR is input to the
subroutines with a user-specified model; for the subroutines with
a polynomial model, NPAR = NDEG + 1 is returned.
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NPRT —> The argument controlling printed output. NPRT is a four-digit
integer, where the value of the I 1-'1 digit (counting from left to

right) controls the I tla section of the output.

If the I 1-^1 digit = 0, the output from the I
1"*1 section is

suppressed

;

= 1, the brief form of the section is given;
> 2, the full form of the I*-^1 section is given.

The default value for NPRT is 1112. If the user-supplied value of

NPRT is less than zero or NPRT is not an argument in the

subroutine CALL statement the default value will be used.

A full discussion of the printed output is given in §E.2 and is

summarized as follows.

Section 1 provides information for each observation based on the

solution. Brief output includes information for the

first 40 observations, while full output provides the

information for all of the data.

Section 2 is a set of four residual plots. Brief output and full
output are the same for this section.

Section 3 is an analysis of variance. Brief output and full

output are the same for this section.

Section 4 is the final summary of the estimated parameters. Brief
output does not include printing the variance-covariance
matrix while full output does.

PAR <-- The vector of dimension at least NPAR that contains the estimated
parameter values.

PV <— The vector of dimension at least N that contains the predicted
values of the dependent variable,

RES

NPAR -

PV(i) = l 8(j).

j = l

<— The vector of dime
the solution,

NPAR
RES(i) = y ± - I

j = l

= Yi
“

Yi
=

i( j ) = y± for i = 1 , . . .

,

sion at least N that cont

A

8 ( j ) x
i (j)

Ak

for i = 1 ,
. . . ,

N.

N.

ins the residuals at
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RSD <— The residual standard deviation at the solution,

RSD = (RSS(8)/(Nnzw-NPAR))
1/2

where Nnzw is the number of observations with nonzero weights.

SDPV <— The vector of dimension at least N that contains the standard
deviation of each predicted value at the solution,

SDPV(i) = the i
1"^1 diagonal element of [D» VCV* D^] 1 /2

for i = 1, N, where D is the design matrix, D(i,j) = x^(j)

with x^(j) defined in §A, and DT is the transpose of D.

SDRES <— The vector of dimension at least N that contains the standardized
*_ r_

residuals at the solution, i.e., the i
cn residual divided by its

estimated standard deviation,

SDRES(i) = RES(i)/[(RSD2 /wt 1 )
“ SDPV(i) 2

]

1/2
for i = 1, ..., N.

VCV <-- The matrix of dimension at least NPAR by NPAR that contains the

variance-covariance matrix of the estimated parameters at the

solution,

VCV = RSD2 • (DT * W» D)” 1

where W is the N by N diagonal matrix of weights,

W = diagjwt-^, i=l
, ..., N}

,

and D is the design matrix, D(i,j) = x^(j) with x^(j) defined in

§A, and is the transpose of D«

WT

X

XM

Y

“"> The vector of dimension at least N that contains the weights.
Negative weights are not allowed and the number of nonzero weights
must equal or exceed the number of parameters being estimated. A

zero weight eliminates the corresponding observation from the

analysis, although the residual, the predicted value and the

standard deviation of the predicted value of a zero-weighted
observation are still computed. [See Appendix B.

]

—> The vector of dimension at least N that contains the independent
variable used to construct the design matrix for the polynomial
model.

—> The matrix of dimension at least N by NPAR that contains the

design matrix, i.e., the matrix whose columns are the independent
variables plus a column of ones if a constant term is being
estimated.

—> The vector of dimension
variable.

at least N that contains the dependent
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E. Computational Methods

E . 1 . The Linear Least Squares Algorithm

The linear least squares estimation subroutines use a modified
Gram-Schmidt algorithm [Davis, 1962; Walsh, 1962] . The printed output for the

linear least squares subroutines has been modeled on the linear least squares
output used by OMNITAB II [Hogben et al. 1971],

E . 2 Computed Results and Printed Output

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the linear least squares estimation subroutines consists
of four sections, several of which include tables summarizing the results. In

the following descriptions, the actual table headings are given by the

underlined, uppercase phrases. Results which correspond to input or returned
arguments are identified by the argument name in uppercase (not underlined).

Section 1 provides the following information for each observation, i, i = 1,

. .
. ,

N, based on the solution.

® ROW ‘ the row number of the observation.

• PREDICTOR VALUES : the values for up to the first three columns of the

independent variable (design matrix). For subroutines with a

user-supplied model, this is up to the first three columns of the

matrix XM (excluding the first column if it is all ones, indicating a

constant term); for the polynomial model subroutines, this is the
variable X.

• DEPENDENT VARIABLE : the values of the dependent variable, Y.

• PREDICTED VALUE : the predicted values, PV, from the fit.

® STD DEV OF PREP VALUE : the standard deviations of the predicted
values, SDPV.

® RESIDUAL s the error estimate, RES.

• STD RES : the standardized residual, SDRES.

o WEIGHT : the user-supplied weights, WT, printed only when weighted
analysis is performed.

8-9



Section 2 displays the following plots of the standardized residuals.

• The standardized residuals versus row numbers.

o The standardized residuals versus predicted values.

® The autocorrelation function of the (non-standardized) residuals.

• The normal probability plot of the standardized residuals.

Section 3 provides an analysis of variance. The results of this analysis
depend, upon the order of the columns of the design matrix unless the
columns are orthogonal . The analysis includes the following
information.

9 PAR INDEX : the index, j, of the parameter being examined, 8(j)*

• SUM OF SQUARES RED DUE TO PAR : SSj, the reduction in the sum of

squares due to fitting 8(j) after having fit parameters 8(0, 8(2),
...» 8(j~l). SSj depends on the order of the parameters unless the

design matrix has orthogonal columns. This is a decomposition of the

total sum of squares, TSS, into NPAR + 1 parts

NPAR
TSS =

( l SSj) + RSS(S).

j = l

The residual sum of squares and total sum of squares is also listed in

this column.

• CUM MS RED : the cumulative mean square reduction,

3

MSREDj = l SSk/j for j
= 1, . .., NPAR.

k=l

• DF (MSRED) ; the degrees of freedom associated with the cumulative mean
square reduction for each parameter, DF(MSREDj) = j for

j = 1, ..., NPAR. The degrees of freedom for the residuals,
Nnzw~^ Pj^R » and t *le tota l degrees of freedom, Nnzw ,

where Nnzw is the

number of observations with nonzero weights, are also listed in this
column.

® CUM RES MS : the cumulative residual mean square,

NPAR

RMSj = ( RSS(8

)

+ l SSk )/(Nnzw-j) for j = 1, ..., NPAR.

k=j + l

o DF(RMS ) : the degrees of freedom associated with the cumulative
residual mean square for each parameter, DF(RMSj) = Nnzw-j for

j
= 1 ,

. . .

,

NPAR.
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9 PAR=0
,

F and PROB(F): the F-ratio and its significance level under

the null hypotheses that 8(j) is zero after allowance has been made
for parameters 8(1) > 8(2), 8 (

j

—
1 )

-

This F-ratio is

Fj = SSj/RMS^jpAR for j = 1, •••, NPAR,

with 1 and Nnzw
-NPAR degrees of freedom. The significance level

listed is the probability of exceeding the calculated F-ratio under
the null hypothesis that the corresponding parameter, 8(j), is zero.

• PARS=0, F and PROB(F) : the F-ratio and its significance level under
the null hypothesis that parameters 8(j), 8(j+l), • ••, 8(NPAR), are

zero after allowance has been made for parameters 8(1), 8(2), . ..,

8(j-l). This F-ratio is

NPAR
F

i = ( l SSk/(NPAR-j+l))/RMSNPAR for j = 1, ..., NPAR,

k=j

with NPAR-j+1 and Nnzw~NPAR degrees of freedom. The significance

level listed is the probability of exceeding the calculated F-ratio
under the null hypothesis that all of the parameters 8(j), 8 (j+1),
..., 8 (NPAR) are zero.

The numerator of this ratio is the extra sum of squares accounted for

by inclusion of the terms 8(j)*x(j) + 8( j+1) *x( j+1) + ... + 8(NPAR)»
x(NPAR) in the model, divided by its degrees of freedom; the
denominator is the residual mean square of the full model. This ratio
is a means of comparing the extra sum of squares to its expected value

as estimated by the residual mean square. When the terms of the model
have a logical order of entry, this series of F-tests can be used to

judge how many terms should be included in the model. [See Draper and
Smith, 1981, pages 97 and 98.]

Section 4 summarizes the following information about the final parameter
estimates and their variances.

o The variance-covariance matrix, VCV
,
of the estimated parameters, and

the corresponding correlation matrix,

r

j

k = VCV( J,k)/(VCV( j, j)-VCV(k,k))
1/2

for j = 1, ..., NPAR
and k = 1, ..., NPAR.

• ESTIMATES FROM FIT :

° ESTIMATED PARAMETER : the final estimate for each parameter,
PAR(j) for j = 1, ..., NPAR.

° SD OF PAR : the standard deviation of the estimated parameter,
( VCV( j, j))

1 /2 for j = 1, ..., NPAR.

° T(PAR=0) : the Student's t statistic under the null hypothesis that

PAR(j) is actually zero,
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T(PAR=0)
j

= PAR(j )/(VCV(j ,j))
1/2 for j

= 1, NPAR.

o PRQB (T) : the two-sided significance level of T(PAR=0)j. This is

the probability of exceeding the given t value under the null
hypothesis that the parameter PAR( j ) is actually zero.

o ACC DIG : an estimate of the number of reliable digits in the

parameter estimates, i.e., an indication of the computational
accuracy of the solution. A computationally accurate solution will

produce values between DIGITS-2 and DIGITS, where DIGITS is the

number of decimal digits carried by the user’s computer for a single
precision value when the single precision version of STARPAC is

being used and is the number carried for a double precision value
otherwise. Values less than DIGITS-4 may indicate some

computational difficulty such as poor scaling or near singularity.

• ESTIMATES FROM FIT OMITTING LAST PREDICTOR VALUE ; ESTIMATED
PARAMETER, SD OF PAR, T(PAR=0) and PROB(T) values for a fit omitting
the last column of the design matrix and thus omitting the last
parameter from the model.

• The residual standard deviation, RSD.

• The residual degrees of freedom, Nnzw“NPAR, where Nnzw is the number

of observations with nonzero weights.

o The squared multiple correlation coefficient,

N

__ l wt
i

» Y(i

)

where YrT _ i=lw — — —. .

N

l wt i
i=l

R2 is a measure of how well the fitted equation accounts for the total
variation of the dependent variable, Y. It is only computed when the

first parameter of the model is a constant, i.e., when the elements of

the first column of the design matrix are all equal.

R = 1.0 RSS(g)

I Wtl (Yd) - Yj 2

i = l

F . Examples

User-Specified Model (Design Matrix) . In the example program of figure
F-la, LLS is used to compute the least squares solution for the example given
on pages 61-65 of Daniel and Wood [1971]. The results for this problem are
also discussed in Draper and Smith [1981], pages 372 and 373. Figures F-lb
through F-le show the four pages of output from LLS.

Polynomial Model (Design Matrix) . In the example program of figure F-2a,
LLSP is used to compute the least squares solution for the example given on

page 311 of Miller and Freund [1977]. Figures F-2b through F-2e show the four
pages of output from LLSP.
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Linear Least Squares

With User-Specified Model (Design Matrix)

MAIN PROGRAM!
c

c

c
c

c

c

c

e

c

PROGRAM EXANPL

DEMONSTRATE LIS USING SINGLE PRECISION VERSION OF STARPAC
RUN ON CYBER 180/840.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE 6 ON CYBERS)
tSEE CHAPTER 1# SECTION 0.4]

N.B « DECLARATION OF Y# XH AND RES RUST BE CHANGED TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL Y( 30) » XM<30#5)# RiSCIG}
DOUBLE PRECISION DSTAM500)

C

COMMON /CSTAK/ OSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

l OSTAK • see
IXK « 10

C

C READ NUMBER OF OBSERVATIONS AND NUMBER OF UNKNOWN PARAHETERS
C INDEPENDENT VARIABLES
C DEPENDENT VARIABLES
C

READ 100» N# NPAR
READ 101# UXHU#Ji» I*1#N»# J*1»NPAR)
READ 101# (Yd)# I®1, N

)

C

C PRINT TITLE AND CALL LLS TO PERFORM LINEAR LEAST SQUARES ANALYSIS
C

WRITE (6# 102)
CALL LLS (Y# XN» N» 1XN# NPAR# RES# LOSTAK)

C

STOP
C
C FQRNAY STATEMENTS
e

100 FORMAT (219)
101 FORMAT C21F1.0)
102 FORMAT C1RESULTS FROM STARPAC ( #

• • LINEAR LEAST SQUARES SUBROUTINE LLS*

)

END

DATA! 21 4

l i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

86 80 75 62 62 62 62 62 98 98 56 98 98 58 50 90 50 50 50 96 70
2? 2? 29 24 22 23 24 24 23 18 18 17 18 19 16 18 19 19 20 20 20
69 88 90 87 87 87 93 93 87 80 89 88 82 91 89 86 72 79 80 82 91
42 IT 37 28 IS 18 19 20 15 14 14 13 11 12 8 7 8 8 9 15 15

Figure F-la

Example program using LLS
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Linear Least Squares
With Polynomial Model (Design Matrix)

MAIN PROGRAM! PROGRAM EXAMPL
c

C DEMONSTRATE LLSP USING SINGLE PRECISION VERSION OE STARPAC
C RUN ON CYBER 160/640.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE T A p E 6 ON CYBERSJ
C tSEE CHAPTER 1» SECTION D.43
C

C N.B. DECLARATION OF Ya X AND RES MUST BE CHAN6ED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y ( 30 ) # X(30l> RES ( 303
DOUBLE PRECISION DSTAM500)

C

COMMON /CSTAX/ DSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LOSTAK • 906
C

C READ NUMBER OF OBSERVATIONS AND DEGREE OF THE POLYNOMIAL TO BE FIT
C INDEPENDENT AND DEPENDENT VARIABLES
C

READ 160a Na NDEG
READ 101a (XU»a YU) a I«1aN)

c
c PRINT TITLE AND CALL LLSP TO PERFORM LINEAR LEAST SQUARES ANALYSIS
C

WRITE (6a 102)
CALL LLSP (Ya X# N» NOEGa RESa LOSTAK)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (219)
101 FORMAT (2F5.1)
102 FORMAT C1RESULTS OF STARPAC 8 #

* » LINEAR LEAST SQUARES SUBROUTINE LLSP 8
J

END

DATA! 9 2

0 e 6 12.0
1.6 10.5
2.0 19.0
3.0 8.0
4.0 7.0
5.0 B.O
6.0 7.9
7.0 B.9
B.O 9.0

Figure F-2a

Example program using LLSP
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CHAPTER 9

NONLINEAR LEAST SQUARES

A. Introduction

STARPAC contains 16 user-callable subroutines for nonlinear least squares
regression* Twelve of these are estimation subroutines that compute the least
squares solution as described below, performing either weighted or unweighted
regression with either numerically approximated or user-supplied (analytic)
derivatives. The estimation subroutines allow three levels of control of the

computations and printed output, and allow the user to specify a subset of the

parameters to be treated as constants, with their values held fixed at their
input values. This last feature allows the user to examine the results
obtained estimating various subsets of the parameters of a general model
without rewriting the model subroutine for each subset. The other four
subroutines described in this chapter are utility procedures which choose
optimum step sizes for numerically approximating the derivative and which
verify the correctness of user-supplied (analytic) derivatives.

Each of the subroutines described in this chapter assumes that the
observations of the dependent variable, y^, are modeled by

y-j_
= f

i
(x

i ,$) + for i = 1, ...» N,

where

N is the number of observations;

f^ is the function (nonlinear in its parameters) that models the i 1"*1

observation;

x^ is the vector of the M independent variables at the i*1 *1 observation;

g is the vector of the NPAR model parameters; and

e i
is the unobservable random error in the i c ^ observation, which is

estimated by the i*"*
1 residual.

The least squares estimates of the parameters, g, are obtained using an
iterative procedure that requires the matrix of partial derivatives of the
model with respect to each parameter,

D(i,k) = 3f i
(x i ,g)/9g(k) for i = 1, ..., N and k = 1, ..., NPAR.

The derivative matrix may be supplied analytically or approximated
numerically

.

A

The least squares solution, g, is that which minimizes (with respect to

g ) the residual sum of squares function,

9-1



[e^.wti]
N N

RSS(B) = I [Oi - f
i
(xis 6))2owt i ]

= l

i=l i=l

where carat

(*
*

) denotes the estimated quantity, and

wt^ is the weight assigned to the i c ^ observation (wt-^ = 1.0 in the

"unweighted" case). Appendix B discusses several common applications
for weighted least squares.

The user must supply both initial values for the parameters and the

subroutine NLSMDL (described in §D) used to compute f
Xj_ ,B£ ) »

i = 1, ..., N,

i.e., the predicted values of the dependent variable given the independent
variables and the parameter values from iteration £ for £ = 1, 2, ... .

Initial parameter values should be chosen with care, since good values can

significantly reduce computing time.

STARPAC provides a variety of subroutines to accommodate many levels of

user sophistication and problem difficulty. Users are directed to §B for a

brief description of the subroutines. The declaration and CALL statements are
given in §C, and the subroutine arguments are defined in §D. The algorithms
used and the output produced by these subroutines are discussed in §E. Sample
programs and their output are shown in §F.

B . Subroutine Descriptions

B. 1 Nonlinear Least Squares Estimation Subroutines

The simplest of the 12 nonlinear least squares estimation subroutines,
NLS, requires neither user-supplied weights nor analytic derivatives. The
estimated results and a variety of statistics are automatically summarized in

a five-part printed report, and the estimated parameters and residuals are
returned to the user via the subroutine argument list (level one control,
described below). Most nonlinear least squares problems can be solved using
NLS.

The other 11 estimation subroutines add the weighting, derivative and
level two and three control features both singly and in combination, providing
greater flexibility to the user at the price of less simplicity. These
features are indicated by the suffix letter(s) on the subroutine name (e.g.,
NLS_S and NLSWDC).

• Suffix W indicates user-supplied weights.

• Suffix D indicates user-supplied (analytic) derivatives.

© Suffix C indicates level two control of the computations.

© Suffix S indicates level three control of the computations.

9-2



The three levels of computation and printed output control are as

f ollows.

o In level one, a five-part printed report, discussed in detail in

§E.2.a, is automatically provided and the estimated model parameters

and residuals are returned to the user via the argument list.

• Level two also returns the estimated parameters and residuals, and,

in addition, allows the user to supply arguments to indicate
- a subset of the model parameters to be treated as constants,

with their values held fixed at their input values;
~ either the step sizes used to compute the numerical approxima-

tions to the derivative, or, when user-supplied analytic
derivatives are used, whether they will be checked;

- the maximum number of iterations allowed;
- the convergence criteria;
- the scale (i.e. , the typical size) of each parameter;
- the maximum change allowed in the parameters at the first

iteration;
- how the variance-covariance matrix is to be approximated; and
- the amount of printed output desired.

© Level three has all the features of level two, and, in addition
returns the following estimated values via the argument list;

- the number of nonzero weighted observations (only when a

weighted analysis is performed);
- the number of parameters actually estimated;
- the residual standard deviation;
- the predicted values;
-- the standard deviations of the predicted values;
- the standardized residuals; and
- the variance-covariance matrix of the estimated parameters.

B «2 Derivative Step Size Selection Subroutines

When the partial derivatives used in the nonlinear least squares solution
are not available analytically, STARPAC subroutines approximate them numeri-
cally. In this case, the subroutines can select optimum step sizes for
approximating the derivatives. [See §E.l.b.] The user also has the option of

computing these step sizes independently of the estimation process by calling
either of the two step size selection subroutines directly. For example, when
planning to use the parameter fixing capability [argument IFIXED] to examine
several subsets of the parameters of a general model, computing the step sizes
first and passing them to the estimation subroutine is more efficient than
recomputing them each time the estimation subroutine is called.

The simplest of the two user-callable step size selection subroutines,
STPLS, summarizes the step size selection information for each parameter in a

printed report and returns the step sizes to the user via the subroutine
argument list.
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The second step size selection subroutine, STPLSC, differs from STPLS
only in that it enables the user to supply arguments to indicate

- the number of reliable digits in the model results;
- the number of exemptions allowed by the acceptance criteria,

specified as a proportion of the total number of observa-
tions (see §E.l.b);

- the scale (i.e.
,

the typical size) of each parameter; and
~ the amount of printed output desired.

B . 3 Derivative Checking Subroutines

When the partial derivatives used in the nonlinear least squares solution
are available analytically, the user can code them for use by the estimation
subroutines. [See §D, argument NLSDRV.] Because coding errors are a common
problem with user-supplied derivatives, the STARPAC estimation subroutines
automatically check the validity of the user-supplied derivative code by

comparing its results to numerically approximated values for the derivative.
When the results are questionable, the checking procedure attempts to

determine whether the problem lies with the user's code or with the accuracy
of the numerical approximation. [See §E.l.c.] Although the checking proce-
dure is automatically available to the estimation subroutines which accept
user-supplied derivatives, the user may want to check the derivative code
independently of the estimation process. In these cases, the user can call
either of the two derivative checking subroutines directly, and suppress
checking by the estimation subroutines. [See §D, argument IDRVCK.]

The simplest of the two derivative checking subroutines, DCK.LS,

summarizes the results of the check in a printed report.

The second of the derivative checking subroutine, DCKLSC, differs from
DCKLS only in that it enables the user to supply arguments to indicate

- the number of reliable digits in the model results;
- the agreement tolerance;
- the scale (i.e., the typical size) of each parameter;
- the row at which the derivative is to be checked; and
- the amount of printed output desired.

C . Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B, and §D.
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Nonlinear Least Squares Estimation Subroutines

The <basic declaration block> identifies declaration statements that are

needed by all of the nonlinear least squares estimation subroutines. The user
should substitute the following four statements for each occurrence of <basic
declaration block> given below.

<real> Y (n), XM PAR (npar), RES(n)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

NLS : Compute and print a five-part weighted nonlinear least squares
analysis with numerically approximated derivatives; return parameter
estimates and residuals

<basic declaration block>

CALL NLS (Y, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK)

NLSC : Compute and optionally print a five-part unweighted nonlinear least
squares analysis with numerically approximated derivatives using
user-supplied control values; return parameter estimates and
residuals

<basic declaration block>
INTEGER IFIXED (npar)
<real> STP (npar), STOPSS, STOPP, SCALE (npar)

,

DELTA

CALL NLSC (Y, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT)
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NLSS: Compute and optionally print a five-part unweighted nonlinear least

squares analysis with numerically approximated derivatives using
user-supplied control values; return parameter estimatess residuals

,

number of nonzero weights, number of parameters estimated> residual
standard deviation> predicted valuess standard deviations of the

predicted values and variance-covariance matrix of the estimated
parameters

<basic declaration block>
INTEGER IFIXED (npar)
<real> STP (npar), STOPSS, STOPP, SCALE (npar)

>

DELTA
<real> RSD, PV(n), SDPV(n), SDRES(n), VCV (npar

e

s npare)

CALL NLSS (Y, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT,

2 NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

NLSW: Compute and print a five-part weighted nonlinear least squares
analysis with numerically approximated derivatives; return parameter
estimates and residuals

<basic declaration block>
<real> WT(n)

CALL NLSW (Y, WT, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK)

NLSWC: Compute and optionally print a five-part weighted nonlinear least
squares analysis with numerically approximated derivatives using
user-supplied control values; return, parameter estimates and residuals

<basic declaration block>
INTEGER IFIXEL(npar)
<real> WT(n)
<real> STP(npar), STOPSS, STOPP, SCALE(npar)

,
DELTA

CALL NLSWC (Y, WT, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT)
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NLSWS: Compute and optionally print a five-part weighted nonlinear least
squares analysis with numerically approximated derivatives using
user-supplied control values; return parameter estimates, residuals,
number of nonzero weights, number of parameters estimated, residual
standard deviation, predicted values, standard deviations of the

predicted values and variance-covariance matrix of the estimated
parameters

<basic declaration block>
INTEGER IFIXED (npar)
<real> WT(n)
<real> STP(npar), STOPSS, STOPP, SCALE(npar^), DELTA
<real> RSD, PV(rc), SDPV(n), SDRES(n), VCV (npare, npare)

CALL NLSWS 'Y, WT, XM, N, M, IXM, NLSMDL, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT,
2 NNZW, NPARE, RSD, PV, SDPV, SDRES

,
VCV

,
IVCV)

NLSD: Compute and print a five-part unweighted nonlinear least squares
analysis with user-supplied derivatives; return parameter estimates
and residuals

<basic declaration block>
EXTERNAL NLSDRV

CALL NLSD (Y, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK)

NLSDC: Compute and optionally print a five-part unweighted nonlinear least
squares analysis with user-supplied derivatives using user-supplied
control values; return parameter estimates and residuals

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED (npar)
<real> STOPSS, STOPP, SCALE (npar )

,

DELTA

CALL NLSDC (Y, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT)
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NLSDS: Compute and optionally print a five-part unweighted nonlinear least
squares analysis with user-supplied derivatives using user-supplied
control values; return parameter estimates, residuals, number of
parameters estimated, residual standard deviation, predicted values,

standard deviations of the predicted values and variance-covariance
matrix of the estimated parameters

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED (npar)
<real> STOPSS, STOPP, SCALE (npar)

,
DELTA

<real> RSD, PV(n), SDPV(n), SDRES(n), VCV (npare, npare )

CALL NLSDS (Y, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,

1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT, NPARE, RSD, PV, SDPV, SDRES, VCV, IVCV)

NLSWD: Compute and print a five-part weighted nonlinear least squares
analysis with user-supplied derivatives; return parameter estimates
and residuals

<basic declaration block>
EXTERNAL NLSDRV
<real> WT(n)

CALL NLSWD (Y, WT, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK)

NLSWDC : Compute and optionally print a five-part weighted nonlinear least
squares analysis with user-supplied derivatives using user-supplied
control values; return parameter estimates and residuals

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED(npar’)

<real> WT(n)
<real> STOPSS, STOPP, SCALE(npar»)

,
DELTA

CALL NLSWDC (Y, WT, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX, NPRT)
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NLSWDS: Compute and optionally print a five-part weighted nonlinear least

squares analysis with user-supplied derivatives using user-supplied
control values; return parameter estimates, residuals, number of
nonzero weights, number of parameters estimated, residual standard
deviation, predicted values, standard deviations of the predicted
values and variance-covariance matrix of the estimated parameters

<basic declaration block>
EXTERNAL NLSDRV
INTEGER IFIXED(npar)
<real> WT(n)
<real> STOPSS, STOPP, SCALE(npar’)

,
DELTA

<real> RSD, PV(rc), SDPV(n), SDRES(n), VCM (npare, npare)

CALL NLSWDS (Y, WT, XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, RES,
1 LDSTAK, IFIXED, IDRVCK, MIT, STOPSS, STOPP, SCALE, DELTA,
2 IVAPRX ,

NPRT, NNZW, NPARE, RSD, PV, SDPV, SDRES
, VCV

,
IVCV)

Step Size Selection Subroutines

STPLS : Compute and print optimum step sizes for numerically approximating
derivatives; return selected step sizes

<real> XM(n,/7z), PAR(npar), STP(npar)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

CALL STPLS (XM, N, M, IXM, NLSMDL, PAR, NPAR, LDSTAK, STP)

STPLSC : Compute and optionally print optimum step sizes for numerically
approximating derivatives using user-supplied control values; return
selected step sizes

<real> XM (n,m), PAR (npar), STP (npar)
<real> EXMPT, SCALE (npar)
DOUBLE PRECISION DSTAK {.Idstak)

COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL

CALL STPLSC (XM, N, M, IXM, NLSMDL, PAR, NPAR, LDSTAK, STP,
1 NETA, EXMPT, SCALE, NPRT)
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Derivative Checking Subroutines

DCKLS: Perform and print derivative checking analysis; return error code

<real> XM (n ,m)

,

PAR(npar»)

DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL, NLSDRV

CALL DCKLS (XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, LDSTAK)

DCKLSC: Perform and optionally print derivative checking analysis using
user-supplied control values; return error code

<real> XM(n,77z)> PAR (jipar)

<real> SCALE (jipar)

DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK
EXTERNAL NLSMDL, NLSDRV

CALL DCKLSC (XM, N, M, IXM, NLSMDL, NLSDRV, PAR, NPAR, LDSTAK,
1 NETA, NTAU, SCALE, NROW, NPRT)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE? —> indicates that the argument is input to the subroutine and that
the input value is preserved;

<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;— indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
° °

• indicates that the variable is passed via COMMON.

D <-- The matrix of exact dimension N by NPAR that contains the partial
derivatives of the model with respect to each parameter,
PAR(k), k = 1, ..., NPAR. This argument is used within derivative
subroutine NLSDRV [see argument NLSDRV below].

DELTA “> The maximum scaled change allowed in the parameters at the first
iteration, i.e.

,

6q. [See §E.l.a.] The default value is 100.0.

When DELTA <0.0 or when DELTA is not an argument of the

—continued—
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subroutine CALL statement the default value is used. A smaller
value of DELTA may be appropriate if, at the first iteration, the

computation of the predicted values from the user’s model subrou-
tine produces an arithmetric overflow or the parameters leave the
region of interest in parameter space. A reasonable alternative

to the default value of DELTA is an upper bound to the scaled
change that the estimated parameters should be allowed to make on

the first iteration,

DELTA = min{ lA^xBCk) |
/SCALE(k), for k = 1, ..., NPAR}

where A^BCk) is the maximum change allowed for the kth parameter

at the first iteration.

DSTAK ee * The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

EXMPT —> The proportion used to compute the number of observations,
a = EXMPT»N, for which the forward difference quotient derivative
with respect to a given parameter is exempted from meeting the

acceptance criteria for step size selection. [See §E.l.b.] The
default value for EXMPT is 0.1 (10 percent). When the user-
supplied value is outside the range [0.0, 1.0]

,

or when EXMPT is

not an argument of the subroutine CALL statement, the default
value is used.

IDRVCK —> The indicator variable used to designate whether or not the
user-supplied derivative subroutine is to be checked. When
IDRVCK $ 0 the derivative is checked, and when IDRVCK =0 it is

not. The default value is IDRVCK * 0. When IDRVCK is not an
argument of the subroutine CALL statement the default value is

used.

IERR An error flag returned in COMMON /ERRCHK/. [See chapter 1, §D. 5.

]

Note that using (or not using) the error flag will not affect the
printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

For the estimation subroutines:

IERR = 0 indicates that no errors were detected, and that the
iterations converged satisfactorily.

IERR = 1 indicates that improper input was detected.

IERR = 2 indicates that the computation of the residual sum of

squares using the initial parameter values produced an
arithmetic overflow. The user should reduce the size
of DELTA or should supply new starting values.

—continued

—
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IERR = 3 indicates that the model is computationally singular,
which means the model has too many parameters near the
solution. The user should examine the model and data
to determine and remove the cause of the singularity.

IERR = 4 indicates that at least one of the standardized
residuals could not be computed because its standard
deviation was zero. The validity of the covariance
matrix is questionable.

IERR = 5 indicates false convergence. [See §E.l.a.]

IERR = 6 indicates that convergence was not reached in the
allowed number of iterations or model subroutine calls.
[See argument MIT.]

IERR = 7 indicates that the variance-covariance matrix could not

be computed.

For the step size selection subroutines.

IERR = 0 indicates that no errors were detected, and that all
the step sizes satisfied the selection criteria.

IERR = 1 indicates that improper input was detected.

IERR = 2 indicates that one or more of the step sizes did not

satisfy the selection criteria.

For the derivative checking subroutines:

IERR = 0 indicates that no errors were detected, and that the

user-supplied derivative code appears to be correct.

IERR = 1 indicates that improper input was detected.

IERR = 2 indicates that the user-supplied derivative code and
numerical derivatives do not agree for at least one

parameter, but that in each case of disagreement the

accuracy of the numerical derivatives is questionable.
Further testing is suggested.

IERR = 3 indicates that the user-supplied derivative code and
numerical derivatives do not agree for at least one

parameter, and in at least one instance of disagreement
there is no reason to doubt the numerical derivatives.

IFIXED ™> The vector of dimension at least NPAR that contains values used to

indicate whether the corresponding parameter in PAR is to be

treated as a fixed constant or is to be estimated. If

—continued

—
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IFIXED(I) > 0, PAR(I) will be held fixed at its input value; if

IFIXED(I) = 0, PAR(I) will be estimated using the least squares

procedure described in §A. The default values are IFIXED(I) = 0,

I = 1, . .., NPAR, i.e., all parameters are estimated. When
IFIXED(l) < -1

,
or when IFIXED is not an argument of the

subroutine CALL statement, the default value will be used.

IVCV --> The exact value of the first dimension of the matrix VCV as

specified in the calling program.

IVAPRX —> The indicator variable used to specify how the variance-covariance

matrix, VCV, is to be approximated. Three approximations are

available:
At

(1) VCV = RSD2 * (DT.W«D)~ 1

(2) VCV = RSD2 •

H

_1

At, At,

(3) VCV = rsd2 «h-1 . (dt.w*d)«h
-

1

where
At. A^ N At A* At, At

H = DT.W»D + { l e i
*wt

i » (a 2 e
i /ag (j )ae (k)) for j

i=l and k

W is an N by N diagonal matrix of weights,

W = diag{wt^, i = 1, ..., N}

,

when a weighted analysis is performed, and is the identity matrix
A

otherwise, and D is the matrix that contains the partial
derivatives of the model with respect to each parameter.

A

T
Approximation (1) is based on the assumption that H ~ D • W»

D

because the residuals are sufficiently small at the solution;
approximation (2) is based on the assumption that the necessary
conditions for asymptotic maximum likelihood theory have been met;

and approximation (3) is based on the assumption that the
necessary conditions for asymptotic maximum likelihood theory may
be violated. The results of a recent study by Donaldson and
Schnabel [1985] indicate that approximation (1) is preferable
because it is simple, less expensive, more numerically stable and

at least as accurate as approximations (2) and (3). However, all
approximations to the variance-covariance matrix are subject to
sampling variation because they are computed using the estimated
parameter values. The variance-covariance matrix computed for any
particular nonlinear least squares solution should thus be

regarded as only a rough estimate [Bard, 1974; Donaldson and
Schnabel, 1985]

.

= 1 , . . o

,

NPAR
= 1 , . . .

,

NPAR}
;

—continued

—
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If IVAPRX = 1 or 4 then approximation (1) is used;
= 2 or 5 then approximation (2) is used; and
= 3 or 6 then approximation (3) is used.

If IVAPRX = 1, 2, or 3, then, when user-supplied analytic
derivatives are available [see argument NLSDRV]

, they are used to

compute VCV; if IVAPRX =4, 5, or 6, then only the predicted
values from the model subroutine are used to compute VCV. When
analytic derivatives are available, options 1, 2, or 3, will
generally result in a faster, more accurate computation of VCV.

The default value for IVAPRX is 1. When argument IVAPRX is

outside the range [1, 6], or when IVAPRX is not an argument of the

subroutine CALL statement, then the default value will be used.

IXM --> The exact value of the first dimension of the matrix XM as

specified in the calling program.

LDSTAK --> The length of the DOUBLE PRECISION workspace vector DSTAK . LDSTAK
must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,

otherwise P = 1.0. [See chapter 1, §B.]

For NLS, NLSC , NLSS, NLSW, NLSWC and NLSWSs

LDSTAK > 27 + max( IS* (N+NPAR)
,
30+NPARE} +

max { I S • 10 • N ,
94+N • ( 3+NPAR )+( 3 * NPARE2+3 7 * NPARE ) /2 } •

P

with IS = 1 if default values are used for the derivative step
sizes, and IS = 0 otherwise.

For NLSD, NLSDC , NLSDS, NLSWD, NLSWDC and NLSWDSj

LDSTAK > 45 + NPAR + ( 94+N« (3+NPAR )+( 3 • NPARE2 +35* NPARE) fl ) •

P

For STPLS and STPLSC:

LDSTAK > 27 + (N+NPAR) + 10»N«P

For DCKLS and DCKLSC:

LDSTAK > 14 + NPAR + (N* NPAR+N+NPAR) •

P

M —> The number of independent variables, i.e., the number of columns
of data in XM.

MIT —> The maximum number of iterations allowed. This argument is also
used to compute the maximum number of model subroutine calls,

( 2 * MI T ) . The iterations will stop if either limit is reached,

although, as a rule, the maximum number of iterations will be

reached first. The default value for the maximum number of

iterations is 21. When MIT < 0 or when MIT is not an argument of

the subroutine CALL statement the default value will be used.
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N —> The number of observations.

NETA --> The number of reliable decimal digits in the predicted values (PV)

computed by the user's model subroutine. The default value for

NETA is experimentally determined by the procedure described in

Appendix C. The default value will be used when NETA is not an

argument in the subroutine CALL statement, or when the

user-supplied value of NETA is outside the range [1, DIGITS],
where DIGITS is the number of decimal digits carried by the user's
computer for a single precision value when the single precision
version of STARPAC is being used and is the number carried for a

double precision value otherwise.

NLSDRV *** The name of the user-supplied subroutine that computes the partial
derivative matrix (Jacobian). This argument must be listed in an
EXTERNAL statement in the program which calls the STARPAC
estimation or derivative checking subroutine. The form of the

derivative subroutine argument list and dimensioning statements
must be exactly as shown below, although if there is only one

independent variable (M = 1), XM may be declared to be a vector
with dimension IXM.

SUBROUTINE NLSDRV (PAR, NPAR, XM, N, M, IXM, D)

<real> PAR(NPAR)
,
XM(IXM,M), D(N,NPAR)

< Computations for D(I,J), 1=1, N and J = 1, NPAR >

RETURN
END

NLSMDL *** The name of the user-supplied subroutine that computes the
predicted value of the dependent variable given the independent
variables and the current values of the model parameters. This
argument must be listed in an EXTERNAL statement in the program
which calls the STARPAC estimation, step size selection, and/or
derivative checking subroutines. The form of the model subroutine
argument list and dimensioning statements must be exactly as shown
below, although if there is only one independent variable (M = 1),
XM may be declared to be a vector with dimension IXM.

SUBROUTINE NLSMDL (PAR, NPAR, XM, N, M, IXM, PV)
<real> PAR(NPAR)

,
XM(IXM,M), PV(N)

< Computations for PV(I), 1=1, ..., N >

RETURN
END

NNZW <— The number of observations with nonzero weights. N.B. This value
is returned by the estimation subroutines.
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NPAR

NPARE

NPRT

-> The number of parameters in the model, including both those held

fixed at their starting values and those which are to be
estimated.

— The number of parameters actually estimated, i.e., the number of

zero elements in IFIXED. N.B. This value is returned by the

estimation subroutines.

-> The argument controlling printed output.

For the estimation subroutines:

NPRT is a five-digit integer, in which the value of

digit (counting from left to right) is used to control
section of the output.

the I
th

the I
th

If the I 1-*1 digit = 0 the output from the section is
suppressed;

= 1 the brief form of the I c ^ section is given;
> 2 the full form of the 1**^ section is given.

The default value for NPRT is 11112. When NPRT < -1
,

or when
NPRT is not an argument in the subroutine CALL statement, the

default value will be used. If the convergence criteria are not

satisfied the subroutine gives a suitable warning and provides a

printed report even if NPRT =0. A full discussion of the

printed output is given in §E.2.a and is summarized as follows.

Section 1 lists the starting estimates and control values.
Brief output and full output are the same for this

section.

Section 2 reports the results of the iterations. Brief output
includes information only about the first and last
iteration while full output includes information about
all of the iterations.

Section 3 provides information for each observation based on the

final solution. Brief output includes information for

the first 40 observations while full output provides
the information for all of the data.

Section 4 is a set of four residual plots. Brief output and

full output are the same for this section.

Section 5 is the final summary of the estimated parameters.
Brief output does not include printing the

variance-covariance matrix while full output does.

For the step size selection and derivative checking subroutines:

If NPRT = 0 the printed output is suppressed.
If NPRT ^ 0 the printed output is provided.

—continued

—
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When the acceptance criteria are not met a printed report is

provided even if NPRT = 0.

NROW •—> The row of the independent variable matrix at which the

user-supplied derivative code is to be checked. The default value

is the first row with no independent variables equal to zero; when
all rows have one or more independent variables equal to zero, row

one will be used for the default value. When the user-supplied
value is outside the range [1, N] or when NROW is not an argument
of the subroutine CALL statement the default value will be used.

NTAU —•> The agreement tolerance, i.e., the number of digits of agreement
required between the user-supplied derivatives and the derivatives
numerically approximated by the derivative checking subroutine.
The default value is NETA/4. When the user-supplied value of NTAU
is outside the range [1, NETA/2] or when NTAU is not an argument
of the subroutine CALL statement the default value will be used.

PAR — The vector of dimension at least NPAR that contains the parameter
values. For all estimation subroutines it must contain initial
values for the parameters on input and will contain the final
values on return. For the step size and derivative checking
subroutines it must contain the parameter values at which the
operations are to be performed.

PV <— The vector of dimension at least N that contains the predicted
values of the dependent variable at the solution,

a <*.

PV (i ) = f^x-pB) = y± for i = 1, N.

RES <— The vector of dimension at least N that contains the residuals at

the solution,
/*> a *

RES(i) = y (i ) - f 1
(x

i , 3 ) = y(i) - y(i) = e(i) for i = 1, N,

RSD <— The residual standard deviation at the solution,
*

RSD - (RSS(8)/(NNZW-NPARE))
1/2

.

SCALE --> The vector of dimension at least NPAR that contains the scale, or
typical size, of each parameter. The vector SCALE is used to
normalize the size of each parameter so that

1 8j£ (j ) / SCALE( j )
|

» |8 £
(k)/SCALE(k)| for k = 1, ..., NPAR

and j
= 1 ,

. . .

,

NPAR.

Values of |sCALE(k)| > | 8^ (k
)

|

can be used to increase the step
size in cases where the model function is known to be insensitive
to small changes in the value B^C^).

—continued
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For the estimation subroutines:

The default values for SCALE are selected by the NL2S0L
algorithm [Dennis et al. 1981a and 1981b] and are updated at

each iteration. When SCALE is not an argument in the subroutine
CALL statement or when the user-supplied value for SCALE(l) <0
the default procedure will be used to select scale values. When
SCALE (1 ) > 0, values of SCALE (k) < 0 for k = 2, NPAR will
be interpreted as an input error. User-supplied scale values
may be either a vector of the typical size of each parameter or

a vector of ones if the typical sizes of the parameters are

roughly equal; user-supplied scale values can sometimes result
in reduced computing time since these values are not updated at

each iteration.

For the derivative checking and step size selection subroutines:

The default values of SCALE are defined as:

SCALE(k) = 1.0 if PAR(k) = 0.0
,

} for k = 1, ..., NPAR.
SCALE(k) = j PAR(k)

|

otherwise

When SCALE is not an argument in the subroutine CALL statement
or when the user-supplied value of |SGALE(k)| < | PAR ( k ) |

the

default value for SCALE(k) is used. When SCALE(l) < 0, the
default values will be used for SCALE(k), k = 1, ..., NPAR.

When SCALE (1 ) > 0, values of SCALE (k) <0 for k = 2, ..., NPAR
will be interpreted as an input error.

SDPV <“- The vector of dimension at least N that contains an approximation
to the standard deviation of each predicted value at the

solution,
Ab A

SDPV(i) = the i c ^ diagonal element of
[
(D® VCV»

D

T
)]

1 /2

for i = 1, ..., N. This approximation is based on a linearization
of the model in the neighborhood of the solution; the validity of

the approximation depends on the nonlinearity of the model. This

approximation may be extremely inaccurate for a problem with a

highly nonlinear model.

SDRES <-- The vector of dimension at least N that contains an approximation
to the standardized residuals at the solution,

SDRES (i ) = RES(i ) /[ ( RSD2 /WT(i
) )

- SDPV(i) 2
]

1/2

for i = l, . N, which is the i
t 1̂ residual divided by its

individual estimated standard deviation. This approximation is

based on a linearization of the model in the neighborhood of the

solution; the validity of the approximation depends on the

nonlinearity of the model. This approximation may be extremely
inaccurate for a problem with a highly nonlinear model.
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STOPP —

>

The stopping value for the convergence test based on the maximum
scaled relative change in the parameters at the most recent
iteration. The convergence criterion is satisfied if the current

step is a Newton step and

maxf
[

Bo 4-] (k)-B^ (k)
1

/SCALE(k) for k - 1, . .., NPAR} gTOPP
max{( | +| B^ (k)

| )
/SCALE (k) for k =1, ..., NPAR}

[See Dennis et al. 1981a. J This convergence test is roughly
equivalent to the test based on the maximum relative change in

each parameter as measured by max{
| B^+i (k)-B^ (k)

|
/ |

(k)
|

for k =

1, ..., NPAR} . STOPP is not a scale-dependent value; if its value

is 10”4 then this criteria will be met when the first four digits
of each parameter are the same at two successive iterations
regardless of the size of the parameter values.

The default value is approximately iq“BIGITS/ 2
^ where DIGITS is

the number of decimal digits carried by the user's computer for a

single precision value when the single precision version of

STARPAC is being used and is the number carried for a double
precision value otherwise. When the user-supplied value for STOPP

is outside the interval [0.0, 1.0] or when STOPP is not an
argument of the subroutine CALL statement the default value will
be used.

STOPSS —> The stopping value for the convergence test based on the ratio of

the forecasted change in the residual sum of squares, ARSS^+j, to

the current residual sum of squares, RSSCB^). The convergence
criterion is satisfied if certain conditions are met and

ARSS£+1 /RSS(3 £ ) < STOPSS.

[See Dennis et al. 1981a. ] This convergence test is roughly
equivalent to the test based on the relative change in the
residual standard deviation between two iterations l and £+1 as

measured by (s^ - s£+i)/ s £* STOPSS is not a scale-dependent

value; if its value is 10~5 this criteria will be met when the
first five digits of the residual sum of squares are the same at

two successive iterations regardless of the size of the residual
sum of squares.

The default value is approximately the maximum of 10
-^ and

10-2. DIGITS/3, where DIGITS is the number of decimal digits
carried by the user's computer for a single precision value when
the single precision version of STARPAC is being used and is the
number carried for a double precision value otherwise. When the
user-supplied value for STOPSS is outside the interval
[10 S, o.l] or when STOPSS is not an argument of the
subroutine CALL statement the default value will be used.
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STP The vector of dimension at least NPAR that contains the relative
step sizes used to approximate the derivative matrix numerically.
It is input to the estimation subroutines and returned from the

step size selection subroutines. The procedure used to select the

default values is described in §E.l»b. For the estimation
subroutines, when STP is not an argument of the subroutine CALL
statement or when STP(l) < 0 the default values will be used for

all of the step sizes, and when.STP(l) > 0 values of STP(k) < 0

for k = 2, ..., NPAR will be interpreted as an input error.

VCV <—- The matrix of dimension at least NPARE by NPARE that contains the

variance-covariance matrix of the estimated parameters, approxima-
ted as designated by argument IVAPRX. The parameters which are

held fixed [see argument IFIXED] are not included in the variance-
covariance matrix.

The approximation of the variance-covariance matrix is based on a

linearization of the model in the neighborhood of the solution;
the validity of the approximation depends on the nonlinearity of

the model. This approximation may be extremely inaccurate for a

problem with a highly nonlinear model.

WT --> xhe vector of dimension at least N that contains the weights.
Negative weights are not allowed and the number of nonzero weights
must equal or exceed the number of parameters being estimated. A
zero weight eliminates the corresponding observation from the

analysis, although the residual, the predicted value and the

standard deviation of the predicted value are still computed.
[See Appendix B.]

XM —> The matrix of dimension at least N by M whose j*-*1 column contains
the N values of the j

1-*1 independent variable, j = 1, ..., M.

Y ~-> The vector of dimension at least N that contains the dependent
variable.

E . Computational Methods

E . 1 Algorithms

E.l.a Nonlinear Least Squares Estimation

The nonlinear least squares estimation subroutines use the NL2S0L
software package written by Dennis et al. [1981a and 1981b]. The observations
of the dependent variable, which are measured with error, are iteratively fit

to a nonlinear model by minimizing the sums of squares of the errors as

described in §A. The iterations continue until the convergence criteria based
on the change in the parameter values or in the residual sum of squares are

satisfied [see §D, arguments STOPP and STOPSS], the maximum number of

iterations (or model subroutine calls) is reached [see §D, argument MIT], or

the iterations are terminated due to singularity in the model or false
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convergence. All but the first of these stopping conditions may indicate
computational problems and will produce an error report. [See chapter 1,

§D. 5. ]

Singular convergence means that the model contains too many parameters,
at least near the solution, while false convergence can indicate that either
STOPSS or STOPP is set too small for the accuracy to which the model and its

derivatives are being computed or that there- is an error or discontinuity in

the derivative. Users should examine their models to determine and correct
the underlying cause of singular or false convergence.

Iterative procedures for solving nonlinear least squares problems are
discussed in Dennis and Schnabel [1983] ,

Draper and Smith [1981] and Kennedy
and Gentle [1980]. The specific procedure used in STARPAC is as follows. At

iteration £+1 the values of the parameter vector 8^+1 are given by

&£ + 1
=

&£ “
(
D
£
T * W,D£ + S

£
+ A£)~1 * D£

T* W*££ T

subject to the restriction that

NPAR

{ I [(S*+lOO “ 6 £
(k))/SCALE(k)]2}l/2 < ,

k=l

the vector of NPAR estimated parameter values from the £

iteration.

D£ is the N by NPAR matrix of the partial derivatives,

D£(i»k) = 9

f

i
(x

i ,6^ )/38^ (k) for i = 1, ..., N and k = 1, . . .

,

NPAR.

W is an N by N diagonal matrix of user-supplied weights,

W = diag{ wt-^ »
i = 1, ...» N}

,

when a weighted analysis is performed and is the identity matrix
otherwise.

S^ is an approximation to the exact term S^* in the matrix of second
order terms (Hessian) of the Taylor series expansion of the residual
sum of squares function,

N
S
£
*

( j » k ) = l [e£i ,wt i -(9
2 e £

(i)/90
£ (j)98 4

(k>)
] ,

i=l

for j = 1, ..., NPAR and k = 1, ..., NPAR.

is the vector of the N residuals from the previous iteration.

where

$£ is
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6^ is the adaptively chosen diameter of the trust region, i.e., the

region in which the local approximation to the user's model function
is reliable. At each iteration l , 6^ is computed based on information

from the previous iteration. At the first iteration, the initial
value, 6 q, is supplied by argument DELTA which can be used to control

the change in the parameters permitted at the first iteration.

is an NPAR by NPAR diagonal matrix,

A = diagj A^ /SCALE(k) ,
k = 1, ..., NPAR}

,

where A^ is chosen to approximate the smallest non-negative number
such that the restriction given above on the size of the change in the
parameters is satisfied.

The second order term $£ , which is expensive and difficult to compute
accurately, is important only if it is large compared to the term D£ T*W®D£,
that is, when the residuals are large or the model is highly nonlinear. When
S^* is large compared to D£ T«W®D£, algorithms which ignore it, such as

Levenberg-Marquardt or Gauss-Newton, may converge slowly. The NL2S0L
algorithm used by STARPAC, however, adaptively decides when inclusion of this
term is necessary for reliable results and uses an inexpensive approximation
to in those cases.

The matrix, D, of partial derivatives of the model with respect to each
parameter is either computed analytically using a user-supplied subroutine,
NLSDRV , or is numerically approximated using forward difference quotients as

described in §E.l.b. When the derivatives are approximated numerically, the

least squares solution, especially the variance-covariance matrix, can be

sensitive to the step sizes used for the approximation. The user may want to

use STARPAC subroutines STPLS or STPLSC to recompute the step sizes at the
solution provided by the estimation subroutines to assure that the step sizes
which were used are still acceptable. If there is a significant change in the

step size the least squares solution should be recomputed with the new step
sizes from the current point. In addition, if the estimation subroutine has

convergence problems the user may want to recompute the step sizes with the

most recent parameter values to see if a change in the curvature of the model,
which will be reflected as a change in the optimum step sizes, is causing the

problem.

Dennis et al. [1981a] provides a detailed description of the algorithm
used in STARPAC. STARPAC also includes the subroutines NL2S0L, NL2SN0, and
NL2ITR, which they reference, and which can be used as documented by them.

[See Dennis et al. 1981b.]

E.l.b Derivative Step Size Selection

The STARPAC step size selection subroutines use an algorithm developed by

Schnabel [1982] to compute optimum step sizes for approximating the partial
derivatives of the model with respect to each parameter. Briefly, the

relative step sizes selected by these subroutines are those which produce
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forward difference quotient approximations to the derivative, D^, that agree

reasonably well with the central difference quotient approximations, Dccj» The

central difference quotient approximations are twice as accurate but also
twice as expensive to compute. Since the additional accuracy is not usually
needed, central difference quotient approximations are not used by the

estimation subroutines.

The number of reliable digits in these derivatives is a function of the

step sizes used to compute them. Given properly chosen step sizes, the number
of reliable digits in Dfd and Dcd will be approximately n /2 and n,
respectively, where q is the number of reliable digits in the predicted
values, PV, from the user's model subroutine. For example, if the predicted
values are computed using an iterative procedure (such as quadrature or a

solution of partial differential equations) which is expected to provide five

good digits, then q would be five; if the predicted values are calculated from
a simple algebraic expression translated directly into Fortran code, then q

would (usually) be the number of decimal digits carried by the user's computer
for the results.

The relative step size for 8(k), k = 1, NPAR, is initially

STP(k) = 2(10
"NETA

/y)
1/2

for k = 1, NPAR,

where

Y is the average curvature (estimated by STARPAC) of the model with
respect to 8 (k)

.

The forward difference quotient approximations with respect to 8(k),
k = 1 , . . .

,

NPAR are then

f 1 (x i ,0
k

) - f i (x i ,$)

Df
(
j(i,k) = for i = 1, ..., N,

STP(k)« SCALE (k)» SIGN(g (k)

)

where

is the function which models the i*-*
1 observation.

is the vector of the values of the M independent variables at the i tk

observation.

8 is the vector of the NPAR parameter values.

8
k is a vector which has the same values as 8 except that the k^1

parameter is equal to

8 (k) + (
STP(k)» SCALE (k)» SIGN(8 (k) ))

.

SIGN is a function which returns the sign of its argument.
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The central difference approximations to the model derivative with
respect to B(k), k = 1, NPAR, are

f i( xi,B
+k

) - f^x^S -1
*)

D
C(J

(i,k) = for i = 1, ..., N,

3
1 / 3 .

10~NETA/ 3 .SCALE(k)*SIGN(B(k))

where

B
+k is a vector which has the same values as B except that the ktE

parameter is equal to

B (k) + (3
1/3

« 10_NETA/ 3 .SCALE(k)«SIGN(B(k))) .

B is a vector which has the same values as B except that the ktn

parameter is equal to

B (k) -
(
3

1 / 3 «
10"NETA/ 3 .SCALE(k)*SIGN(B(k)))

.

The relative step size is considered acceptable if, for at least N-a

observations

,

|Dfd (i,k)
- Dcd (i,k)| < min( 10“NETA/^

s
10" 2

}
for i = 1, . N,

where a is the number of observations exempted from meeting the above
acceptance criterion. [See §D, argument EXMPT.] If the step size is not

acceptable, it is adjusted by factors of 10 until the condition is met or

until no further decrease in the number of failures can be made, although in

no case will the selected relative step size be greater than 1.0 or less than
10“NETA

Note that the step size selection subroutines will return the selected
step sizes even when the number of failures exceeds the allowed value; this
condition will be noted by the value of IERR. The detailed printed output
should always be examined for problems discovered by the step size selection
subroutines.

E.l.c Derivative Checking

The STARPAC derivative checking subroutines use an algorithm developed by

Schnabel [1982] to determine the validity of the user-supplied derivative
subroutine. The user-supplied derivative subroutine is considered correct for

a given row i, i = 1, ..., N, and coefficient B (k), k = 1, ..., NPAR, if

|D fd (i,k)
- D(i , k) |

< 10“T
|

D (i,k)|

where

D is the derivative computed by the user’s subroutine.
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Df^ is the forward difference quotient approximation to the derivative

described in §E.l.b.

x is the agreement tolerance, i.e. , number of digits of agreement

required between D and Df^, which must be less than or equal to the

number of good digits in Df^. [See §D, argument NTAU.

]

When the agreement tolerance is not satisfied the checking subroutine
attempts to determine whether the disagreement is due to an error in the

user's code or is due to the inaccuracy of the difference quotient approxima-
tion, caused either by high curvature in the user's model or by significant
roundoff error.

The derivative checking subroutines each check only one row of the

derivative matrix. The user should examine the row at which the derivatives
were checked to ensure that some relation between the parameters and
independent variables, such as a zero-valued independent variable or a factor
(x^ “ 8(k)) when x^ = 8(k), is not hiding the effect of an incorrectly

computed derivative. Checking only one row is appropriate since the same code
is frequently used to compute the model function and derivatives at each row

1 = 1, . . . ,
N, as is the case in the examples shown in §F. If the code used

to express the model function and derivatives is not the same for each row,

then each distinct section of the code should be checked by making multiple
calls to DCKLSC with argument NROW set to a row within each section.

E . 2 Computed Results and Printed Output

E.2.a The Nonlinear Least Squares Estimation Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the nonlinear least squares estimation subroutines
consists of five sections, several of which include tables summarizing the
results. In the following descriptions the actual table headings are given by

the underlined, uppercase phrases. Results which correspond to input or

returned subroutine CALL statement arguments are identified by the argument
name in uppercase (not underlined).

Section 1 provides a summary of the initial estimates and control values. It

lists the following information.

• The initial values of the parameters, PAR, and whether they are to be
held fixed or not, IFIXED.

• The scale values, SCALE.

• Either the step sizes used to approximate the derivatives numerically,
or, when user-supplied (analytic) derivatives are used, the results of

the checking procedure; and the control values used in these computa-
tions as applicable. [See §E.l.b and §E.l.c.]
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• The number of observations, N.

• The number of observations with nonzero weights, NNZW.

• The number of independent variables, M.

• The maximum number of iterations allowed, MIT.

o The maximum number of model subroutine calls allowed.

• The two convergence criteria, STOPSS and STOPP.

• The maximum change in the parameters allowed at the first iteration,
DELTA.

• The residual sum of squares computed using the starting parameter
values.

• The residual standard deviation, RSD, computed using the starting
parameter values.

Section 2 lists selected information about each iteration and includes the

reason the iterations were terminated. The information provided for

each iteration includes the following.

• The iteration number.

• MODEL CALLS : the total number of times since execution began that the

user’s model subroutine has been called, not including calls required
to approximate the derivatives numerically.

® RSD ; the residual standard deviation computed using the parameter
values from the current iteration.

• RSS : the residual sum of squares computed using the parameter values
from the current iteration.

• REL CHNG RSS : the relative change in the residual sum of squares
caused by the current iteration.

• FORECASTED REL CHNG RSS : the forecasted relative change in the

residual sum of squares at the current iteration, and whether this

value was checked against STOPSS ( CHKD = Y) or not ( CHKD = N).

• REL CHNG PAR : the maximum scaled relative change in the parameters at

the current iteration, and whether this value was checked against
STOPP ( CHKD = Y) or not ( CHKD = N).

• CURRENT PARAMETER VALUES : the estimated parameter values resulting
from the current iteration.
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Section 3 provides the following information for each observation, i = 1,

N, based on the final solution.

• ROW the row number of the observations.

• PREDICTOR VALUES : the values for up to the first three columns of the

independent variable matrix, XM, not including the first column if it

is constant.

• DEPENDENT VARIABLE : the values of the dependent variable, Y.

• PREDICTED VALUE : the estimated predicted values, PV, from the fit.

• STD DEV OF PREP VALUE : the standard deviations of the predicted
values, SDPV.

• RESIDUAL : the error estimates, RES.

• STD RES : the standardized residuals, SDRES.

® WEIGHT ; the user-supplied weights, WT, printed only when weighted
analysis is performed.

Section 4 displays the following plots of the standardized residuals.

• The standardized residuals versus row numbers.

• The standardized residuals versus predicted values.

• The autocorrelation function of the (non-standardized) residuals.

• The normal probability plot of the standardized residuals.

Section 5 summarizes the following information about the final parameter
estimates and their variances.

• The variance-covariance matrix, VCV, of the estimated (unfixed)
parameters, and the corresponding correlation matrix,

rjk
= VCV(j,k)/(VCV(j,j) VCV(k,k))

1/2
for

,j
= 1 , ..., NPARE

and k = 1, ..., NPARE.

• PARAMETER : the final value of each parameter, PAR(k), k = 1, ...,
NPAR.

• SD OF PAR : the standard deviation of each estimated parameter,

(
VCV(k,k)) 1/2 for k = 1, ..., NPAR.

• RATIO : the ratio of each estimated parameter to its standard
deviation,

RATIOk
= PAR(k)/(VCV(k,k)) 1/2 for k = 1, ..., NPAR.
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• APPROXIMATE 95-PERCENT CONFIDENCE LIMITS : the lower and upper

95-percent confidence limits for each parameter, computed using the

appropriate value of the Student's t distribution with NNZW-NPARE
degrees of freedom.

o the residual sum of squares, RSS(B).

• the residual standard deviation at the solution, RSD.

o the residual degrees of freedom, NNZW-NPARE.

® an approximation to the condition number of the derivative matrix, D

(the Jacobian), under the assumption that the absolute error in each

column of D is roughly equal. The approximation will be meaningless
if this assumption is not valid; otherwise it will usually

underestimate the actual condition number by a factor of from 2 to 10.

[See Dongarra et al. 1979, p. 9.5.]

NOTE ; The standard deviation of the predicted values, the standardized

residuals, the variance-covariance matrix, the standard deviations of the

parameters and the 95-percent confidence limits on the parameters are all

based on a linear approximation to the model in a neighborhood of the

solution; the validity of this approximation depends on the nonlinearity of

the model. The statistics based on this approximation may be extremely
inaccurate for a problem with a highly nonlinear model.

E.2.b The Derivative Step Size Selection Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the step size selection subroutines consists of a summary
of the input and control values and, for each parameter, the selected relative

step size, the number of observations at which this step size failed the step

size selection criteria and the row numbers at which the failures occurred.

E . 2 . c The Derivative Checking Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output for the derivative checking subroutines consists of a summary
of the input and control values and the results of the derivative checking
test with respect to each of the model parameters, 6(k), k = 1, ..., NPAR.
The possible test results are:

OK -

® The user-supplied derivative and the numerical derivative agree to the

required number of digits.



QUESTIONABLE -

o The user-supplied derivative and the approximated derivative agree to

the required number of digits but both are equal to zero. The user
should recheck the derivative at another row.

o The user-supplied derivative and the approximated derivative do not

agree to the required number of digits but the user-supplied deriva-
tive is identically zero and the approximated derivative is nearly
zero. The user should recheck the derivative at another row.

© The user-supplied derivative and the approximated derivative disagree
but the user-supplied derivative is identically zero. The user should
recheck the derivative at another row.

® The user-supplied derivative and the approximated derivative disagree
but the validity of the approximated derivative is questionable
because either the ratio of the relative curvature of the model to the

slope of the model is too high or SCALE(k) is wrong.

• The user-supplied derivative and the approximated derivative disagree
but the validity of the estimated derivative is questionable because
the ratio of the relative curvature of the model to the slope of the

model is too high.

• The user-supplied derivative and the approximated derivative disagree,
and there is no reason to question the accuracy of the approximated
derivative.

The sample programs of this section use the model and data given in

example one, pages 428 to 441 of Daniel and Wood [1980]; the model is

Nonlinear Least Squares Estimation . In the example program of figure
F-la, NLS is used to compute the least squares solution using numerically
approximated derivatives; figures F-lb through F-lf show the output from NLS.

In the example program of figures F-2a and F-2b, NLSD is used to compute
the least squares solution given analytic derivatives; figures F-2c through
F-2g show the output from NLSD.

Derivative Step Size Selection . In the example program of figure F-3a,
STPLS is used to compute the optimum step sizes for numerically approximating
the derivatives with respect to each of the parameters, 0(k), k = 1, 2.

Figure F-3b shows the output from STPLS.

INCORRECT -

F

f-[(x£,0) - 0 ( 1 ) »x^( 1 (2) for i = i N
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Derivative Checking . In the example program of figures F-4a and F-4b,
DCKLS is used to check the validity of a user-supplied, derivative subroutine.
In figure F-4b, the derivative subroutine has been intentionally coded
incorrectly in order to display the report obtained when the derivative
checking subroutine determines the derivatives are incorrect, and the starting
parameter values have been chosen in order to display the report obtained when
the test results are questionable. Figure F-4c shows the output from DCKLS.
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Nonlinear Least Squares Estimation
With Numerically Approximated Derivatives

MAIN PROGRAM!

MODEL SUBROUTINE

«

PROGRAM EXANPl
C

C DEMONSTRATE NLS USING SINGLE PRECISION VERSION OF STARPaC
C RUN ON CYBER 180/8*0.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYRIRS)
C CSEE CHAPTER 1 * SECTION D.4J
C

C N.B. DECLARATION OF Y* XM* PAR AND RES MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USEO.
C

REAL Y ( 10 ) * XM ( 10* 9 ) * PAR ( 5 ) * RES(IO)
DOUBLE PRECISION DSTAM200)

C

EXTERNAL NLSMDL
C

COMMON /CSTAK/ DSTAK
C

C SPECIFY NECESSARY DIMENSIONS
C

LOST AM 200
IXM « 10

C

C READ NUMBER OF PARAMETERS
C STARTING VALUES FOR PARAMETERS
C NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
C INDEPENDENT AND DEPENDENT VARIABLES
C

READ 100* NPAR
READ 101* ( P AR ( I ) * I»1,NPAR»
READ 100* N* H

READ 101# ( (XM(I*J8» I-1#N>» J-lsMI* (YCII* I«1*N»
C

C PRINT TITLE AND CALL NLS TO PERFORM NONLINEAR REGRESSION
C KITH NUMERICALLY APPROXIMATED DERIVATIVES
C

WRITE (6, 102 J

CALL NLS <T* XM# N» M* IXM# NLSMDL* PAR* NPAR* RES# LDSTAKJ
C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT <2198
101 FORMAT (6F6.38
102 FORMAT P1RESULTS OF STARPAC'*

* « NONLINEAR LEAST SOUARES SUBROUTINE NLS»)
END

SUBROUTINE NLSMDL (PAR, NPAR# XM* N« M, IXM* PV8
C

C SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE
C

C N.B. DECLARATION OF PAR* XM AND PV MUST BE CHAN6ED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL P AR ( NP AR 8 » XM(XXN,M8» PV(N8
C

DO 10 I - 1* N
PVU) - PAR(l) * XM ( I * 1) ** PAR(28

10 CONTINUE
C

RETURN
END

2

0.729 4.000
6 1

1.309 1.471
2.138 3.421

1.490 1.969 1.611
3.997 4.340 4.882

1.680
9.660

Figure F-la

Example program using NLS
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Nonlinear Least Squares Estimation
With User-Supplied Analytic Derivatives

MAIN PROGRAM

MODEL SUBROUTINE*

PROGRAM E X AM PL

C

C DEMONSTRATE NLSD USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYRER 180/840.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EOUATED TO FILE TAPE6 ON CY8ERS)
C ISEE CHAPTER 1* SECTION D.4J
C

C N.B. DECLARATION OF Y» XM, PAR AND RES MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USEO.
C

REAL Y ( 10 ) , XM ( 10* 5 ) » PAR(5I, RES(IO)
DOUBLE PRECISION 0STAM200)

C

EXTERNAL NLSMDL* NL SDR V
C

COMMON /CSTAK/ DSTAK
c

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK - 200
IXM * 10

C

C READ NUMBER OF PARAMETERS
C STARTING VALUES FOR PARAMETERS
C NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
C INDEPENDENT AND DEPENDENT VARIABLES
C

READ 100* NPAR
RE AO 101* ( PAR ( I ) » I" 1* NPAR

)

READ 100* N, M

READ 101* UXN«I»J)» I-1,N), J •! » M 1 * C Y( I J » I-1,N)
C

C PRINT TITLE ANO CALL NLSD TO PERFORM NONLINEAR REGRESSION
C WITH USER-SUPPLIED DERIVATIVES
C

UR ITE (6* 102

}

CALL NLSD (Y, XN, N* M» IXM* NLSMDL* NLSORV* PAR* NPAR* RES*
* LOSTAtO

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (215 }

101 FORMAT (6F6.3)
102 FORMAT C1RESULTS OF STARPAC*

« * NONLINEAR LEAST SQUARES SUBROUTINE NLSD*)
END

SUBROUTINE NLSMDL (PAR* NPAR* XN* N* M* IXM* PV>
C

C SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE
C

C N.B. DECLARATION OF PAR* XM AND PV MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USEO.
C

REAL PAR(NPAR)* XM(IXN*M), PV(N)
C

DO 10 I - 1* N
PV(I) • P AR ( 1 ) * XM ( I * 1) * P AR ( 2 )

10 CONTINUE
C

RETURN
END

Figure F-2a

Example program using NLSD



DERIVATIVE SUBROUT INE 6 SUBROUTINE NLSBBV IPAR* NBAS* XN C N» N» IXHt 08

C

C SUBROUTINE TQ CONFUTE THE PARTIAL DERIVATIVE ( JACOBI AN i NATRIX
C
C Mel. DECLARATION OF BAR* IN AND 0 MUST BE CHANCED TO DOUBLE PRECISION
C IF DOUBLE BRECISION VERSION OF SYARBAC IS USED.
C

REAL BAR(NPAR)# XNiIXN#H|» DtN»NPAR>
C

DO 10 I > I* N

DU»1S « XM*I»1» *» BARI2I
DU«I> * BARU» * XNU»1) •* BAR (21 ALOCCXNI 1*11 »

10 CONTINUE
C

RETURN
END

DATA! £

0.723 A. 000
0 1

1.309 1.471 1.490 1.369 1.611 1.660
2.136 3.421 3.397 4.340 4.682 3.660

Figure F-2b

Example program using NLSD (continued)
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Derivative Step Size Selection

NAIM PROGRAM I PROGRAM EXANPL
C

C DEMONSTRATE STPLS USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYBER 100/040.
C
C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYBERSt
C (SEE CHAPTER 1# SECTION 0.4)
C

C N.B. DECLARATION OF XM* PAR AND STP MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL IN(10*5>* PARIS) * STPISS
DOUBLE PRECISION DSTAM200)

C
EXTERNAL NLSNOL* DERI

V

C
COMMON /CSTAK/ OSTAK

C
C SPECIFY NECESSARV DIMENSIONS
C

LOST AK • 200
IXN • 10

C
C READ NUMBER OF PARAMETERS
C STARTING VALUES FOR PARAMETERS
C NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
C INDEPENDENT VARIABLES
C

READ 160* NPAR
READ 101* (PAR (II# I*1*NPARI
READ 100* N* M
READ 101* I (XN(I»J)» I»1*N)# J«1*NI

C

C PRINT TITLE AND CALL STPLS TO SELECT STEP SUES FOR
C APPROXIMATING DERIVATIVES
C

WRITE (0* 102)
CALL STPLS (XM* N* H* IXN* NLSNOL* PAR* NPAR* IDSTAK* STP)

C

STOP
C
C FORMAT STATEMENTS
C

100 FQRNAY (215)
1@1 FORMAT (6F6.3)
102 FORMAT CIRESULTS OF STARPAC”*

« « DERIVATIVE STEP SUE SELECTION SUBROUTINE STPLS”)
ENO

MODEL SUBROUTINE!
C

C

C
C
C

C

C

c

SUBROUTINE NLSNOL (PAR* NPAR* XM* M* N* IXN* PV)

SUBROUTINE TO CONPUTE PREDICTED VALUES OF DEPENDENT VARIABLE

N.B. DECLARATION OF PAR* XN AND PV NUST BE CHANGED TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

RIAL PAR (NPAR ) * XH(IXN*N)» PV(N)

DO 10 I • l* N
PV(1) * PAR(l) 4 XM ( I * 1) *4 PAR ( 2

)

16 CONTINUE

RETURN
END

DATA* 2

6.72S 4.006
6 1

le36« 1.471 1.406 1.S6S 1.011 1.606

Figure F~3a

Example program using STPLS
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Derivative Checking

MAIN PROCRANl
C

C

C

c

c

c

c

c

c

c

c

€

C

c

e

c

e
c

t

c
e

e

€

PROCRAM EXAMPL

DEMONSTRATE DCKLS USINC SINCE! PRECISION VERSION OF STARPAC
RUN ON CYBER 1B0/640.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYBERS)
CSEE CHAPTER 1* SECTION 0.4]

N*B. DECLARATION OF XN AND PAR MUST BE CHANCED TO DOUBLE PRECISION
IF OOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL XH( 10*5 ) * PARIS)
DOUBLE PRECISION DSTAK<200»

EXTERNAL NLSNDL* NLSDRV

COMMON /CSTAK / OSTAK

SPECIFY NECESSARY DIMENSIONS

LOSTAK • 200
IXR • 10

READ HUMBER OF PARAMETERS
STARTINC VALUES FOR PARAMETERS
NUMBER OF OBSERVATIONS AND NUMBER OF INDEPENDENT VARIABLES
INDEPENDENT VARIABLES

READ IDO* NPAR
READ 101* i PAR ID* 1*1»NPAR)
READ 100* N* M

READ 101* <(IK(I*J)» I ®1*N) » <g-l*Hl

PRINT TITLE ANO CALL DCKLS TO PERFORM DERIVATIVE CHECKINC

WRITE (4* 102)
CALL DCKLS (XH» N» N» IXN* NLSNDL* NLSDRV* PAR* NPAR* LOSTAK)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (219)
101 FORMAT (4P4.3)
102 FORMAT C'lRISULTS OF STARPAC •

»

4 « DERIVATIVE CHECKINC SUBROUTINE DCKLS 8
)

END

MODEL SUCROUTINEl SUBROUTINE NLSMDL (PAR* NPAR* IN* N* N* IXN* PVI
C

C SUBROUTINE TO COMPUTE PREDICTED VALUES OF DEPENDENT VARIABLE
C

C N.B. DECLARATION OF PAR* XM AND PV MUST BE CHANCED TO OOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL PAR(NPAR)* XN(IXN*N)* PV(N)
C

DO 10 I - 1* N
PVC1) • PAR(l) * XMCI, 1) •* PAR(2)

10 CONTINUE
e

RETURN
END

Figure F-4a

Example program using DCKLS
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DERIVATIVE SUBROUTINE*
e

c
c

c

c
c
c

c

c

c

e

SUBROUTINE NLSDRV (EAR* NP AR » XM» N/> N t IXh, 01

SUBROUTINE TO COMPUTE THE PARTIAL DERIVATIVE (JACOBIAN) MATRIX

DERIVATIVE WITH RESPECT TO EIRST PARAMETER HAS BEEN CODED
INCORRECTLY TO DEMONSTRATE ERROR DETECTION CAPABILITIES

N.B. DECLARATION OF PAR* XN AND 0 MUST BE CHAN6ED TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL PAR(NPAR)* XM(IXN»N)« D(N*NPAR

I

DO 10 I • 1* N
0(1*1) IN( 1*1 ) A PAR (2

)

0(1*2) • PAR(l) * XH( 1*1 ) ** PAR (1 ) e AL06( XN( 1* 1 )

)

10 CONTINUE

RETURN
END

OATAl 2
0.000 0.000

6 I

1.909 1.471 1.490 1.969 1.611 1.680

Figure F-4b

Example program using DCKLS (continued)
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CHAPTER 10

DIGITAL FILTERING

A. Introduction

STARPAC contains 16 subroutines for digital filtering time series. These

include subroutines which: compute a least squares approximation to an ideal
low-pass filter; perform symmetric linear filter operations; sample values
from a series; perform autoregressive (or difference) filter operations; and

compute the gain function of any symmetric linear filter and the gain and
phase functions of any autoregressive (or difference) filter.

Users are directed to §B for a brief description of the. subroutines. The
declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and the output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F.

B . Subroutine Descriptions

Ed Symmetric Linear Filter Subroutines

Subroutine LPCOEF computes symmetric linear low-pass filter coefficients
using a least squares approximation to an ideal low-pass filter that has
convergence factors which reduce overshoot and ripple [Bloomfield, 1976],

This low-pass filter has a transfer function which changes from approximately
one to zero in a transition band about the ideal cutoff frequency FC, that is

from (FC - 1/K) to (FC + 1/K), as shown in figure B.l-1. The user must
specify the cutoff frequency in cycles per sample interval and the number of

filter coefficients, which must be odd. The user must also choose the number
of filter terms, K, so that (FC - 1/K) > 0 and (FC + 1/K) < 0.5. In addition,
K must be chosen as a compromise between:

1) A sharp cutoff, that is, 1/K small; and

2) Minimizing the number of data points lost by the filtering operations

( (K - 1 ) / 2 data points will be lost from each end of the series)

.

The subroutine returns the normalized low-pass filter coefficients. There is

no printed output.

For any low-pass filter there is a corresponding high-pass filter
equivalent to subtracting the low-pass filtered series from the original
series. Subroutine HPCOEF returns symmetric linear high-pass filter
coefficients computed from user supplied low-pass symmetric linear filter
coefficients. The number of filter coefficients must be odd. There is no
printed output.
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Subroutine MAFLT performs a simple moving average filter operation on the

input series using the simple moving average filter defined by

HMA(J) = 1/K for J = 1, K.

The user must specify the number of filter coefficients, K, which must be odd;

the subroutine returns the filtered series and the number of observations in

the filtered series. There is no printed output.

Subroutine SLFLT performs a symmetric linear filter operation with user
supplied coefficients and returns the filtered series to the user. The filter
coefficients must be normalized on input to SLFLT. The filtered series and

the number of observations in the filtered series are returned. There is no

printed output.

t" v»

Subroutine SAMPLE samples every NScn observation from an input series.
If the input series was obtained using an NS term low-pass filter, this

sampling rate removes the autocorrelation introduced by the filtering
operation. This subroutine returns the series of sampled observations and the
number of observations in the series. There is no printed output.

Subroutine LOPASS computes low-pass filter coefficients as described for
subroutine LPCOEF and then performs the filtering operation described for

subroutine SLFLT. The user must specify the cutoff frequency in cycles per
sample interval and the number of filter terms, which must be odd. The
subroutine returns the normalized filter coefficients, the filtered series and
the number of observations in the filtered series. There is no printed
output.

Subroutine HIPASS computes the high-pass filter coefficients equivalent
to using HPCOEF with the input low-pass filter coefficients supplied by LPCOEF
and performs the filtering operation described for subroutine SLFLT. The user
must specify the cutoff frequency in cycles per sample interval and the number
of filter terms, which must be odd. The subroutine returns the filter
coefficients, the filtered series and the number of observations in the
filtered series. There is no printed output.

B o 2 Autoregressive or Difference Linear Filter Subroutines

Subroutine ARFLT subtracts the series mean from each observation and
performs an autoregressive linear filter operation with user supplied filter
coefficients. This subroutine returns the filtered series and the number of

observations in the filtered series. There is no printed output.

Subroutine DIF performs a first difference filter operation on the input
series. It returns the differenced series and the number of observations in
the differenced series. There is no printed output.

Subroutine DIFC performs a user controlled differencing operation. It
returns the order of the difference filter specified, the coefficients of the
difference filter, the differenced series and the number of observations in
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the differenced series. This subroutine can be used as a high-pass filter or

for differencing series in the style of Box and Jenkins [1976] . There is no

printed output.

Subroutines DIFM and DIFMC are the same as DIF and DIFC, respectively,
except that the input series may contain missing data. A missing value code
must be used within the input series to specify time points without an

observed value. The difference between a missing value and an observed value,
or between two missing values, will result in a missing value in the

differenced series; the missing value code used in the differenced series is

also returned to the user. Users should note that the number of missing
values may be significantly increased by the differencing operation.

B.3 Gain and Phase Function Subroutines

Subroutine GFSLF computes the gain function of a symmetric linear filter.
The printed output consists of a plot of the gain function versus frequency.

Subroutine GFSLFS is the same as GFSLF but allows the user to specify
various options which are preset in GFSLF, including the frequency range, the

number of frequencies for which the gain function is to be computed and the

type of plot to be used. In addition, the gain function is returned to the

user, permitting the use of other methods of displaying the results.

Subroutine GFARF computes the gain and phase functions of either
autoregressive or difference filters. The output consists of a plot of the

gain and phase functions versus frequency.

Subroutine GFARFS is the same as GFARF but provides the user with the
same options as are available for subroutine GFSLFS.

C o Subroutine Declaration and CALL Statements

NOTES Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

Subroutines Supporting Symmetric Linear Filter Operations

LP'COEF: Compute symmetric linear low-pass filter coefficients; return filter
coefficients (no printed output)

<real> HLP(k)

CALL LPCOEF (FC, K, HLP)
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HPCOEF: Compute symmetric linear high-pass filter coefficients; return

coefficients (no printed output)

<real> HLP(fc), HHP (fc )

t

CALL HPCOEF (HLP, K, HHP)

MAFLT: Perform simple moving average; return filtered series (no printed
output)

<real> Y(n), YF (n

)

CALL MAFLT (Y, N, K, YF
,
NYF

)

SLFLT : Perform symmetric linear filter operation with user-supplied filter
coefficients; return filtered series (no printed output)

<real> Y(n), H (fc), YF (n)

$

CALL SLFLT (Y, N, K, H, YF
,
NYF)

SAMPLE: Sample (extract) every NS^ observation from a series; return
sampled series (no printed output)

<real> Y(n), YS(n)

I

CALL SAMPLE (Y, N, NS, YS
,
NYS

)

LOPASS: Filter series with symmetric linear low-pass filter; return filtered
series (no printed output)

<real> Y(n), HLP(k), YF(n)

CALL LOPASS (Y, N, FC
,

K, HLP, YF
,
NYF)



HIPASS: Filter series with symmetric linear high-pass filter; return

filtered series (no printed output)

<real> Y(n), HHP(fc), YF (n)

S

CALL HIPASS (Y, N, FC, K, HHP, YF
,
NYF

)

Subroutines for Autoregressive or Difference Linear Filters

ARFLT : Perform autoregressive filter operation with user-supplied filter
coefficients; return filtered series (no printed output)

<real> Y(n), PHI (iar»), YF(n)

i

CALL ARFLT (Y, N, IAR, PHI, YF
,
NYF)

DIF o Perform first-difference filter operation; return differenced series
(no printed output)

<real> Y(n), YF(n)

Z

CALL DIF (Y, N, YF ,
NYF)

DIFC: Perform user-specified difference filter operation; return
differenced series (no printed output)

INTEGER ND(n/ac), IOD(n/ac)
<real> Y(n), YF(n), PHI (iar*)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL DIFC (Y, N, NFAC, ND, IOD, IAR, PHI, LPHI, YF
,
NYF, LDSTAK)

DIFM: Perform first-difference filter operation on series with missing
data; return differenced series (no printed output)

<real> Y(n), YF(n)

CALL DIFM (Y, YMISS, N, YF
,
YFMISS, NYF)
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DIFMC:

GFSLF

:

GFSLFS:

GFARF:

Perform user-specified difference filter operation on series with
missing data; return differenced series (no printed output)

INTEGER ND (nfac), lOD(nfac)
<real> Y(n), YF(n), PHI (iar)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL DIFMC (Y, YMISS, N, NFAC, ND, IOD, IAR, PHI, LPHI, YF

,

1 YFMISS, NYF , LDSTAK)

Subroutines for Computing the Gain and Phase Functions

Compute and plot gain function of symmetric linear filter

<real> H (k.)

$

CALL GFSLF (H, K)

Compute and optionally plot gain function of symmetric linear filter
with user-supplied control values; return gain function values and
corresponding frequency values

<real> H(k), GAIN(n/), FREQ(nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL GFSLFS (H, K, NF
,
FMIN, FMAX

,
GAIN, FREQ, NPRT, LDSTAK)

Compute and plot gain and phase functions of autoregressive or
difference filter

<real> PHI (iar®)

CALL GFARF (PHI, IAR)
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GFARFS: Compute and optionally plot gain and phase functions of
autoregressive or difference filter; with user-supplied control
values; return gain and phase function values and corresponding
frequency values

<real> PHI( iar), GA.IN(nf) , PHAS(nf), FREQ(nf)
DOUBLE PRECISION DSTAK(ldstak)
COMMON / CSTAK/ DSTAK

CALL GFARFS (PHI, IAR, NF
,
FMIN, FMAX

,
GAIN, PHAS, FREQ, NPRT,

1 LDSTAK)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: —> indicates that the argument is input to the subroutine and that
the input value is preserved;

<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;—- indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
° * * indicates that the variable is passed via COMMON*

DSTAK The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The

first LDSTAK locations of DSTAK are overwritten during subroutine
execution.

FC “> The cutoff frequency for the filter, in cycles per sample
interval. FC must lie between 0.0 and 0.5.

FMAX -“> The maximum frequency, in cycles per sample interval, at which the
gain and phase functions are computed (0.0 < FMIN < FMAX < 0.5).
The default value is 0.5. If FMAX is outside the range FMIN to

0.5 or is not an argument in the CALL statement the default value
is used.

FMIN —> The minimum frequency, in cycles per sample interval, at which the

gain and phase functions are computed (0.0 < FMIN < FMAX < 0.5).
The default value is 0.5. If FMIN is outside the range 0.0 to

FMAX or is not an argument in the CALL statement the default value
is used.

FREQ <--- The vector of dimension at least NF containing the NF frequencies
at which the gain and phase functions are computed.

GAIN <— The vector of dimension at least NF containing the NF gain
function values over the range FMIN to FMAX.

— continued —
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For symmetric linear filters:

The gain function of a symmetric linear filter is

K
GAIN(I) =

| l (H(J) cos
[
2ir

|

K^-J |

(FMIN+Ax)]}|
J=1

for I = 1, NF, where

is the midpoint of the symmetric filter, Km = (K+l)/2, and

Aj is the frequency increment, defined as

Aj = 2 ( I— 1 ) (FMAX-FMIN) / (NF-1)

There is no phase change in a symmetric linear filter.

For autoregressive (or difference) filters:

The gain and phase functions of an autoregressive (o

difference) filter are

GAIN(I) »

IAR

|l - l {PHI(J) (cos[2ttJ(FMIN+AI)] + i sin[ 2tt J(FMIN+A I)]
)

}

J=1

and

IAR

l { PHI (J ) sin[iTT J(FMIN+AI)]}
J=1

PHAS(I) = Arctan ———
IAR

1 - l { PHI ( J ) cos
[
iir J(FMIN+AI)]}

J=1

for I = 1, 2, ..., NF, where

1/2
i is the complex value (-1) ; and

Aj is the frequency increment, defined as

A X
= 2(1-1) (FMAX-FMIN) / (NF-1).

-> The vector of dimension at least K containing filter coefficients
which must be symmetric about H((K+l)/2).
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HHP <— The vector of dimension at least K containing the K high-pass
filter coefficients, which are symmetric about HHP[ (K+l ) /2) . The

high-pass filter coefficients are computed from the low-pass
coefficients by

K
HHP(J) = 1- [ HLP( J ) / l HLP(J)] for J = V

L=1

K
HHP(J) = -[ HLP( J ) / l HLP ( J ) ] for J = 1, . .., K^-l

,
K^+l

,
. .., K.

L=1

HLP -—
- The vector of dimension at least K containing the K low-pass

filter coefficients, which must be symmetric about HLP[ (K+l

)

/

2

] .

HLP must be input to HPCOEF; it is returned by LPCOEF and LOPASS.

For LPCOEF and LOPASS, HLP is defined by

K
HLP(J) = hj / l hj for J = 1 K,

1=1

where

hj is computed by

hj = 2* FC for J = ^
sin[2ir Ik^-J

|

FC] sin[2Tr | K^-J
|

/ K]

hJ
= ________ « __________ for J

» |Km-J| 2* |Km-j| / K

with the midpoint of the filter, Km = (K+l)/2.

This low-pass filter has a transfer function which changes from
approximately one to zero in a transition band about the ideal

cutoff frequency FC, that is from (FC - 1/K) to (FC + 1/K), as

shown in figure B.l-1.

IAR — The number of coefficients in the autoregressive (or difference)
filter, including zero coefficients. Equivalently, IAR is the

maximum order of the backward shift operator. IAR must be input

to ARFLT, GFARF and GFARFS; it is returned by DIFC and DIFMC. IAR

is defined by

NDF
IAR = l [ IOD(J)»ND(J)]

.

J=1

— 1
,

. . • ,

Km-1, VI,
... ,

K
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IERR

IOD

K

LDSTAK -

LPHI

N

ND

NF

** An error flag returned in COMMON /ERRCHK/. [See chapter 1, § D . 5 .

]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

—> The vector of dimension at least NFAC containing the NFAC values
designating the order of each difference factor.

—> The number of coefficients in the symmetric linear filter. K must

be odd. For LPCOEF, LOPASS, and HIPASS, the user must choose the

number of filter terms, K, so that (FC - 1/K) > 0 and

(FC + 1/K) < 0.5. In addition, K must be chosen as a compromise
between:

1) A sharp cutoff, that is, 1/K small; and

2) Minimizing the number of data points lost by the filtering
operations (K - 1 ) / 2 data points will be lost from each end of

the series.

-> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK

must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,
otherwise P = 1.0. [See chapter 1, § B .

]

For DIFC and DIFMC

:

NFAC
LDSTAK >7+2* £ [ND(J). IOD(J)] *P

J=1

For GFSLFS and GFARFS

:

LDSTAK > ( 11+10* (9+NF)) /2 + I0-2.NF.P

where 10 = 0 if NPRT = 0, and 10 = 1 if NPRT * 0.

-> The length of the vector PHI. LPHI must equal or exceed IAR.

—> The number of observations in the time series. The minimum number
of observations is three.

-> The vector of dimension at least NFAC containing the NFAC values
designating the number of times each difference factor is to be
applied.

—> The number of frequencies at which the gain and phase functions
are to be computed. The default value is 101. If NF is not an
argument of the subroutine CALL statement the default value is
used.
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NFAC —> The number of difference factors.

NPRT —> The argument controlling printed output.

If NPRT < 0, the output consists of a plot of the gain function
versus frequency, where the gain function is

expressed in decibels and is adjusted so that the

peak is at zero. For GFARFS only the output also

includes a plot of the phase function versus
f requency

.

If NPRT = 0, the automatic printout is suppressed.

If NPRT > 0, the output consists of a log-linear plot of the gain
function versus frequency. For GFARFS only, the

output also includes a plot of the phase function
versus frequency.

The default value is -1. If NPRT is not an argument of the

subroutine CALL statement the default value is used.

NS —> The sample rate, 1 < NS < N.

NYF <— The number of observations in YF.

NYS <— The number of observations in YS.

PHAS <— The vector of dimension at least NF containing the NF phase
function values over the range FMIN to FMAX.

PHI — The vector of dimension at least NF containing IAR autoregressive
or difference filter coefficients. PHI must be input to ARFLT,

GFARF, and GFARFS; it is returned by DIFC and DIFMC.

For DIFC and DIFMC the difference filter coefficients are obtained
by expanding the difference operator

NFAC
II

J=1
(

i.”B
iod(J)^ nd(j) =

1 - PHICUB
1

- PHI(2)B
2 - • •• - PHI(IAR)B IAR

where

B is the backward shift operator. defined by B 1
y t Yt-i’

PHI (i

)

is the i
1-*1 difference filter coefficient,

positive or negative integer if the i
th

shift operator B 1 is used, and zero if

backward shift operator is unused.

which will be a

order backward
the i^ order
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Y

YF

YFMISS <

YMISS

—> The vector of dimension at least N containing the N observations
of the time series.

-- The vector of dimension at least N containing the NYF values of

the filtered series. The filtered series will start in

YF ( 1 ) ;
YF(NYF+1) through YF(N) will be set to zero.

For symmetric linear filters:

The filtered series obtained by applying a moving average filter
is defined by

K
YF ( I ) = l H( J ) • Y( I+K-J ) for 1=1, NYF,

J=1

where

NYF is the number of values in the filtered series,
NYF = N - (K-l), reflecting the (K-l)/2 data points lost
from each end of the original series by the filtering
operation.

For autoregressive or difference filters:

The filtered series obtained using an autoregressive (or

difference) filter is computed by

IAR
YF(I) = Z (I+IAR) - l [ PHI ( J ) • Z ( I+IAR-J

) ]
for I = 1, . NYF,

J=1

where

Z is the N observation time series being filtered which, for
ARFLT is the input series Y minus its mean and, for DIF,
DIFC, DIFM and DIFMC is the input series Y;

NYF is the number of observations in the filtered series,
NYF = N-IAR, reflecting the IAR data points lost from the
beginning of the original series by the filtering operation.

— The missing value code used within the filtered series YF to
indicate that a value could not be computed due to missing data.

-> The missing value code used within the input series Y to indicate
that an observation is missing.
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YS <— The vector of dimension at least N containing the series formed by

sampling every NS^ element of Y,

YS ( J) = Y[ (J— 1
) • NS + 1) for J = 1, NYS,

where NYS, the number of observations in the sampled series, is

returned by subroutine SAMPLE. The series will start in YS(1);
YS(NYS+1) through YS(N) will be set to zero.

E . Computational Methods

E. 1 Algorithms

The code for computing the low-pass filter coefficients is based on

subroutine LOPASS, listed on page 149 of Bloomfield [1976], The transforms
used to compute the gain function of symmetric filters and the gain and phase
functions autoregressive (or difference) filters are based on the algorithms
shown on pages 311 and 420, respectively, of Jenkins and Watts [1968].

E . 2 Computed Results and Printed Output

Except for the gain and phase function subroutines, STARPAC digital
filtering subroutines do not produce printed output. For the gain and phase
function subroutines, the argument controlling the printed results is NPRT and
is discussed in §D; the output from the gain and phase function subroutines
consists of line printer plots of the gain and phase function of the input
filter.

F . Examples

In the example program of figure F-la, DIF is used to filter the input
series Y; VP (documented in chapter 2) is used to display the log of the

original series and the differenced series; and GFARF is used to plot the gain
and phase functions of the first difference filter. The data used are the

natural logarithm of Series G, the airline data, listed on page 531 of Box and

Jenkins [1976] . The formulas for the gain and phase functions of a first

difference filter and a plot of the corresponding gain function are shown on

pages 296 and 9, respectively, of Jenkins and Watts [1968].

Figures F-lb and F-lc display the VP plot of the log of the original
series and the differenced series, respectively. Both plots have been
truncated so that they will fit on one page of this manual; the actual plots
generated by VP continue for another 90 lines. Figures F-ld and F-le show the

output from GFARF. There is no automatic printout from DIF.
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o

o

o

o

MAIN PROGRAM* PROGRAM EXAMPL

DATA l

C

C

c

c

c

c

c

c

c

c

DEMONSTRATE DIF AND GFARF USING SINGLE PRECISION VERSION OF STARPAC

RUN ON CYBER 180/8*0.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TA»E6 ON CYBERS)

C S EE CHAPTER 1* SECTION D.41

N.B. DECLARATION OF Y, YF AND PHI MUST BE CHANGED TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL Y (200 ) , YF(200)» PHI ( 5

)

READ NUMBER OF OBSERVATIONS
OBSERVED SERIES

READ 100. N

RE AO 101. (Y(I), I-1»N)
C

C COMPUTE LOG OF DATA
C

00 10 I • 1, N

Y ( I ) - AL06 ( Y ( I ) >

10 CONTINUE
C

C CALL OIF TO PERFORM DIFFERENCING OPERATION
C

CALL DIF ( Y , N, YF, NYF

)

C

C PRINT TITLE AND CALL VP TO DISPLAY LOG OF ORIGINAL SERIES

WRITE (6, 102

1

CALL VP «Y, N, 1)

C

C PRINT TITLE AND CALL VP TO DISPLAY DIFFERENCED SERIES
C

WRITE (6, 1031
CALL VP (YF, NYF, 1)

C

C SIT PARAMETERS FOR FIRST DIFFERENCE FILTER
C

PMim - i.o
IAR « 1

c

C PRINT TITLE AND CALL GFARF TO COMPUTE 6AIN AND PHASE OF

C FIRST DIFFERENCE FILTER
C

WRITE (6, 10*1
CALL GFARF (PHI, IAR)

C
STOP

C

C FORMAT STATEMENTS
C

100 FORMAT (415)
101 FORMAT (12F6.1)
102 FORMAT (

1 1L06 OF 0RI6INAL SERIES DISPLAYED WITH STARPAC PLOT',
1 • SUBROUTINE VP')

103 FORMAT (URESULTS OF STARPAC FIRST DIFFERENCE DIGITAL FILTERING',
1 « SUBROUTINE DIF DISPLAYED WITH STARPAC PLOT SUBROUTINE VP»)

104 FORMAT C1RESULTS OF STARPAC,
* » GAIN AND PHASE FUNCTION SUBROUTINE GFARF')
END

144
112.0 118.0 132.0 129.0 121.0 139.0 148.0 148.0 134.0 119.0 104.0 118.0
119.0 126.0 141.0 139.0 129.0 149.0 170.0 170.0 198.0 133.0 114.0 140.0
149.0 190.0 178.0 163.0 172.0 178.0 199.0 199.0 184.0 162.0 146.0 166.0
171.0 180.0 193.0 181.0 183.0 218.0 230.0 242.0 209.0 191 .0 172 .0 194.0
196.0 196.0 236.0 239.0 229.0 243.0 264.0 272.0 237.0 211.0 180.0 201.0
204.0 188.0 239.0 227.0 234.0 264.0 302.0 293.0 299.0 229.0 203.0 229.0
242.0 233.0 267.0 269.0 270.0 319.0 364.0 347.0 312.0 274.0 237.0 278.0
284.0 277.0 317.0 313.0 318.0 374.0 413.0 409.0 399.0 306.0 271.0 306.0
319.0 301.0 396.0 348.0 399.0 422.0 469.0 467.0 404.0 347.0 309.0 336.0
340.0 318.0 362.0 348.0 363.0 439.0 491.0 909.0 404.0 399.0 310.0 337.0
360.0 342.0 406.0 396.0 420.0 472.0 948.0 999.0 463.0 407.0 362.0 409.0
417.0 391.0 419.0 461.0 472.0 939.0 622.0 606.0 908.0 461 .0 390.0 432.0

Figure F-la

Example program using DIF, VP and GFARF
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CHAPTER 11

COMPLEX DEMODULATION

A. Introduction

STARPAC contains two subroutines which find the amplitude and phase

functions of a demodulated series as described in Bloomfield [1976]

.

The demodulated series 5(t) is formed by multiplying the observed series

by a complex sinusoid at the demodulation frequency. If the observed series Y

is a sinusoid of the nominal demodulation frequency FD with varying amplitude

and phase plus noise, that is,

Y(t ) = R(t) cos(2rFDt + <J>(t)) + a(t)

. if 2rFDt + $(t)l ~if2irFDt + <{>(t))

= 0.5 R(t
)

[ e
1 J

+ e
1

]
+ a(t)

then the demodulated series may be represented by

-i2ir FD
6 (t ) - e Y(t)

i<b ( t ) -i(4irFDt + cj>(t)l -i2TTFD
0.5 R(t)e + (0.5)R(t)e + e a(t)

for t - 1. © o •

N is the

i is the

FD is the

R(t) is the

<j> (t) is the

a(t) is the

Users are

,
N, where

1/2

declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these

subroutines are discussed in §E. Sample programs and their output are shown
in §F.

B . Subroutine Descriptions

Subroutine DEMOD computes the smoothed amplitude and phase components of

the demodulated series. The user must specify the demodulation frequency,
along with the number of filter terms and the cutoff frequency which define

1 l-l



the low-pass filter utilized to smooth the demodulated series. Output from

DEMOD consists of plots of the amplitude and phase functions. The phase
function plot reduces discontinuities using the method suggested by Bloomfield
[1976]. As shown in figure F-lc this method displays both the principle phase
value, which is defined to lie in the range —it to it, and the principle phase
value plus or minus 2tt ,

where the sign is chosen such that the second value
lies in the range ~2tt to 2tt .

Subroutine DEMODS is the same as DEMOD except that the computed amplitude
and phase functions arc returned to the user and the printed output described
for DEMOD is optional.

C . Subroutine Declaration and GALL Statements

NOTE; Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

DEMOD: Compute and plot the results of a complex demodulation of the input
series

<real> Y (ji)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

I

CALL DEMOD (Y, N, FD, FC, K, LDSTAK)

DEMODS: Compute and optionally plot the results of a complex demodulation of
the input series; return amplitude and phase functions of demodulated
series

<real> Y(n), AMPL(n), PHAS (n)

DOUBLE PRECISION VSTMUldstak)
COMMON /CSTAK/ DSTAK

CALL DEMODS (Y, N, FD, FC, K, AMPL, PHAS, NDEM, NPRT, LDSTAK)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE; —> indicates that the argument is input to the subroutine and that
the input value is preserved;

<-- indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;— indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* •

• indicates that the variable is passed via COMMON.

11-2



AMPL <

DSTAK

FC

FD

IERR

K

LDSTAK -

— The vector of dimension at least N-(K-l) that contains the NDEM

values of the smoothed amplitude function of the observed series,

AMPL(I) = R(t), where R(t) is defined in §A and the index I is

computed as I = t - (K-l)/2 for t = (K+l)/2 to N-(K-l)/2. The

stored values of the amplitude function will start in AMPL(l);

AMPL(NDEM+1) to AMPL(N) will be set to zero.

* * The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The

first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

--> The cutoff frequency for the low-pass filter in cycles per sample
interval. FC must lie between 1/K and FD.

-> The demodulation frequency in cycles per sample interval. FD must
lie between 0.0 and 0.5.

An error flag returned in COMMON /ERRCHK/ . [See chapter 1, §D.5.]

Note that using (or not using) the error flag will not affect the
printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.

-> The number of terms in the low-pass filter used to extract the

amplitude and phase functions. K must be odd. The user must
choose the number of filter terms, K, so that (FC - 1/K) > 0 and
(FC + 1/K) < 0.5. In addition, K must be chosen as a compromise
between.

1) A sharp cutoff, that is, 1/K small; and

2) Minimizing the number of data points lost by the filtering
operations. ( (K - 1 ) / 2 data points will be lost from each end
of the series.)

-> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK
must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,
otherwise P = 1.0. [See chapter 1, §B.]

For DEMOD:

LDSTAK > 10 + ( 3 • N+K ) • P

For DEMODS:

LDSTAK > 9 + (10- 2* N+K)*

P

where 10 = 0 if NPRT = 0 and 10 = 1 if NPRT t 0.

1 1-3



N —> The number of observations, which must equal or exceed 17.

NDEM <— The number of observations in AMPL and PHAS, NDEM = N - (K-l).

NPRT —> The variable controlling printed output.

If NPRT = 0, the automatic printout is suppressed.

If NPRT t 0, the automatic printout is provided.

The default value is 1. If NPRT is not an argument of the

subroutine CALL statement the default value is used.

PHAS <— The vector of dimension at least NDEM = N-(K-l) that contains the
NDEM primary values of the smoothed phase function of the observed
series, PHAS(I) = <|>(t), where <f>(t) is defined in §A and the index
I is computed as I = t - (K- 1 ) / 2 for t = ( K+ 1 ) / 2 to N - ( K- 1 )

/

2

.

The stored values of the phase function will start in PHAS(l);
PHAS(NDEM+1) to PHAS(N) will be set to zero.

Y — > The vector of dimension at least N that contains the observations
of the time series.

E . Computational Methods

E. 1 Algorithms

The STARPAC code for performing complex demodulation was adapted from the

subroutines given on pages 147 to 150 of Bloomfield [1976]. As noted in

Bloomfield, the first term of the demodulated series defined in §A is centered
about zero frequency while the remaining two terms are centered at frequencies
FD and 2FD. Thus, the first term can be separated from the others using the

low-pass filter described in chapter 10 (with FC » FD/2), resulting in the

complex filtered series

K
YF(t) = l HLP(J).6(t+Km-J)

J=1

= a (t ) + i* 8 (t )

i<J>(t)
= 0. 5« R(t ) * e for t = K^, K^+l

, ..., (N-K^+l),

where

K is the number of filter terms;

is the midpoint of the filter, = (K+l)/2;

HLP(J) is the J t ^1 low-pass filter coefficient, defined in chapter 10, §D;

1 1-4



a(t) is the real part of the filtered series;

3(t) is the imaginary part of the filtered series.

The smoothed estimates of the amplitude R and phase <j> functions can then be

extracted from the filtered series using

R(t) - 2(a(t)2 + B(t)2)
1/2

and
A

cf>(t) = tan
_1

(a(t)/B (t)) .

Note that (K-l)/2 points have been lost from each end of the demodulated

series by the filtering operation.

E . 2 Computed Results and Printed Output

The argument controlling the printed output, NPRT, is discussed in §D.

The output consists of plots of the smoothed amplitude and phase functions,
and a list of the demodulation frequency, cutoff frequency and number of terms

in the low-pass filter used to smooth the demodulated series.

F . Example

In the example program of figure F-la, DEMOD is used to estimate the
amplitude and phase function corresponding to the input series Y. The data
used are the Wolf sunspot numbers for the years 1700 to 1960 as tabulated by

Waldmeier [1961] . Figure F-lb shows the plot of the amplitude function and
figure F-lc shows the plot of the phase function. Both plots have been
truncated so that they will fit on one page of this manual; the actual plots
generated by DEMOD continue for another 177 lines. The transfer function of

the low-pass filter used in this example is shown in chapter 10, figure B.l-1.
Further discussion of this example can be found on pages 137 to 141 of

Bloomfield [1976].
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IAIN PROGRAM PROGRAM E X AM PL
C

C DEMONSTRATE DEMOD USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYBER 180/9A0.
C

C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE T A PI 6 ON CYBERS)
C ESEE CHAPTER 1# SECTION D.A]
C

C N.B. DECLARATION OF Y MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y ( 300

)

DOUBLE PRECISION DSTAM900)
C

COMMON /CSTAK/ DSTAK
c

C SPECIFY NECESSARY DIMENSIONS
C

LDSTAK = 500
C

C READ NUMBER OF OBSERVATIONS
C OBSERVED SERIES
C

READ 100# N

READ 101# ( Y ( I J # I •!# N )

C

C SET DEMODULATION FREQUENCY
C CUTOFF FREQUENCY
C NUMBER OF TERMS IN THE LOW-PASS FILTER
C

FD « 1.0 7 11.0
FC = 1.0 / 22.0
K » A1

c

C PRINT TITLE ANO CALL DEMOO FOR COMPLEX DEMODULATION ANALYSIS
C

WRITE (6* 102)
CALL DEMOD (V, N# FD# FC# K# LDSTAK)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (15)
101 FORMAT (10F7.2)
102 FORMAT (URESULTS OF STARPAC#

* « COMPLEX DEMODULATION SUBROUTINE DEMOD*

S

END

DATA I 261
5 .00 11.00 16.00 23.00 36.00 96.00 29.00 20.00 10 .00 8 .00
3 .00 0.00 0.00 2.00 11.00 27.00 A7.00 63.00 60 .00 39 .00

28 .06 26.00 22.00 11.00 21.00 AOoOO 78.00 122.00 103 .00 73 .00
AT .00 35.00 11. DC 9.00 16.00 3A.00 70.00 61.00 111 .00 101 .00
73 .00 AO. 00 20. OC 16.00 5.00 11.00 22.00 AO. 00 60 .00 80 .90
83 .AO A7.70 A7.80 30.70 12.20 9.60 10.20 32. AO A7 .60 5 A .CO
62 .90 85.90 61.20 AS. 10 36. AO 20.90 11. AO 37.80 69 .80 106 .10

100 .80 61.60 66.90 3A.80 30.60 7.00 19.80 92.50 ISA .AO 125 .90
BA .80 68.10 36.90 22.80 10.20 2A.10 82.90 132.00 130 .90 118 .10
89 .90 66.60 60.00 A6.90 A1.00 21.30 16.00 6. AO A .10 6 . 80
1A .50 3A.00 A9.00 A3. 10 A7.50 A2.20 28.10 10.10 8 .10 2 .50
0 .00 1. AO 9.00 12.20 13.90 39. AO A5.80 A1.10 30 .10 23 .90

15 .60 6.60 A. 00 l.SO 8.50 16.60 36.30 A 9 . 60 6 A .20 67 .00
70 .90 AT. 80 27.50 8.50 13.20 36.90 121.50 138.30 103 .20 85 .70
6A .60 36.70 2A.20 10.70 15.00 AO. 10 61.50 98.50 124 .70 96 . 30

66 .60 6A.90 5 A , 1

0

39.00 20.60 6.70 A. 30 22.70 5 A .80 93 . 80

95 .80 77.20 59.10 AA .00 A7.00 30.30 16.30 7.30 37 .60 7A .00

139 .00 111.20 101.60 66.20 AA.70 17.00 11.30 12. AO 3 .AO 6 .00

32 .30 5A.30 59.70 63.70 63.50 92.20 25. AO 13.10 6 .80 6 .30

7 .10 35.60 73.00 85.10 76.00 6A.00 A1.80 26.20 26 .70 12 .10

9 .50 2.70 5.00 2A.A0 A2.00 63.50 53.80 62.00 A 8 .50 A3 .90

18 .60 3.70 3.60 1. AO 9.60 A7.A0 57.10 103. 90 80 .60 63 .60

37 .60 26.10 1A.20 5.80 16.70 AA.30 63.90 69.00 77 .80 6 A .90

35 .70 21.20 11.10 5.70 8.70 36.10 79.70 11A. AO 109 .60 88 .80

67 .BO A7.50 30.60 16.30 9.60 33.20 92.60 151.60 136 .30 13A .70
83 .90 69. AO 31.50 13.90 A. AO 36.00 1A1.70 190.20 1 8 A .80 159 . 00

112.30

Figure F-la

Example program using DEMOD
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CHAPTER 12

CORRELATION AND SPECTRUM ANALYSIS

A. Introduction

STARPAC contains 50 subroutines for time series correlation and spectrum
estimation. Both univariate and bivariate series can be analyzed. Included

are subroutines that compute the correlation function using the fast Fourier
transform and that accept time series with missing observations. The user may

choose from spectrum analysis subroutines implementing the classical Fourier
transformed covariance function techniques presented in Jenkins and Watts

[1968], the autoregressive or rational spectrum techniques described by Jones

[1971] or the direct Fourier transform (periodogram) techniques discussed in

Bloomfield [1976]

.

Users are directed to §B for a brief description of the subroutines. The

declaration and CALL statements are given in §C and the subroutine arguments
are defined in §D. The algorithms used and output produced by these
subroutines are discussed in §E. Sample programs and their output are shown
in §F.

B. Subroutine Descriptions

STARPAC correlation and spectrum analysis subroutines are divided into
seven families. For correlation analysis of univariate and bivariate series
there are two families of subroutines supporting

1. Autocorrelation Analysis and
2. Cross Correlation Analysis.

For spectrum estimation there are four families of subroutines for univariate
series and one family for bivariate series supporting

3. Univariate Spectrum Estimation Using the Fourier Transform of the
Autocorrelation Function,

4. Univariate Spectrum Estimation Using Autoregressive Models,
5. Univariate Spectrum Estimation Using the Direct Fourier Transform,
6. Univariate Series Utilities and

7. Bivariate Spectrum Estimation Using the Fourier Transform of the

Cross Correlation Function.

In general, each family of subroutines has one basic subroutine which
performs the desired computations with a minimum of user input. The other
subroutines in each family provide greater flexibility to the user at the

price of more input. The features of these subroutines are indicated by the
suffix letter(s) on the subroutine (e.g., ACFM and BFSFS ) . Not all features
are available for each family. Features which are common to more than one
family are described here. Features which are unique to a specific family are
described in the subsections below.

o Suffix S indicates that the user is allowed to specify various options
which are preset in the simplest call and that certain results are
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returned to the user via the subroutine CALL statement. In the sub-
sections that follow, the specific details of this feature are
discussed individually for each family of subroutines.

• Suffix M indicates that the series contains missing data. A missing
value code must be used within the series to specify time points
without an observed value. There is no limit on the percentage of data
that can be missing. However, because the correlation matrix computed
from a series with missing values is not necessarily positive definite,
the partial autocorrelation function estimates and autoregressive order
selection statistics are not computed and caution must be used in

interpreting those results which are provided. Analysis of time series
with missing values is discussed in Jones [1971],

• Suffix F indicates that the covariances are computed using the

Singleton [1969] fast Fourier transform (FFT). When the number of

observations in the series is large this method of computation is more

efficient than the direct computation normally used by STARPAC.
Subroutines with an F suffix reduce the amount of workspace needed by

using the vector originally containing the data as workspace; the data
must be copied into another vector prior to calling these subroutines
if the data are to be preserved. These subroutines automatically
extend the length of the input series by appending enough zeros to meet
the requirements of this FFT code; the length of the vector used to

pass the data to these subroutines must therefore equal or exceed the

extended series length, NFFT, as discussed in §D.

® Suffix V indicates that the user inputs the covariances rather than the

original series, thus avoiding a time-consuming recoraputation of the

covariance function if it is already available, for example, from
subroutines ACFS, ACFFS, ACFMS , CCFS, CCFFS or CCFMS.

B . 1 Correlation Analysis

B.l.a Univariate Series

Autocorrelation Analysis . STARPAC ' s autocorrelation function (acf)

subroutines compute and plot the autocorrelation function estimates; compute
the large lag standard error of the estimates; perform a chi-squared test of

the null hypothesis that the series is white noise; compute the partial
autocorrelation function coefficients estimates; and, using the modified
Akaike information criterion [Akaike, 1974] , select the order of an

autoregressive process which models the series and estimate the parameters of

this autoregressive model. The user should note that a purely autoregressive
model may approximate the true structure of the model with an unnecessarily
large number of terms. Such an autoregressive model must be used with
discretion since the true structure might actually be more complex including
moving average components, harmonic terms or some mixture of deterministic and

stochastic elements. For some purposes, a purely autoregressive approximation
may be useful. In other cases, careful model identification can lead to the

discovery of more detailed structure of the data or to a more parsimonious
model.
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The simplest of the Autocorrelation Function subroutines is ACF, which

performs the basic analysis described in the preceding paragraph. The other
autocorrelation analysis subroutines provide the same basic analysis as ACF

while adding the features indicated above by suffixes S, M, F, MS and FS.

For the ACF family of subroutines, the suffix S feature allows the user
to indicate:

1) the maximum lag value for which the correlation function is to be

computed; and

2) the amount of printed output.
The acf subroutines with suffix S also return the autocovariance function
estimates and the coefficients of the selected autoregressive model to the
user via the subroutine CALL statement.

The ACF family of subroutines also includes subroutine ACFD, where the

suffix D indicates that the autocorrelation analysis will be performed for a

sequence of differenced series. The difference factors are provided by the

user. If the number of difference factors, NFAC, is greater than one,

difference factors beyond the first are applied to the input series Y(t) to

yield a series Z(t) given by

NFAC
Z(t) =

{
n (i

J=2
fi
IOD( J

) j

ND( J)| Y(t)

where the Bk indicates the backward shift operator defined by

Bk Y(t

)

= Y(t-k)

and IOD and ND are defined in §D. If the number of difference factors is

equal to one, Z(t) = Y(t). In either case, the autocorrelation analysis is

performed first on the series Z and then on series Z with the difference
factor (l - applied 1 to ND(1) times. This produces ND(1) + 1 passes
of the basic ACF analysis.

B.l.b Bivariate Series

Cross Correlation Analysis . STARPAC's cross correlation analysis
subroutines compute and plot the cross correlation function coefficients and
provide the large lag standard error of these estimates. Subroutine CCF is

the simplest of the Cross Correlation Function subroutines. The other five
cross correlation analysis subroutines provide the same basic analysis as CCF
while adding the features indicated above by suffixes S, M, F, MS and FS.

For the CCF family of subroutines, suffix S indicates that the analysis
is provided for each pair of series of a multivariate time series. The suffix
S feature also allows the user to indicate:
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1) the maximum lag value for which the correlation function is to be

computed; and

2) the amount of printed output.
In addition, the cross covariance function estimates are returned to the

user.

B . 2 Spectrum Estimation

B.2.a Univariate Series

Univariate Spectrum Estimation Using the Fourier Transform of the

Autocorrelation Function . The UFS (Univariate Fourier Spectrum) subroutine
family computes the estimated spectrum from the Fourier transform of the

autocovariance function (acvf) as discussed in Jenkins and Watts [1968], The
spectrum is smoothed using Parzen windows with the bandwidth controlled either
by the user or a window-closing algorithm. The principal output from each of

these subroutines consists of plots of the estimated spectrum.

Subroutine UFS has the simplest CALL statement of this family of

subroutines. The printed output consists of four spectrum plots with
successively narrower bandwidths. Each spectrum is displayed in decibels (10

times the base 10 logarithm of the power spectrum) scaled so that the maximum
value plotted is zero. The length of the upper and lower 95-percent
confidence intervals and the bandwidth for each spectrum are shown on the

plots.

The other nine univariate Fourier spectrum estimation subroutines provide
the same basic analysis as UFS while adding the features indicated above by

suffixes S, M, F, V, FS, MS, VS, MV and MVS.

For the UFS family of subroutines, the suffix S feature allows the user
to indicate:

1) the number of different window bandwidths to be used and the lag

window truncation point for each;

2) the frequency range and the number of frequencies for which the

spectrum is to be computed; and

3) whether the plot is to be in decibels or on a logarithmic scale.

In addition, the spectrum values are returned to the user.

Univariate Spectrum Estimation Using Autoregressive Models . STARPAC
Univariate Autoregressive Spectrum estimation subroutines (UAS family)

approximate an input series with an autoregressive model and compute the

corresponding theoretical spectrum for that model. For comparative purposes,
the plot of the autoregressive spectrum is superimposed against a Fourier
spectrum plot.

Subroutine UAS is the simplest of the autoregressive spectrum estimation
subroutines. It uses the modified Akaike information criterion [Akaike, 1974]

to select the order of the autoregressive model to be used. The autoregress-
ive coefficients are then computed from the autocovariance function using the

Levinson-Durbin recursive method [Box and Jenkins, 1976] for solving the
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Yule-Walker equations. The lag window truncation point used for the Fourier

spectrum is half the maximum truncation point which would have been selected
by subroutine UFS. [See §D, argument LAGS.] The output consists of several
autoregressive order selection statistics and a plot of the autoregressive and

Fourier spectra in decibels (10 times the base 10 logarithm of the power
spectrum) scaled such that the maximum value plotted is zero. The bandwidth
and the length of the 95-percent confidence interval for the Fourier spectrum
are shown on the plot. This Fourier spectrum and its confidence intervals
should be used in interpreting the autoregressive spectrum since confidence
intervals are not computed by STARPAC for the autoregressive spectrum. (The

bandwidth is not relevant to the autoregressive spectrum.

)

The other five autoregressive spectrum subroutines provide the same basic
analysis as subroutine UAS while adding the features indicated above by

suffixes S, F, V, FS and VS.

For the autoregressive spectrum family of subroutines, the suffix S

feature allows the user to indicate;

1) the order of the autoregressive model to be used for the autoregres-
sive spectrum;

2) the lag window truncation point to be used for the Fourier spectrum;

3) the frequency range and the number of frequencies within this range

at which the spectrum is to be computed; and

4) whether the plot is to be in decibels or on a logarithmic scale.
In addition, the autoregressive and Fourier spectra are returned to the user.
The user should be cautious about using high order models without checking
order selection statistics since such models can produce spurious peaks in the
spectrum.

Univariate Spectrum Estimation Using the Direct Fourier Transform . The
STARPAC direct Fourier transform subroutines (PGM family) implement the
PeriodoGraM approach to time series analysis discussed in Bloomfield [1976],
Subroutines are included for computing the raw periodogram and for computing
and plotting the integrated periodogram (or cumulative spectrum).

Subroutine PGM computes the periodogram of the series as described for
argument PER in §D using zeros to extend the length of the input series.
Output consists of a plot of the computed periodogram in decibels (10 times
the base 10 logarithm of the periodogram estimates) scaled so that the maximum
value plotted is zero. The input series must be either centered or tapered by
the user before PGM is called.

PGMS provides the same basic analysis as PGM but allows the user to

indicate:
1) whether zeros or the series mean is used to extend the series;
2) the length of the extended series; and

3) the amount of printed output.
In addition, the periodogram values and their frequencies are returned to the
user via the subroutine CALL statement.
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The integrated periodogram subroutine IPGM first subtracts the series
mean from the series, then extends the input series with zeros and finally
computes the normalized integrated periodogram. Output consists of a one-page
plot of the integrated periodogram, accompanied by 95-percent contours for
testing the null hypothesis of white noise. The integrated periodogram is

discussed in chapter 8 of Box and Jenkins [1976].

The other three integrated periodogram- subroutines add the features
indicated by suffixes S, P and PS. The suffix S option allows the user to

control the amount of printed output; the integrated periodogram values and
their corresponding frequencies are also returned to the user via the

subroutine CALL statement. The suffix P option indicates that the user inputs
the periodogram rather than the original series, thus avoiding a

time-consuming recomputation of the periodogram if it is already available,
for example, from subroutine PGMS.

Utilities . STARPAC includes utility subroutines for centering
(subtracting the mean) and tapering the observed series, periodogram smoothing
and for computing the Fourier coefficients of the series. These routines are

particularly useful when using direct Fourier techniques such as PGM and
IPGM.

Subroutine CENTER subtracts the series mean from the series and returns
the centered series. There is no printed output.

Subroutine TAPER centers the input series and applies the split-
cosine-bell taper described for argument YT in §D. The user specifies the
total proportion of the series to be tapered. The centered tapered series is

returned to the user and can be used as input to subroutine PGM or PGMS.
There is no printed output.

Subroutine FFTLEN computes for an observed series length, N, the minimum
extended series length, NFFT, which will meet the requirements of the

Singleton FFT code. The value of the extended series length is returned to

the user. There is no printed output.

Subroutine MDFLT smooths the input periodogram by applying a sequence of

modified Daniell filters as discussed in chapter 7 of Bloomfield [1976], The
filtered series is returned to the user. There is no printed output.
Subroutine MDFLT takes advantage of the symmetry of the periodogram to avoid
losing values from the ends of the series. It should therefore not be used
for input series that are not symmetric about their end values. Other digital
filtering routines, such as those described in chapter 10, may also be used
for periodogram smoothing but end effect losses will be incurred.

Subroutine FFTR computes the Fourier coefficients of an input series of

single precision observations. There is no printed output.
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B.2.b Bivariate Series

Bivariate Spectrum Estimation Using the Fourier Transform of the Cross
Correlation Function . The BFS (Bivariate _Fourier Spectrum) subroutine family
computes the estimated spectrum from the Fourier transform of the covariance
function as discussed in Jenkins and Watts [1968]. The spectrum is smoothed
using Parzen windows with the bandwidth controlled either by the user or a

window-closing algorithm. The principal output from each of these subroutines
consists of plots of the squared coherency and phase components of the cross
spectrum.

Subroutine BFS provides the basic analysis with a brief CALL statement.
The printed output consists of four spectrum plot pairs (a squared coherency
plot and a phase plot) with successively narrower bandwidths chosen by the

window-closing algorithm. The upper and lower 95-percent confidence intervals
and the 95-percent significance levels are shown on the coherency plots.

The other nine bivariate Fourier spectrum estimation subroutines provide
the basic analysis described for BFS while adding the features indicated above
by suffixes S, M, F, V, FS, MS, VS, MV and MVS.

For the BFS family of subroutines, the suffix S feature allows the user
to indicate:

1) the number of different window bandwidths to be used and the lag
window truncation point for each;

2) the frequency range and the number of frequencies for which the

spectrum is to be computed; and

3) whether the plot is to be in decibels or on a logarithmic scale.
In addition, the squared coherency and phase values are returned to the user.

C . Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

Subroutines for Autocorrelation Analysis

ACF: Compute and print a two-part autocorrelation analysis of a series

<real> Y (n)

1

CALL ACF (Y, N)
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ACFS: Compute and optionally print a two-part autoaorrelation analysis of
a series using user-supplied control values; return autocovariance
function and order and parameter estimates of selected autoregressive
model

<real> Y (n), ACOV

(

lagmax+1 ) ,
PHI {lagmax)

DOUBLE PRECISION DSTAK {Idstak)
COMMON / CSTAK/ DSTAK

CALL ACFS (Y, N, LAGMAX, LACOV, ACOV, IAR, PHI, NPRT
,
LDSTAK)

ACFM: Compute and print a two-part autocorrelation analysis of a series
with missing observations

<real> Y (n)

CALL ACFM (Y, YMISS, N)

ACFMS: Compute and optionally print a two-part autocorrelation analysis

of a series with missing observations using user-supplied control
values; return autocovariance function

INTEGER NLPPA (lagmax+1)
<real> Y(n), ACOV (lagmax+1)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL ACFMS (Y, YMISS, N, LAGMAX, LACOV, ACOV, AMISS, NLPPA, NPRT,
1 LDSTAK)

ACFF: Compute and print a two-part autocorrelation analysis of a series;
use FFT for computations; return autocovariance function and order
and parameter estimates of selected autoregressive model

<real> YFFT{nfft)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL ACFF (YFFT, N, LYFFT, LDSTAK)
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ACFFS: Compute and optionally print a two-part autocorrelation analysis of
a series using user-supplied control values; use FFT for
computations; return autocovariance function and order and parameter
estimates of selected autoregressive model

<real> YFFT (nfft), A.COV (lagmax+1 ) ,
?H.I(lagmax)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL ACFFS (YFFT, N, LYFFT, LDSTAK, LAGMAX, LACOV, ACOV, IAR, PHI,

I NPRT)

ACFD: Compute and print a two-part autocorrelation analysis of a
differenced series

INTEGER ND (nfac) t lOD(nfac)
<real> Y(n)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL ACFD (Y, N, LAGMAX, NFAC, ND, IOD, LDSTAK)

Subroutines for Cross Correlation Analysis

CCF: Compute and print a two-part cross correlation analysis of a pair of
series

<real> Yl(n), Y2(rc)

CALL CCF (Yl, Y2
,

N)

CCFS : Compute and optionally print a two-part cross correlation analysis
of a multivariate series using user-supplied control values; return
cross covariance function

<real> YM (n,m), CCOV (lagmax+1 3 m> m)
DOUBLE PRECISION DSTAK(ldstak)
COMMON /CSTAK/ DSTAK

CALL CCFS (YM, N, M, IYM
,
LAGMAX, CCOV, ICCOV, JCCOV,

1 NPRT, LDSTAK)
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CCFM:

CCFMS:

CCFF:

CCFFS:

Compute and print a two-part cross correlation analysis of a pair of
series with missing observations

<real> Yl(n), Y2(n)

CALL CCFM (Yl, YMISS1
,
Y2, YMISS2, N)

Compute and optionally print a two-part cross correlation analysis
of a multivariate series with massing observations using user-
supplied control values; return cross covariance function

INTEGER NLPPC (lagmax+1 3 m3 m)
<real> YM(n3 m), YMMISS(tfz), CCOV (lagmax+1 9 m3 m)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL CCFMS (YM, YMMISS, N, M, IYM, LAGM.AX
,
CCOV, CMISS,

1 ICCOV, JCCOV, NLPPC
,

INLPPC ,
JNLPPC

,
NPRT

,
LDSTAK)

Compute and print a two-part cross correlation analysis of a pair of
series; use FFT for computations

<real> YFFT1 (nfft)

,

YFFT2 (nfft)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL CCFF(YFFT1, YFFT2
,

N, LYFFT, LDSTAK)

Compute and optionally print a two-part cross correlation analysis
of a multivariate series using user-supplied control values; use FFT
for computations; return cross covariance function

<real> YMFFT (nfft3 m), CCOV (lagmax+1 3 m3 m)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL CCFFS (YMFFT, N, M, IYMFFT, LAGMAX, CCOV,
1 ICCOV, JCCOV, NPRT, LDSTAK)
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Subroutines for Univariate Spectrum Estimation
Using the Fourier Transform of the Autocorrelation Function

UFS: Compute and print a univariate Fourier spectrum analysis of a series

<real> Y (n)

CALL UFS (Y, N)

UFSS : Compute and optionally print a univariate Fourier spectrum analysis
of a series using user-supplied control values; return Fourier
spectrum and corresponding frequencies

INTEGER LAGS (raj)

<real> Y(n), SPCF(n/,raj) , FREQ(n/)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL UFSS (Y, N, NW, LAGS , NF , FMIN, FMAX
,
NPRT, SPCF, ISPCF,

1 FREQ, LDSTAK)

UFSF: Compute and print a univariate Fourier spectrum analysis of a series

;

use FFT for computations

<real> YFFT(nfft)
DOUBLE PRECISION DSTAK

(

Idstak )

COMMON /CSTAK/ DSTAK

CALL UFSF (YFFT, N, LYFFT, LDSTAK)

UFSFS: Compute and optionally print a univariate Fourier spectrum analysis
of a series using user*-supplied control values; use FFT for computa-
tions; return Fourier spectrum and corresponding frequencies

INTEGER LAGS (nw)
<real> YFFT(nfft ) ,

SPCF (nf,nw), FREQ (nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL UFSFS (YFFT, N, LYFFT, LDSTAK, NW
, LAGS, NF

,
FMIN, FMAX, NPRT,

1 SPCF, ISPCF
,
FREQ)
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UFSM: Compute and print a univariate Fourier spectrum analysis of a series
with missing observations

<real> Y(n)

CALL UFSM (Y, YMISS, N)

UFSMS: Compute and optionally print a univariate Fourier spectrum analysis

of a series with missing observations using user-supplied control
values; return Fourier spectrum and corresponding frequencies

INTEGER LAGS (raj)

<real> Y (n)

,

SPCF(nf3nw), FREQ(nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL UFSMS (Y, YMISS
,

N, NW
,
LAGS

,
NF

,
FMIN, FMAX, NPRT, SPCF,

1 ISPCF
,
FREQ, LDSTAK)

UFSV: Compute and print a univariate Fourier spectrum analysis of a series;
input covariances rather than original series

<real> ACOV(lagmax+1)

CALL UFSV (ACOV, LAGMAX, N)

UFSVS: Compute and optionally print a univariate Fourier spectrum analysis

of a series using user-supplied control values; input covariances
rather than original series; return Fourier spectrum and correspond-
ing frequencies

INTEGER LAGS (nw)
<real> kCOV (lagmax+1 ) ,

SPCF (nf9nw)> FREQ (nf)
DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK

CALL UFSVS (ACOV, LAGMAX, N, NW
,
LAGS, NF, FMIN, FMAX,

1 NPRT, SPCF, ISPCF, FREQ, LDSTAK)
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UFSMV : Compute and print a univariate Fourier spectrum analysis of a series

with missing observations; input covariances rather than original

series

INTEGER WLPPA (lagmax+1 )

<real> ACOV (lagmax+1)

CALL UFSMV (ACOV, NLPPA
,
LAGMAX, N)

UFSMVS: Compute and optionally print a univariate Fourier spectrum analysis

of a series with missing observations using user-supplied control
values; input covariances rather than original series; return Fourier
spectrum and corresponding frequencies

INTEGER NLPPA (lagmax+1)
<real> ACOV {lagmax+1 ) , SPCF (nf,nw), FREQ (nf)
DOUBLE PRECISION DSTAK( Idstak)
COMMON /CSTAK/ DSTAK

CALL UFSMVS (ACOV, NLPPA, LAGMAX, N, NW
,
LAGS, NF

,
FMIN,

1 FMAX, NPRT, SPCF, ISPCF, FREQ, LDSTAK)

Subroutines for Univariate Spectrum Estimation Using Autoregressive Models

UAS : Compute and print a univariate autoregressive spectrum analysis of a

series

<real> Y(n)

CALL UAS (Y, N)

UAS’S: Compute and optionally print a univariate autoregressive spectrum
analysis of a series using user-supplied control values; return
autoregressive and Fourier spectrum and corresponding frequencies

<real> Y(w), PHI (lagmax)
t
SPCF (nf), SPCA(nf), FREQ (nf)

DOUBLE PRECISION DSTAK

(

Idstak

)

COMMON /CSTAK/ DSTAK

CALL UASS (Y, N, IAR, PHI, LAGMAX, LAG, NF
, FMIN, FMAX, NPRT,

1 SPCA, SPCF, FREQ, LDSTAK)
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UASF: Compute and print a univariate autoregressive spectrum analysis of a

series; use FFT for computations

<real> YFFT (nfft)
DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL UASF(YFFT, N, LYFFT, LDSTAK)

UASFS: Compute and optionally print a univariate autoregressive spectrum

analysis of a series using user-supplied control values; use FFT for
computations; return autoregressive and Fourier spectrum and
corresponding frequencies

<real> YFFT(nfft), PHI (lagmax), SPCA(nf), SPCF(nf), FREQ(rz/)

DOUBLE PRECISION DSTAK {Idstak)
COMMON /CSTAK/ DSTAK

CALL UASFS (YFFT, N, LYFFT, LDSTAK, IAR, PHI, LAGMAX, LAG, NF
,
FMIN,

1 FMAX
,
NPRT, SPCA, SPCF

,
FREQ)

UASV: Compute and print a univariate autoregressive spectrum analysis of a

series; input covariances rather than original series

<real> ACOV (lagmax+1 )

%

CALL UASV (ACOV, LAGMAX, N)

UASVS: Compute and optionally print a univariate autoregressive spectrum
analysis of a series using user-supplied control values; input
covariances rather than original series; return autoregressive and
Fourier spectrum and corresponding frequencies

<real> AGOV (lagmax+1 )

,

Y (n), PHI (lagmax)
<real> SPCA(n/), SPCF(nf), FREQ(nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL UASVS (ACOV, LAGMAX, Y, N, IAR, PHI, LAG, NF
,
FMIN,

1 FMAX, NPRT, SPCA, SPCF, FREQ, LDSTAK)
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Subroutines for Univariate Spectrum Estimation Using the

Direct Fourier Transform

PGM:

PGMS:

IPGM:

IPGMS:

Compute and print a periodogram analysis of a series; use FFT for
computations

<real> YFFT (nfft)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

1

CALL PGM (YFFT, N, LYFFT, LDSTAK)

Compute and optionally print a periodogram analysis of a series; use
FFT for computations; return periodogram and corresponding frequen-
cies

<real> YFFT(nfft) t PER(nf), FREQ (nf)

CALL PGMS (YFFT, N, NFFT, LYFFT, IEXTND, NF
,
PER, LPER, FREQ,

1 LFREQ, NPRT)

Compute and print an integrated periodogram analysis of a series;
use FFT for computations

<real> YFFT (nfft)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL IPGM (YFFT, N, LYFFT, LDSTAK)

Compute and optionally print an integrated periodogram analysis of a
series; use FFT for computations; return integrated periodogram and
corresponding frequencies

<real> YFFT (nfft), PERI (nf), FREQ (nf)
DOUBLE PRECISION VSTAK(ldstak)
COMMON /CSTAK/ DSTAK

CALL IPGMS (YFFT, N, LYFFT, LDSTAK, NF
,
PERI, LPERI

,
FREQ, LFREQ,

1 NPRT)
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IPGMP:

IPGMPS:

CENTER:

TAPER:

FFTLEN

:

Compute and print an integrated periodogram analysis of a series

;

input periodogram rather than original series

<real> PER (nf), FREQ(nf)
DOUBLE PRECISION DSTAK

(

Idstak )

COMMON /CSTAK/ DSTAK

i

CALL IPGMP (PER, FREQ, NF
,

N, LDSTAK)

Compute and optionally print an integrated periodogram analysis of a

series ; input periodogram rather than original series; return inte-

grated periodogram and corresponding frequencies

<real> PER(nf), FREQ(nf) , PERI(nf)
DOUBLE PRECISION DSTAK

(

Idstak)
COMMON /CSTAK/ DSTAK

S

CALL IPGMPS (PER, FREQ, NF, N, LDSTAK, PERI, NPRT)

Utility Subroutines

Subtract the series mean from each observation of a series ; return
the centered series ( no printed output)

<real> Y («), YC(«)

£

CALL CENTER (Y, N, YC)

Center a series about its mean and apply a split-cosine-bell taper;
return the tapered series (no printed output)

<real> Y(n), YT(n)

S

CALL TAPER (Y, N, TAPERP, YT)

Compute the minimum extended series length for using the Singleton
FFT; return the extended series length ( no printed output)

CALL FFTLEN (N, NDIV, NFFT)
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MDFLT: Smooth a periodogram by applying a sequence of modified Daniell
filters; return the smoothed periodogram (no printed output)

INTEGER KMD (nk )

<real> PER(n/), PERF(nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL MDFLT (PER, NF
,
NK, KMD, PERF, LDSTAK)

FFTR: Compute the Fourier coefficients of an input series of REAL (single
precision) observations; return the Fourier coefficients (no printed
output)

<r eal> YFFT(n), kB(nfft)

CALL FFTR ( YFFT, N, NF FT, IEXTND, NF
,
AB, LAB)

Subroutines for Bivariate Spectrum Estimation Using the
Fourier Transform of the Cross Correlation Function

BFS: Compute and print a bivariate Fourier spectrum analysis of a pair of
series

<real> Yl(n), Y2(n)

CALL BFS (Yl, Y2, N)

BFSS: Compute and optionally print a bivariate Fourier spectrum analysis
of a pair of series using user-supplied control values; return
squared coherency and phase components of the cross spectrum and the
corresponding frequencies

INTEGER LAGS (nw)
<real> Yl(n), Y2(n), CSPC2 (nf,nw), PHAS (nf,nw), FREQ(nf)
DOUBLE PRECISION DSTPK (Idstak)
COMMON /CSTAK/ DSTAK

CALL BFSS (Yl, Y2, N, NW
, LAGS, NF ,

FMIN, FMAX
,
NPRT,

1 CSPC2, ICSPC2
,
PHAS, IPHAS, FREQ, LDSTAK)
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BFSF: Compute and print a bivariate Fourier spectrum analysis of a pair of

series; use FFT for computations

<real> YFFT1 (nfft ) ,
YFFT2(n//t)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL BFSF (YFFT1
,
YFFT2 ,

N
s
LYFFT, LDSTAK)

BFSFS: Compute and optionally print a bivariate Fourier spectrum analysis

of a pair of series using user-supplied control values; use FFT for
computations; return squared coherency and phase components of the

cross spectrum and the corresponding frequencies

INTEGER LAGS (nw)

<real> YFFT1 (nfft ) ,
YFFT2(rc//t) ,

CSPC2(n/,nw)
,
PHAS (nf, nw )

,

1 FREQ (nf)
DOUBLE PRECISION DSTMH(ldstak)
COMMON /CSTAK/ DSTAK

CALL BFSFS (YFFT1 , YFFT2 , N, LYFFT, LDSTAK, NW, LAGS,
1 NF, FMIN, FMAX, NPRT, CSPC2

,
ICSPC2

,
PHAS, IPHAS, FREQ)

BFSM: Compute and print a bivariate Fourier spectrum analysis of a pair of
series with missing observations

<real> Yl(n), Y2(n)

*

CALL BFSM (Y1
,
YMISS1

,
Y2, YMISS2 , N)

BFSMS: Compute and optionally print a bivariate Fourier spectrum analysis
of a pair of series with missing observations using user-supplied
control values; return squared coherency and phase components of the
cross spectrum and the corresponding frequencies

INTEGER LAGS(nw)
<real> Yl(n), Y2(n), CSPC2(n/,nw ) ,

PHAS (n.f,nw ) ,
FREQ (nf)

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL BFSMS (Yl, YMISS1, Y2, YMISS2
,

N, NW
,
LAGS, NF

,
FMIN,

1 FMAX, NPRT, CSPC2
,
ICSPC2

,
PHAS, IPHAS, FREQ, LDSTAK)
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BFSV: Compute and print a bivariate Fourier speotrum analysis of a pair of
series; input covariances rather than original series

<real> CCOV(lagmax+1 ,m,m)

CALL BFSV (CCOV, INDEX 1, INDEX2
,

N, LAGMAX, ICCOV, JCCOV)

BFSVS : Compute and optionally print a bivariate Fourier speotrum analysis

of a pair of series using user-supplied control values; input
oovariances rather than original series; return squared coherency and
phase components of the cross spectrum and the corresponding frequen-
cies

INTEGER LAGS (jiw)

<real> CCOV (lagmax+1 , m, m) ,
CSPC2 (nf,nw), PHAS {nf, nw ) ,

FREQ (nf )

DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL BFSVS (CCOV, INDEX1, INDEX 2 ,
N, ICCOV, JCCOV,

1 NW, LAG, NF, FMIN, FMAX, NPRT, CSPC2 ,
ICSPC2

,
PHAS, IPHAS,

2 FREQ, LDSTAK)

BFSMV: Compute and print a bivariate Fourier spectrum analysis of a pair of
series with missing observations; input covariances rather than
original series

INTEGER WLBVC (lagmax+l,m,m)
<real> CCOV( lagmax+1 ,m,m)

CALL BFSMV (CCOV,
1 LAGMAX, ICCOV,

NLPPC ,
INDEX 1 ,

INDEX2, N,

JCCOV, INLPPC
,
JNLPPC

)
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BFSMVS: Compute and optionally print a bivariate Fourier spectrum analysis

of a pair of series with missing observations using user-supplied

control values ; input covariances rather than original series; return
squared coherency and phase components of the cross spectrum and the

corresponding frequencies

INTEGER NLPPC(Z.agmax+1 ,m,m) y
LAGS(nw)

<real> CCOV(ns m,m), CSPC2 (nf,nw), PHAS (nf,nw), FREQ(nf)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

CALL BFSMVS (CCOV, NLPPC
,
INDEX 1 ,

INDEX2, N, ICCOV

,

1 JCCOV, INLPPC, JNLPPC, NW, LAGS, NF
,
FMIN, FMAX

,
NPRT,

2 CSPC2
,
ICSPC2 ,

PHAS, IPHAS, FREQ, LDSTAK)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTES --> indicates that the argument is input to the subroutine and that

the input value is preserved;
<“• indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;— indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
* ° * indicates that the variable is passed via COMMON.

AB <-- The vector of dimension at least 2«NF that contains the NF real
and the NF imaginary components of the Fourier coefficients of the

input series. The real and imaginary components of the Fourier
coefficients are returned in the REAL (single precision) array AB
stored such that the real and imaginary parts of the complex
Fourier coefficients are

AB(2I-1) + i.AB(2I) for 1=1, ..., NF,

where

i is the complex value (-1) 1/2
; and

NF is the number of harmonic frequencies, NF = NFFT/2.

The vector YFFT used to input the observed series can also be used
in place of the vector AB to conserve storage space.

ACOV — The vector of dimension at least LAGMAX + 1 that contains the

LAGMAX+1 autocovariance function (acvf) estimates for lags i = 0,

. . . ,
LAGMAX. ACOV is returned from the autocorrelation analysis

subroutines; it is input to the spectrum analysis subroutines.
— continued —
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The acvf estimate for lag i, c(i), is defined by

N-i
(N-i). I [(Y(t)-YHY(t+i)-Y>€(t).S(t+i)]

c(i) = c(-i) = t=l

N-i
N l [?(t)«C(t+i)]

t=l

for lags i = 0 to LAGMAX, where

Y is the average of all observed values; and

£(t) is an indicator variable, defined by

£(t) = 1 if Y(t) is observed (Y(t) * YMISS), and

C (t) = 0 if Y(t) is missing (Y(t) = YMISS).

The acvf are stored in ACOV such that ACOV(I) = c(I-l) for I = 1,

. .
. ,

LAGMAX+1. When there are no missing observations the above
formula for the acvf reduces to that of the usual positive
definite acvf estimator.

AMISS <— The missing value code used within ACOV to indicate that the

autocovariance function at a given lag could not be computed
because of missing data.

CCOV The three-dimensional array of dimension at least LAGMAX+1 by M
by M that contains the cross covariance function (ccvf) estimates.
CCOV is returned by the cross correlation analysis subroutines; it

is input to the spectrum analysis subroutines.

The ccvf estimate, c.si,(i), for lag i between the series stored in

the j
cn and kcn column of YM is defined by

Cjk(i) — ckj

N-i
(N-i)

• l [(YM(t,j)-YM
i
)*(YM(t+i,k)-YMk)-? i

(t).5 k (t+i)]

= t=l

N-i
N- I [5 i

(t)-C k(t+i)]

t=l

for lags i = 0, ..., LAGMAX and for series j = 1, ..., M and k =

1 ,
. . .

,

M, where

YMj is the average of all the observed values for the column

of YM; — continued —
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Fj(t) is an indicator variable, defined by

£j(t) = 1 if YM(t,j) is observed (YM(t,j) t YMMISS(J))

£j(t) = 0 if YM(t
, j ) is missing (YM(t,j) = YMMISS(J)) .

When there are no missing observations the above formula for the

ccvf reduces to that of the usual. positive definite ccvf estimator
and when j = k the above formula is that of the autocovariance
function for the series®

The ccvf are stored in CCOV such that

CCOV(I,J,K) = C
jk

(i-1) = ckj (-i+1 ) for I = 1, . .., LAGMAX+1.

The appropriate formulas for the ccvf estimates computed by CCF
and CCFM can be obtained by letting M = 2 and by substituting
Yl(t) for YM(t,l) and Y2(t) for YM(t,2) in the above.

CMISS <— The missing value code used in CCOV to indicate that the cross
covariance function at a given lag could not be computed because
of missing data.

CSPC2 <— The matrix of dimension at least NF by NW that contains the

squared coherency component of the cross spectra between two

series, designated j and k, respectively. CSPC2(I,L) contains the

smoothed squared coherency value for the I 1"*1 frequency computed
using the L^ lag point specified in LAGS. The returned values
are expressed as shown below regardless of the plot option
selected.

The estimated smoothed squared coherency component of the cross
spectrum is

COSPEC(I,L) 2 + QSPEC(I , L

)

2

CSPC2(I,L) = —
SPCFj (I,L)*SPCFk(I,L)

for I = 1, . . . ,
NF and L = 1, . .., NW, where

COSPEC(I,L) is the smoothed co-spectra for the L 1-*1 lag point,

LAGS (L)-l

COSPEC(I,L) = EVEN0 + 2 \ {EVEN
£

WlU) cos[ 2tt£ (FMIN+A
t )] } ;

£ = 1

QSPEC(X,L)
point

,

is the smoothed quadrature spectra for the L th lag

— continued —
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LAGS (L)-l

QSPEC(I,L) =2 l { ODD^ WL (£) sin[ 2tt

£

(FMIN+A
x )] } ;

£=1

W^(£ ) is the Parzen lag window function for the window,

defined by

W(£) = 1 £ =0

W (£) = 1— 6( |£
|

/LAGS(L) )
2 +6( |£ |

/LAGS(L)) 3 1< \l |< LAGS (L) /2

W (£) = 2[ 1—
( |

£
|

/LAGS(L))] 3 LAGS (L) /2<
|

Jl |<LAGS(L)

W(£) =0 LAGS (L)< |£
|

;

A j is the frequency increment,

A t = 2(1 - 1 ) (FMAX - FMIN)/(NF - 1);

EVEN^ and ODD^ are functions of CCOV defined by

EVEffy = CCOV(£+l ,j ,k) + CC0V(£+l,k,j) for £ =0, . .., LAGS (L)

ODD^ = CCOV(£+l,j,k) - CC0V(£+l,k,j) for £ =0, . .., LAGS (L)

;

SPCFj(I,L) and SPCF^CljL) are the univariate Fourier spectrum

estimates for series j and k, respectively, computed using the

Lth lag window truncation point. [See argument SPCF.]

Note that the modifications necessary for series with missing data

are included in the computation of CCOV.

DSTAK ••• The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The
first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

FMAX •—> The maximum frequency, in cycles per sample interval, at which the

spectrum is to be computed (0.0 < FMIN < FMAX < 0.5). The default
value is 0.5. If FMAX is outside the range FMIN to 0.5 or is not
an argument in the CALL statement the default value is used.

FMIN —> The minimum frequency, in cycles per sample interval, at which the
spectrum is to be computed (0.0 < FMIN < FMAX < 0.5). The default
value is 0.0. If FMIN is outside the range 0.0 to FMAX or is not
an argument in the CALL statement the default value is used.

FREQ The vector of dimension at least NF that contains the NF frequency
values at which the spectrum is computed. FREQ is an input
argument to subroutines IPGMP and IPGMPS. The values of FREQ are
returned by all other subroutines including it in their CALL
s tatements.
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IAR The order of the autoregressive model chosen to approximate the

series and the order of the autoregressive model to be used in

computing the autoregressive spectrum. IAR is returned by the

autocorrelation subroutines; it is input to the autoregressive
spectrum analysis subroutines.

For the autoregressive spectrum subroutines:

The order IAR of the autoregressive model must not exceed
LAGMAX. In no case may IAR exceed N/2.

If IAR>0, the user must supply the coefficients for the order
IAR autoregressive model in the vector PHI. (These
coefficients are available, for example, from subrou-
tine ACFS and ACFFS or perhaps from the ARIMA model
fitting procedure discussed in chapter 13.)

If IAR<0, the coefficients for the order | IAR
|

autoregressive
model will be computed by the STARPAC subroutine using
Durbin's recursive method.

If IAR=0, the order and model coefficients will be chosen using
the model selection criteria discussed below in §E.2.b
and the input value of IAR will be overwritten by the

selected value. If the IAR = 0 option is used the

user must specify the order with a variable, i.e.

,

IAR = 0

CALL ASPS ( . . . ,
IAR, . . .)

NOT

CALL ASPS ( . . . , 0, . . . ).

The latter will cause the value of zero to be

redefined on many computers including the CYBER 840

and 855.

ICCOV —> The exact value of the first dimension of CCOV as specified in the

calling program.

ICSPC2 —> The exact value of the first dimension of CSPC2 as specified in

the calling program.

IERR *** An error flag returned in COMMON /ERRCHK/. [See chapter 1, §D.5.]
Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

IERR = 0 indicates that no errors were detected.

IERR = 1 indicates that improper input was detected.
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IEXTND

INDEX1

INDEX

2

INLPPC

IOD

IPHAS

ISPCF

XYM

XYMFFT

JCCOV

JNLPPC

KMD

LAB

LACOV

LAG

--> The indicator variable used to designate whether zero or the

series mean is to be used to extend the series. If IEXTND = 0,

zero will be used. If IEXTND * 0, the series mean will be used.

—> The index of the first series used in computing the cross
covariance function, corresponding to the subscript j used in the

definition of CCOV.

—> The index of the second series used in computing the cross
covariance function, corresponding to the subscript k used in the

definition of CCOV.

—> The exact value of *the first dimension of NLPPC as specified in

the calling program.

--> The vector of dimension at least NFAC that contains the NFAC
values designating the order of each difference factor.

-=-> The exact value of the first dimension of PHAS as specified in the

calling program.

-~> The exact value of the first dimension of SPCF as specified in the

calling program.

—-> The exact value of the first dimension of the matrix YM as

specified in the calling program.

”-> The exact value of the first dimension of the matrix YMFFT as

specified in the calling program.

“-> The exact value of the second dimension of CCOV as specified in

the calling program.

-~> The exact value of the second dimension of NLPPC as specified in
the calling program.

--> The vector of dimension at least NK that contains the NK modified
Daniell filter lengths. All values in KMD must be even.

--> The length of the vector AB. LAB must equal or exceed NFFT.

--> The length of the vectors ACOV and NLPPA. LACOV must equal or
exceed LAGMAX + 1.

<-> The lag window truncation point to be used for computing the
Fourier spectrum. The default value is half the maximum
truncation point selected by the algorithm described for the
default values of LAGS. If LAG Is not an argument of the CALL
statement or if LAG is outside the range [1, N— 1 ] the default
value will be used. If the user supplied value for LAG is less

— continued —
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than or equal to zero, the Input value will be overwritten by the

selected value . The user must therefore specify the lag window
truncation point with a variable in this case, i.e.

,

LAG = 0

CALL ASPS ( . . . ,
LAG, . . .

)

NOT

CALL ASPS ( . . « , 0, . . . ).

The latter will cause the value of zero to be redefined on many
computers including the CYBER 840 and 855.

LAGMAX --> The maximum lag value for which the correlation coefficients are

computed. The default value of LAGMAX is selected by STARPAC as

follows.

LAGMAX = 100 if 301 < N.

LAGMAX = N/3 if 96 < N < 300

LAGMAX = 32 if 33 < N < 95

LAGMAX =• N-l if N < 32

If LAGMAX is less than or equal to zero or if neither LAGMAX nor
LAGS is an argument in the CALL statement the default value is

used. When LAGS is an argument in the CALL statement, LAGMAX is

the largest value in LAGS.

LAGS —> The vector of dimension at least NW that contains the NW lag
window truncation points, 1 < LAGS(i) < N-l for i = 1, ... NW. By

default, four lag window truncation points are used. The smallest
lag window truncation point T]^ is selected by examining the

covariance function. It is chosen to be 3/16 times the lag value
beyond which the covariance function remains less than the

95-percent confidence limits for white noise, although in no case
is T^ greater than LAGMAX

/

8 . The values of the remaining lag

window truncation points are then specified by T2
= 2»T^,

T 3 = 4®Tj and T^ = 8 »Tj, resulting in progressively narrower
bandwidths. The procedure of using progressively narrower
bandwidths to compute the spectrum of a given time series is

called window closing. It is discussed in Jenkins and Watts
[1968]. If LAGS is not an argument in the CALL statement the four

default values are used.

LDSTAK --> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK

must equal or exceed the appropriate value given below. In the

following specifications of the value of LDSTAK, if the single
precision version of STARPAC is being used P = 0.5, otherwise

— continued —
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P = 1.0. [See chapter 1, § B . ] Also, 10 = 0 if NPRT = 0 and

10 = 1 if NPRT * 0.

For autocorrelation subroutine

ACFS : LDSTAK > 12 + [
5 » LAGMAX + 1 ] •

P

ACFMS : LDSTAK > 10.(13 + [6* LAGMAX + i].p)

ACFF : LDSTAK > 6 + NFFT.P

ACFFS : LDSTAK > 12 + [4* LAGMAX + NFFT + 1 ] •

P

ACFD: LDSTAK > 16 + [7* LAGMAX + N + 2] • P

For cross correlation subroutine

CCFS : LDSTAK > 12 + [2*M + 10. (4. LAGMAX + 2)]«P

CCFMS : LDSTAK (26+M)/2 + [2«M + 10. (4* LAGMAX + 2) ]•

P

CCFF: LDSTAK > 6 + NFFT.P

CCFFS : LDSTAK > 13 + [NFFT + 2«M + 10. (4. LAGMAX + 2)]»P

For univariate Fourier spectrum subroutine

UFSS : LDSTAK > [26 + I0» (NF+5) ] / 2 +

[2. LAGMAX + 2 + 10* (2. NF+10)] • P

UFSF : LDSTAK > 7 + NFFT.P

UFSFS : LDSTAK > [26 + 10. (NF+5)]/2 +

[LAGMAX + 1 + NFFT + I0« (2« NF+10)] «P

UFSMS : LDSTAK > [29 + LAGMAX + 1 + IO-(NF+5)]/2 +

[
2» LAGSMX + 2 + 10. (2. NF+10)] •

P

UFSVS: LDSTAK > [23 + IO.(NF+5)]/2 +

[LAGMAX + 1 + 10* (2. NF+10)] »P

UFSMVS : LDSTAK > [23 + 10* (NF+5) ] / 2 +

[LAGMAX + 1 + 10. (2. NF+10)] «P

— continued
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For autoregressive spectrum subroutine

UASS

:

LDSTAK > [32 + I0« (2«NF+5)]/2 +

[
2 • LAGMAX + 2 + IA» ( 3* LAGMAX+1 ) +

10. (4.NF+10)] .P

UASF

:

LDSTAK > 7 + NFFT.P

UASFS

:

LDSTAK > [32 + I0« (2-NF.+5) ] /2 +

[2* LAGMAX + 2 + NFFT + IA. ( 3* LAGMAX+1 ) +

10. (4.NF+10)] *P

UASVS

:

LDSTAK > [29 + 10- (2. NF+5) ] /2 +

[LAGMAX + 1 + IA* (3. LAGMAX+1) +

10. (4.NF+10)] »P

where IA = 0 if IAR t 0 and IA = 1 if IAR = 0.

For direct Fourier spectrum subroutine

PGM: LDSTAK > 9 + NFFT.P

IPGM: LDSTAK > [123 + NFFT/2]/2 + [2* NFFT + 206]*

P

IPGMS

:

LDSTAK > 10. ([123 + NFFT/2]/2 + [2* NFFT + 206]. P)

IPGMP

:

LDSTAK > [126 + NF]/2 + [3«NF + 206].

P

I PGM.PS

:

LDSTAK > 10. ([123 + NF]/2 + [2«NF + 206]. P)

For utility subroutine

MDFLT: LDSTAK > 7 + NF.P

For bivariate Fourier spectrum subroutine

BFSS

;

LDSTAK > [38 + I0*4.NF]/2 + [/.LAGMAX + 7 + IO«8«NF].P

BFSF

;

LDSTAK > 7 + NFFT.P

BFSFS

:

LDSTAK > [38 + IO-4-NFJ/2 +

[6. LAGMAX + 6 + NFFT + IO» 8»NF].P

BFSMS

:

LDSTAK > [45 + 4* LAGMAX + I0.4«NF]/2 +

[7. LAGMAX + 7 + 2-NF + 10*8. NF]-P

BFSVS

:

LDSTAK > [35 + IO»4«NF]/2 +

[3. LAGMAX + 3 + 2»NF + I0«8«NF].P

BFSMVS

:

LDSTAK > [35 + IO-4.NFJ/2 +

[3. LAGMAX + 3 + 2.NF + 10* 8. NF]»P

LFREQ --> The length of the vector FREQ. LFREQ must equal or exceed NF.
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LPER

LPERI

LYFFT

M

N

ND

NDIV

NF

NFAC

NFFT

—> The length of the vector PER. LPER must equal or exceed NF.

—> The length of the vector PERI. LPERI must equal or exceed NF.

—> The maximum length allowed for the extended series created in

YFFT. LYFFT must equal or exceed the actual extended series

length, NFFT. If too small a value of LYFFT is used an error
message giving the correct value is generated.

—> The number of columns of data in YM.

—> The number of time points in each series. For the correlation
analysis subroutines the minimum number of time points is 3; for

the spectrum analysis subroutines the minimum number of time

points is 17.

—> The vector of dimension at least NFAC that contains the values
designating the number of times each difference factor is to be

applied.

—> A required constant used by FFTLEN to determine the extended
series length. (See NFFT.) NDIV must be two for a simple FFT.

It must be four when the covariance function is being computed.

-> The number of frequencies at which the spectrum is computed.

For the Fourier and autoregressive spectrum subroutines and the
utility subroutines:

NF is an input argument. The default value of NF is 101. If NF

is not an argument of the CALL statement the default value will
be used.

For the direct Fourier spectrum subroutines:

NF is returned by the subroutine. The returned value is NF =

NFFT/2.

—> The number of difference factors.

— The minimum extended series length that meets the requirements of
the Singleton FFT code. NFFT is returned by FFTLEN; it must be
input to PGMS and FFTR; it is computed internally by all of the
other subroutines using the FFT.

The extended length of the series is

NFFT = N + LAGMAX + K

where N is the number of observations in the series. K > 2 is
chosen so that NFFT is as small as possible, NFFT-2 is divisible
by 4 and has no prime factors greater than 23, and the product of
the square-free prime factors of NFFT-2 does not exceed 209. In

— continued —
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general, NFFT will be less than N+LAGMAX+100 for the correlation,

Fourier spectrum and autoregressive spectrum subroutines. STARPAC
subroutine FFTLEN, when called using the sequence

NK

NLPPA

NLPPC

NPRT

CALL FFTLEN(N+LAGMAX, NDIV, NFFT)

with NDIV =' 2 when a simple FFT is to be computed and

NDIV = 4 when the covariance function is to be computed,

returns the value of NFFT that is actually used by these

subroutines.

—> The number of modified Daniell filters to be applied.

!— The vector of dimension at least LAGMAX+ 1 that contains the
LAGMAX+1 values designating the number of lagged product pairs

used to compute the autocovariance function at each lag,

N-i
NLPPA(I) = l [c(t)«C(t+i>] for i = 0, ...» LAGMAX and I = i + 1

,

t=l

where £(t) = 1 if Y(t) * YMISS, and £(t) = 0 if Y(t) = YMISS.

-- The three-dimensional array of dimension at least LAGMAX+1 by M by

M that contains the number of lagged product pairs used to compute
the cross covariance function for each pair of series at each
lag,

N-i
NLPPC(I,J,K) = l

[5j(t)€k (t+i>] for i = 0, . .., LAGMAX

t=0 and I = i + 1,

where the indices J and K correspond directly to the subscripts j

and k, respectively, for j
— 1 , ..., M and k = 1, ..., M; and

5 j (t) = 1 if YM(t, j)*YMMISS(j) and £j(t) = 0 if YM(t
, j )=YMMISS(j

)

.

-> The argument controlling printed output. In each case, when NPRT
is not an argument in the subroutine CALL statement the default
value is used.

For the correlation analysis subroutines:

If NPRT = 0, the printed output is suppressed.

If NPRT £ 0, the printed output is provided.

The default value is NPRT t 0.

— continued —
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For the Fourier and autoregressive spectrum analysis subroutines:

NW

PER

If NPRT < -1, the spectra are plotted in decibels on a linear
scale adjusted so that the peak is at zero.

If NPRT = 0, the printed output is suppressed.

If NPRT > 1, the spectra are plotted on a log-linear scale.

The default value is NPRT = -1.

For the periodogram subroutines:

If NPRT < -2, the printed output consists of a page plot of the

periodogram versus frequency on a log-linear
scale.

If NPRT = -1, the printed output consists of a page plot of the

periodogram in decibels on a linear scale.

If NPRT = 0, the printed output is suppressed.

If NPRT = 1, the printed output consists of a vertical plot of

the periodogram in decibels on a linear scale.
The vertical axis shows the frequency in the left

margin.

If NPRT > 2, the printed output consists of a vertical plot of

the periodogram on a log scale. The vertical axis
shows the frequency in the left margin.

The default value is NPRT = -1.

For the integrated periodogram subroutines:

If NPRT = 0, the printed output is suppressed.

If NPRT * 0, the printed output is provided.

The default value is NPRT t 0.

--> The number of different window bandwidths to be used. The default
value is four for the Fourier spectrum subroutines and one for the

autoregressive spectrum subroutines. When NW is not an argument
of the subroutine CALL statement the default value is used.

The vector of dimension at least NF that contains the NF

periodogram values. PER is returned by subroutine PGMS; it must
be input to subroutines IPGMP, IPGMPS and MDFLT. The vector YFFT
used to input the observed series to PGMS can also be used in

place of the vector PER to conserve storage space. (The values in
YFFT will be overwritten even when YFFT is not used in place of

PER. ) — continued —
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The series periodogram is computed at the harmonic frequencies

fk = k/ (NFFT-2) for k = 0, . .., (NFFT-2)/2

by a direct Fourier transformation of the series using

PER(I) = A(I) 2 + B(I) 2 for 1=1, ..., NF,

where

NF is the number of harmonic frequencies at which the periodogram
is computed, NF = NFFT/2;

A(I) is the real component of the Fourier coefficient,

NFFT
A(X) = (2/(NFFT-2)) J [YCT(t )• cos( 2irt ( 1-1 ) /(NFFT-2))

] ;

t=l

B(I) is the imaginary component of the. Fourier coefficient,

NFFT
B(I) = (2/ (NFFT-2)) J [YCT(t)«sin( 2Trt (1-1 )/ (NFFT-2))

] ;

t=l

YCT(t) is the value of the centered (or tapered) input series at

time t» [See arguments YC and YT„

]

PERF <— The vector of dimension at least NF that contains the NF values of

the periodogram smoothed by applying a sequence of modified
Daniell filters to the raw periodogram. The sequence of filtered
series is

KMD(£)
PERF

£
(I) = l [h

£
(j)«PERF

£ „ 1
(t I )] for 1 = 1, ..., NF

£ = 1 and £ = 1
,

. . . ,
NK,

where

KMD(£ ) is the number of terms in the £
t51 filter (KMD(£) must be

even) ;

h
£ ( j ) is the j

1-*1 filter coefficient of the £
t ^1 filter, defined by

~ [2®KMD(£)j 1 for j = 1 and KMD(£)

h
£ (j ) = KMD(£)“1 for j

= 2, KMD(£)-1;

PERF
£

is the periodgram smoothed using the first £ filters (PERFq

is the input periodogram and PERF^k is the series actually

returned to the user);
— continued —
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tj is index of PERF^_^ defined by

t T = 2-[I+(KMD(£)/2)-l+j] l<I<KMD(£)/2

tj = I-(KMD(£)/2)-l+j (KMD(£)/2)+l<I<N-KMD(£ )/2

t x = 2N-[I+(KMD(£)/2)+l+j ] N-(KMD(£)/2)+l<I<N

PERI <— The vector of dimension at least NF that contains the integrated
periodogram values. The vector YFFT used to input the observed
series to IPGMS may be used in place of the vector PERI to

conserve storage space.

The integrated periodogram is defined by

I

PERI( I) = (N® YVAR)™ 1
l PER(K) for I = 1, . . . ,

NF
K=1

where

N _ 2
N

YVAR = (N-l)“l
l (Y(t)-Y) with Y = N"” 1

£ Y(t).
t=l t=l

PHAS <-- The matrix of dimension at least NF by NW that contains the

smoothed phase component of the cross spectra between two series,
designated j and k, respectively. PHAS ( I , L ) contains the phase
value for the I c ^ frequency computed using the L t ^1 lag window
truncation point specified in LAGS.

The estimated phase component of the cross spectrum is

QSPEC(I,L) 2

PHAS(I,L) =

COSPEC(I,L) 2

for 1=1, ...,NF and L = 1, NW, where

COSPEC(I,L) is the smoothed co-spectra for the lag point,

LAGS (L )—

1

COSPEC(I,L) = EVENq +2 l (EVEN
£

Wl (£ ) cos[ 2tt£ ( FMIN+A
j )] } ;

£ = 1

QSPEC(I,L) is the smoothed quadrature spectra for the L*"^ lag
point,

QSPEC( I, L

)

LAGS (L)-l

2 l {ODDjj Wl (£) sin[ 2tt£(FMIN+A
i )] } ;

£= 1

— continued —
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PHI

SPCA

Wl(£) is the Parzen lag window function for the L 1-^ window,

defined by

w(£) = 1 i =o

W(£) = l-6( U|/LAGS(L)) 2 +6( U|/LAGS(L)) 3 U u l<LAGS(L)/2

W(£) = 2[l-( U|/LAGS(L))] 3 LAGS(L)/2< U |< LAGS(L)

W(£) = 0 LAGS(L)<U
| ;

Aj is the frequency increment,

A x = 2
• (I-I) • (FMAX-FMIN)/ (NF-1) ; and

EVEN£ and ODD
£

are functions of CCOV defined by

EVEN£ - CC0V(£+1, j,k) + CC0V(£+l,k, j) for £ = 0, . .., LAGS(L)

0DD£ = CC0V(£+1, j,k) - CCOV ( £+1 ,k, j) for £ = 0, LAGS(L)

.

— The vector of dimension at least LAGMAX that contains the IAR

coefficients of the order IAR autoregressive model. PHI is

returned by the autocorrelation subroutines; it is input or

returned by the autoregressive spectrum estimation subroutines
depending on the value of IAR.

<-•“ The vector of dimension at least NF that contains the NF values of

the autoregressive spectrum. The autoregressive spectrum esti-
mates are defined by

SPCA(I) = SIAR
2

{
1 1 ~ l PHI( £ )«e[ l FtUN + A

: )] |

2

}

£=1

for 1=1, . .., NF, where

Star
2 is the residual or one step prediction variance of the order

IAR autoregressive model,

IAR
SIAR

2 = (N-IAR-D-iNjACOVd) - J [ PHI (£ ) • AC0V(£+1 )

]

} ,

£=1

i is the complex value (-1) 1/2
; and

Aj is the frequency increment,

A X « 2« (!“!)• (FMAX-FMIN)/ (NF-1

)

.

— continued —
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SPCF

TAPERP -

Y

YC <

'— The array of dimension at least NF by NW that contains the NF

values of the Fourier spectrum for each of the NW lag windows.
For the autoregressive spectrum analysis subroutines, NW = 1 and
SPCF may be dimensioned as a vector of length at least NF.

SPCF(I,L) contains the spectrum value for the I
1"*1 frequency

computed using the lag point (see arguments LAG and LAGS).
The returned spectrum values are expressed as shown below
regardless of the plot option selected.

The estimated Fourier spectrum values are

LAGMAX
SPCF(I,L) = AC0V(1) +2 l (ACOVU+1) Wl (£ ) cos[ 2tt£ (FMIN+A j )] }

£ =

1

for I = 1, NF and L - 1, NW, where

W^(£ ) is the Parzen lag window function for the L*-*
1 window,

defined by

W(£) = 1 £ =0

W(£) = l-6(
|
£

|

/LAGS (L) )
2 +6(

|
£

|

/LAGS (L) )
3 1< |£ |< LAGS (L) /2

W (£) » 2[ l-(
|
£

|

/LAGS (L) ) ]

3 LAGS (L) /2< \l |< LAGS (L)

W (£) =0 LAG S ( L ) <
|
£

|
;

Aj is the frequency increment,

Aj = 2* ( I— 1 )
• ( FMAX-FMI N ) / (NF- 1 )

.

Note that the modifications necessary for series with missing data
are included in the computation of ACOV.

—> The total proportion of the input data to be tapered using a

split-cosine-bell taper. [See argument YT. ] If TAPER < 0.0, the
tapered series is identical to the centered series, YC . If

TAPERP > 1.0, a 100-percent taper is applied to the series.

-> The vector of dimension at least N that contains the N observa-
tions of a time series.

— The vector of dimension at least N that contains the centered time
series. The centered series is

YC(t ) = Y(t) - Y for t * 1, ..., N

where Y is the mean of the input series
— continued —
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Y

N

N_1
( l

t = l

Y(t)).

YFFT <-> The vector of dimension at least NFFT containing the N

observations of a time series to be analyzed using the FFT. The
length of the vector YFFT must be greater than N to allow for
extending the series. Note that the input series is overwritten
by the FFT computations.

YFFT1 <-> The vector of dimension at least NFFT containing the N

observations of the first of a pair of series selected from a

multivariate time series to be analyzed using the FFT. The length
of the vector YFFT must be greater than N to allow for extending
the series. Note that the input series is overwritten by the FFT
computations.

YFFT2 <-> The vector of dimension at least NFFT containing the N

observations of the second of a pair of series selected from a

multivariate time series to be analyzed using the FFT. The length
of the vector YFFT must be greater than N to allow for extending
the series. Note that the input series is overwritten by the FFT
computations.

YM -> The matrix of dimension at least N by M each of whose M columns
contains the N observations of a multivariate time series.

YMFFT <=> The matrix of dimension at least NFFT by M each of whose M columns
contains the N observations of a multivariate time series to be

analyzed using the FFT. The first dimension of the array YMFFT
must be greater than N to allow for extending the series. Note
that the input series are overwritten by the FFT computations.

YMISS ~“> The missing value code used within the input series Y to indicate
that an observation is missing.

YMISS1 ~“> The missing value code used within the input series Y1 to indicate
that an observation is missing.

YMISS2 --> The missing value code used within the input series Y2 to indicate
that an observation is missing.

YMMISS --> The vector of dimension at least M that contains the M missing
value codes (one for each column) used within each of the M series
contained in YM to indicate that an observation is missing.

YT <-- The vector of dimension at least N that contains the tapered time
series. The tapered series is

YT(t ) = W(t )® YC(t ) for t = 1, ..., N,

where
— continued —
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W(t) is the split-cosine-bell taper weight used at time t,

W(t) = 0.5» { l-cos[ir(t-0.5)/m]
}

W(t) = 1

W(t) = 0.5» { l-cos[-rr(N-t+0.5)/m].} N-m + 1< t< N

m + 1< t< N-m

1< t< m

with m computed such that 2m/N = TAPERP is the proportion of data

to be tapered. The importance of tapering is discussed in chapter
5 of Bloomfield [1976].

Y

1

--> The vector of dimension at least N that contains the N observa-
tions of the first series of a multivariate time series pair.

Y2 —> The vector of dimension at least N that contains the N observa-
tions of the second series of a multivariate time series pair.

E . Computational Methods

E. 1 Algorithms

E.l.a Correlation Analysis

The code for computing the autocovariance and cross covariance functions
using a fast Fourier transform are based on subroutines written by Jones
[1971]. The subroutines which compute the fast Fourier transform and which
compute the Fourier transform of real data are those written by Singleton
[1969] and the subroutine to compute the cosine transform was written by

Richard H. Jones. A discussion of the use of the fast Fourier transform for
computing the correlation function can be found on pages 165 to 167 of

Bloomfield [1976]. Zeros are automatically appended to the end of the series
to meet the requirements of computing the correlation function using an FFT.

Correlation function subroutines not using the FFT compute the correlation
function directly using the formulas given in §D for arguments ACOV and CCOV.

The autoregressive model coefficients given are the Yule-Walker esti-
mates, computed as described in Appendix A3. 2 of Box and Jenkins [1976]. This
is not a recommended estimation procedure but rather a means of providing
starting values for a maximum likelihood or least squares estimation proce-
dure. Chapter 13 provides subroutines for estimating the least squares values
of the parameters of an autoregressive model using these starting values.

E.l.b Spectrum Analysis

The transformation used to compute the univariate Fourier spectrum is

performed using the algorithm shown on page 311 of Jenkins and Watts [1968],
modified to correspond to the definition of the spectrum given for argument
SPCF in §D. (The computed spectrum is half that shown in Jenkins and Watts.

)

The bivariate or cross Fourier spectrum is discussed in chapters 8 and 9 of
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Jenkins and Watts. Smoothed squared coherency and phase estimation are

discussed in detail on pages 377-380 of Jenkins and Watts. The algorithm used
is described on pages 418-420. The confidence interval and significance test

for coherency is discussed in Bloomfield [1976] on pages 224-228. The
modifications necessary for series with missing data are included in the
computation of the covariance function described in §D under arguments ACOV
and CCOV. Covariance function values computed using a fast Fourier transform
use the FFT code written by Singleton [1968]; a discussion of this technique
for computing the covariance function can be found on pages 165 to 167 of

Bloomfield [1976]. Subroutines using the FFT automatically subtract the

series mean and append zeros to the end of the series to meet the requirements
of computing the covariance function using Singleton's code.

The code for computing the autoregressive order selection statistics and
autoregressive spectrum estimates is based on subroutines written by Jones

[1971], The coefficients PHI(k), k = 1, . .., IAR of the autoregressive model
are computed from the autocovariance function using the Levinson-Durbin
recursive method for solving the Yule-Walker equations discussed in Appendix
A3.2 of Box and Jenkins [1976]. The order of the autoregressive model
selected by STARPAC is that having the lowest Akaike final prediction error
[ Akaike

, 1974]

.

Subroutines PGM, XPGM, and IPGMS automatically append zeros to the end of

the series to meet the length requirements of the Singleton FFT code [1969],

Subroutine PGMS and FFTR do not automatically center or extend the input
series. Centering and extending the series by appending either zeros or the

series mean must be done by the user. The resulting computations are wrong if

the extension does not comply with the code requirements.

The subroutines for the split-cosine-bell taper and the modified Daniell
filter operation were adapted from subroutines TAPER and MODDAN given on pages
116 and 178 of Bloomfield [1976].

E .2 Computed Results and Printed Output

Ec2.a Correlation Analysis

The Autocorrelation Subroutines . The argument controlling the printed
output, NPRT, is discussed in §D. The output from the autocorrelation
analysis subroutines includes summary statistics describing the input series;

the autocorrelation function estimates and their large lag standard errors;
the chi-squared test statistic for white noise and its significance level; the

partial autocorrelation function estimates; autoregressive model order selec-
tion statistics; and parameter estimates for the selected model. In addition,
plots are provided of the autocorrelation and partial autocorrelation function
estimates.

The estimated coefficients of the autocorrelation function (acf), r(i),
are computed with the formula

r(i) = ACOV ( i +1 ) /ACOV ( 1 ) for lag i = 1, ..., LAGMAX

.
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The estimated standard errors (SE) of the acf are the large lag standard
errors discussed on pages 34 to 36 of Box and Jenkins [1976], The standard
error listed at lag i is computed assuming that the acf is zero for lags

greater than i. The formula is given by

SE [r(i ) ]
= SE [r(-i) ]

=

o 1/2
(N-i)»{(N-i) + 2» £ [

(N-i-v)« r ( v) ]}
v=l

N*NLPPA(i+l

)

for i = 1, . .., LAGMAX, where q is the minimum of n - i and i - 1. The user
must select the "correct" large lag standard error based on whether the acf

estimates are compatible with the assumption that the acf is zero for the
selected lag value and beyond. This technique is intended primarily to

provide a means of selecting the largest lag value for which the acf is

significantly different from zero rather than to provide actual standard error
estimates for each acf. The large lag standard error at the selected lag is

valid for all acf estimates at lags greater than or equal to the selected lag;

the standard error estimates for lag values less than the selected lag are
meaningless.

As discussed on pages 64-66 of Box and Jenkins [1976], the estimated
partial autocorrelation function (pacf) coefficients, p(i) for i = 1, ...,

LAGMAX, are estimates of the i
t ^1 coefficient in an autoregressive process of

order i. Use of the pacf, in conjunction with the acf, to identify an
autoregressive moving average process is discussed on pages 174-193 of Box and
Jenkins. It should be noted, however, that the method used to compute the
pacf [discussed in Appendix A3. 2 of Box and Jenkins] is very sensitive to
rounding errors. The pacf estimates may not be reliable if the values of the

parameters are close to the nonstationarity boundaries.

The order IAR of the autoregressive model selected for the series is that
having the lowest Akaike final prediction error [Akaike, 1974]. The modified
Akaike information criteria (AIC) is then computed as

AIC(J) = N.Loge (FPEj) for J = 1, LAGMAX,

where

LAGMAX is the maximum lag value for which the acvf has been estimated and is

therefore the maximum order of autoregressive model which can be
selected;

FPEj is the Akaike final prediction error, normalized so the minimum final
prediction error is one, that is,

FPEj = (Sj2 - (N+J+1))/(SIAR
2

. (N+IAR+1))
;

2
Sj is the residual or one step prediction variance of the order J

autoregressive model, computed as
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J

Sj2 = (N-J-1)“1 .n*(AC0V(1) -•
l PHI( £) «ACOV (£+1)

} ;

£=1

c 2
S IAR 1S

IAR is

N is

The AIC of

the residual or one step prediction variance of the selected model;

the order of the AR model which produced the minimum AIC;

the number of observations in the series,

the selected model order will always be zero.

The partial F-test of the change in the residual sum of squares is a test
of the null hypothesis that the order J pacf is zero. The F-ratio is given
by

F
1,N-J-1 = (ASj 2 )/Sj 2 = (N-1-J)-PHI(J) 2 /[1-PHX(J) 2

]

where

ASj2 is the change in the residual variance due to the hypothesis that

PHI(J) = 0 (1 degree of freedom),

ASj2 = Sj.!
2 - Sj 2

;

S

j

2 is the residual variance of the order J autoregressive model (N-J-l

degrees of freedom)

.

The significance level of each F-ratio is also listed.

The Cross Correlation Subroutines. The argument controlling the printed
outpuT^ NPRT, is discussed in §D« The output from the cross correlation
analysis subroutines includes summary statistics describing the two input
series; the cross correlation coefficient estimates and their standard errors;
and a plot of the cross correlation estimates.

The cross correlation function (ccf) estimate for the pair of series
stored in the j*"*1 and columns of YM is

r
jk

(i) = CCOV ( i+1 ,

j

,k)

/

(CCOV (1 , j , j)

•

CCOV (l,k,k))
1/2

for lag 1=0, ..., LAGMAX, j = 1, ..., M, and k = 1, ..., M, where

rjk^ 1 ) = rkj(-i )

*

The estimated standard errors (SE) of the ccf are computed as

12-40



SE[rj k (i)]
= SE [rkj (—i)

]

(N-i) • {
(N-i ) + 2« l [(N-i-v)Tjj(v)»rkk (v)]}

1/2

v=l

N*NLPPC(i+l
, j ,k)

for lag i = 0, ...» LAGMAX and for series j = 1, M and k = 1, M,

where q is the smaller of N-i and i - 1. This standard error formula
assumes that there are no cross correlations between the two series being
compared. It does not assume the two series are white noise, although when
both series have been prewhitened the summed portion of the equation is

approximately zero and the results will approximately equal N_1 /2
,

which is

the standard error assuming white noise. However, the importance of prewhi-
tening before performing cross correlation analysis is clear from the above
equation. The presence of autocorrelation in either one or both series can
cause a significant increase in the variance of the cross correlation
estimates, and, as shown in the example on page 338 of Jenkins and Watts
[1968] ,

the cross correlation function estimates can become quite unreliable.
Autocorrelation in the input series should be suspected if the standard error
estimates computed by the subroutine are not approximately N_1 /2

. It is best
to use ACF to routinely check for autocorrelation in the input series before
performing cross correlation analyses and to prewhiten the series when
necessary. The digital filtering subroutines [chapter 10] or the autoregress-
ive model subroutines can be used for prewhitening the input series before
cross correlation analysis is performed.

E„2.b Spectrum Analysis

The Univariate Fourier Spectrum Analysis Subroutines . The argument
controlling the printed output, NPRT, is discussed in §D. The output from the
univariate Fourier spectrum analysis subroutines consists of four spectrum
plots with successively narrower bandwidths. Each spectrum is plotted
either in decibels (10 times the base 10 logarithm of the power spectrum),
scaled so that the maximum value plotted is zero, or on a logarithmic scale.
The 95-percent confidence interval and the bandwidth for each spectrum are
shown on the plots.

The bandwidth of a Parzen lag window with truncation point T is

approximately 1.85/T for T<<N and a low percentage of missing values. The
actual bandwidth is

T -1
BW =

{ l [WU)2.(N-|a| )2/(N*NLPPAOO)]}
a =-t

where W (l ) is the Parzen lag window function defined in §D under argument
SPCF. The bandwidth is indicated by the displayed ”B * W” in the upper-right
portion of the plot.
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a spectrum estimate using aThe effective degrees of freedom (edf)
Parzen lag window is

edf = 2.BW.N.

in

For large values of N and a low percentage of missing values this can be
approximated by 3.71»N/T.

A 95-percent confidence interval for the estimated spectrum is

SPCF(I)«edf SPCF(I).edf
» — for I = 1, . NF,

2 2
x edf, 0.975 X edf, 0.025

2
where X

e(jf a is the a-percent point function for a chi-square distribution

with edf degrees of freedom. Note that when the logarithm of the spectrum is

plotted this confidence interval has constant width over frequency although it

is not symmetric. In this case, the lower confidence interval limit is

l°glo[SPCF(I).ed£/X
2

edf>0>975 ]
= log10 [SPCF(D] + log10[edfA edf>0 . 975 ]

and the upper confidence interval limit is

l°glo[ SPCF ( I )* edf /X edf, 0.025]
= log 10 [SPCF(I)] + log 10[edf/X e df,0.025]

for I = 1 , . . .

,

NF.

The width of the confidence interval is indicated by the displayed
”°C * I" aligned vertically in the upper-right portion of the plot. The

asterisk (*) separates the upper limit from the lower limit. The user is

reminded that the confidence interval applies to individual frequency points,
not to the spectrum as a whole.

The Autoregressive Spectrum Subroutines . The argument controlling the

printed output, NPRT, is discussed in §D. The output from the autoregressive
spectrum analysis subroutines consists of a plot of the autoregressive and

Fourier spectra either in decibels (10 times the base 10 logarithm of the

power spectrum) scaled such that the maximum value plotted is zero or on a

logarithmic scale. The output also includes the autoregressive order
selection statistics when the user does not supply the value of the order via

argument IAR. The bandwidth and the length of the 95-percent confidence
interval for the Fourier spectrum are shown on the plot. The bandwidth is not

relevant to the autoregressive spectrum. The Fourier spectrum and its

confidence intervals should be used in interpreting the autoregressive
spectrum since the confidence intervals for the autoregressive spectrum are

not computed.

The autoregressive order selection statistics include the modified Akaike
information criteria (AIC); the results of a partial F-test of the change in

the residual sum of squares with the addition of the most recent
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autoregressive parameter; the order of the autoregressive model selected; and

the Yule-Walker estimates of the parameters of the selected model.

The modified Akaike information criteria (AIC) is

AIC(J) = N-loge(FPEj) for J = 0, LAGMAX,

where

LAGMAX is the maximum lag value for which the autocovariance has been
computed, and is therefore also the maximum order autoregressive model
which can be selected;

FPEj is the Akaike final prediction error, normalized so that the minimum

final prediction variance Sj^r
2 is one, that is,

FPEj =
(
(N-hJ+1) • Sj 2

) / (
(N+IAR+1) *SIAR

2
) ;

sj2 is the residual or one step prediction variance of the order J model;

S IAR
2 is the residual or one step prediction variance of the selected model;

IAR is the order of the model which produced the minimum AIC, i.e., the

order having the lowest Akaike final prediction error [Akaike,

1974].

The AIC of the selected model order will always be zero.

The partial F-test of the change in the residual sum of squares is a test
of the null hypothesis that the J*

1 *1 autoregressive coefficient of the order J
model is zero. The F-ratio is given by

fi,n-j-i
=

< asj
2 )/ sj

2

where

ASj2 is the change in the residual variance due to the hypothesis that

PHI(J) = 0 (one degree of freedom)

,

2 2 2
ASj - Sj_;l - Sj ;

Sj2 is the residual variance of the order J autoregressive model (N-J-l

degrees of freedom)

.

The significance level of each F-ratio is also listed.

The estimated Fourier spectrum and its bandwidth and confidence interval
are computed as described above.

The Direct Fourier Transform Subroutines . The argument controlling the
printed output, NPRT, is discussed in §D. The output from the periodogram
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subroutines consists of a plot of the computed periodogram displayed either in

decibels (10 times the base 10 logarithm of the periodogram estimates), scaled
so that the maximum value plotted is zero, or on a logarithmic scale. The
output from the integrated periodogram subroutines consists of a one-page plot
of the integrated periodogram accompanied by 95-percent confidence bands for
testing the null hypothesis of white noise. These bands are the
Kolmogoroff-Smirnov probability limits applicable to cumulative distribution
functions [Hald, 1952]

.

The Bivariate Fourier Spectrum. The argument controlling the printed
output, NPRT, is discussed in §D. The output from the bivariate Fourier
spectrum subroutines consists of four spectrum plot pairs (a squared coherency
plot and a phase plot) with successively narrower bandwidths chosen by the

window-closing algorithm. The 95-percent confidence intervals and the
95-percent significance levels are shown on the coherency plots.

The bandwidth of a Parzen lag window with truncation point T is

approximately 3.71»N/T for T<<N and a low percentage of missing values. The

actual bandwidth is

i. -i
BW =

{ l [W(k) 2 (N-|k| )
2 /(N« NLPPC (k))

] }
.

k=-T

NLPPC (k) is the number of lagged product pairs used to compute the covariance
function for lag k, that is

N~Jk
|

NLPPC (k) = I Ci<t)C 2 Ct:"| k
|
)

t=l

where C(t) is an indicator variables £(t) = 1 if Y(t) has been observed, and

£(t) = 0 if Y(t) is missing.

F c Examples

Autocorrelation Analysis . In the example program of figure F-la ACF is

used to compute and plot the autocorrelations, partial autocorrelations, and

autoregressive order selection statistics of the input series Y, where the

data used is the series Xj , a simulated first order autoregressive model with

PHI(l) = 0.6, listed on page 362 in Jenkins and Watts [1968]. The correlation
estimates for this series are given on page 421 of Jenkins and Watts.

Figures F-lb through F-le show four pages of output from ACF. The first
two pages are autocorrelations and the second two pages are partial
autocorrelations. Note that for all correlation plots the value of the

lag, i, is is shown on the left margin and the actual correlation coefficients
are shown on the right margin of each of the plots.
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Cross Correlation Analysis . In the example program of figure F-2a CCF is

used to compute and plot the cross correlations between the first 50 values of

the series X-^ and X
2

listed on page 361 of Jenkins and Watts [1968] . The

correlation estimates for these series are given on page 420 of Jenkins and

Watts.

Figures F-2b through F-2d show the two-part output from CCF. Note that

for all correlation plots the value of the lag, i, is shown on the left margin

and the actual correlation coefficients are shown on the right margin of each

of the plots.

Univariate Fourier Spectrum Analysis . In the example program of figure

F-3a, UFS is used to compute and plot the univariate Fourier spectrum
estimates for the first 50 values of the series listed on page 318 of Jenkins
and Watts [1968]; the spectrum of this series is shown for various bandwidths
on page 270 of Jenkins and Watts [1968] .

Figures F-3b through F-3e show the four plots of the power spectrum (in

decibels versus frequency) produced by UFS. Each spectrum plotted is computed
using a narrower bandwidth than the preceding one. The bandwidth, lag window
truncation point and effective degrees of freedom for the spectrum are listed
at the top of each page. The bandwidth and the 95-percent confidence interval
of the individual spectrum values are shown graphically on each plot.

Autoregressive Spectrum Analysis . In the example program of figure F-4a,
UAS is used to compute and plot the univariate autoregressive and Fourier
spectrum estimates for the first 50 values listed on page 318 of Jenkins and

Watts [1968] . The theoretical and Fourier spectra of this series are shown on

page 270 of Jenkins and Watts [1968] .

Figures F-4b and F-4c show the two pages of output produced by UAS. The
first page lists the autoregressive order selection statistics while the
second gives a plot of the autoregressive and Fourier spectra. The bandwidth,
lag window truncation point and effective degrees of freedom of the Fourier
spectrum are listed at the top of the plot. The 95-percent confidence
interval and the bandwidth of the Fourier spectrum are displayed on the plot.
The concept of bandwidth does not apply to the autoregressive spectrum and
confidence intervals for the autoregressive spectrum are not computed.

Direct Fourier Transform of a Univariate Series and Utility Subroutines .

In the example program of figures F-5a and F-5b, TAPER is used to center the
input series and to taper 10 percent of the data at the ends of the series

(5 percent at each end) and PGMS is used to compute the raw periodogram of the
tapered series. MDFLT is then used to smooth the raw periodogram returned by

PGMS with three applications of a modified Daniell filter of length eight.
PPL (chapter 3) is used to produce a log plot the smoothed periodogram versus
frequency. (VPL could also have been used to display the results.) The data
used are the Wolf sunspot numbers from 1700 to 1960 as tabulated by Waldmeier
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[1961]. The raw and smoothed periodograms of the tapered series are shown on

pages 95 and 176, respectively, of Bloomfield [1976].

Figure F-5c shows the raw periodogram output from PGMS while figure F-5d
shows the smoothed periodogram. There is no printed output from TAPER or
MDFLT.

Bivariate Fourier Spectrum Analysis . In the example program of figure
F-6a BFS is used to compute and plot the cross' spectrum for the series Xj and

X2 listed on page 361 of Jenkins and Watts [1968]. The squared coherency and

phase spectra for these series are shown on pages 387 and 388 of Jenkins and
Watts. Figures F-6b through F~6i show the eight pages of output from BFS.
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Autocorrelation Analysis

MAIN PR06RAP* AS 068 AW EXANPL
e

C DENONSTRATE ACF USXN6 SIN6LI PRECISION VERSION OF STARPAC
C RUN ON CYBER 116/840.
C

C OUTPUT UNIT IS 6 ( AUTONATICAUT EQUATED TO FILE TAPE6 ON C TIERS

)

C f SEE CHAPTER 1» SECTION D.43
C
C N.B. DECLARATION OF Y WUST BE CHANS! 0 TO DOUBLE PRECISION
C IF OOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y(900)
C

C READ NUNBER OF OBSERVATIONS
C OBSERVED SERIES
C

READ 100* N
READ 101* tvm» I-1#N)

C
C PRINT TITLE AND CALL ACF FOR AUTOCORRELATION ANALYSIS
C

WRITE (6# 102)
CALL ACF <Y» N)

C
STOP

C

C FORNAT STATENENTS
C

100 FORNAT (19)
101 FORNAT (10F6.2)
102 FORNAT (URESULTS OF STARPAC AUTOCORRELATION SUBROUTINE ACF')

END

100
-2.07 -1.19 0.69 -0.46 -1.49 -0.70 -1.07 -0.69 -0.66 1.27
-1.09 -0.09 •0.64 -0.62 -0.49 -1.29 -0.49 -1.06 -0.1B -0.92
-0.19 1.90 -1.91 -0.49 -1.91 -0.76 0.91 -0.99 -0.90 -0.90
-1.02 -0.99 0.19 1.40 1.22 0.99 0.70 1.70 2.7S 1.96
1.9* 1.B9 2.60 0.91 2.77 1.16 1.07 -0.46 -0.92 0.97
0.00 -loW -1.79 0.70 0.71 1.16 „ 0.06 -0.02 1.10 -0.99

-1.6T -1.97 1.16 1.S4 9.99 0.40 0.49 1.90 0.99 1.17
-1.74 -1.2B -0.07 1.90 0.91 0.20 -0.42 1.16 0.62 1.90
2.92 1.11 1.21 1.16 0.79 0.60 1.14 1.02 1.02 -0.71

-0.17 -1.90 -0.26 -0.91 0.91 -0.91 -1.12 -2.99 -2.09 -1.11

Figure F-la

Example program using ACF
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Cross Correlation Analysis

MAIN PROGRAMS PROGRAM EXAMPL

DEMONSTRATE CCE USING SINGLE PRECISION VERSION OF STARPAC
RUN ON CYBER 180/8*0.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE* ON CYBIRS)
C SEE CHAPTER It SECTION 0.4]

N.B. DECLARATION OF YX AND Y2 MUST BE CHANGED TO OOUBLE PRECISION
IF OOUBLE PRECISION VERSION OF STARPAC IS USED.

RIAL YH160)* Y2(100»

READ NUMBER OF OBSERVATIONS
SERIES X

SERIES 2

READ 100* N

READ 101* Itinil* I*1»N!
READ 161* ( Y2( I )* I«I»NI

PRINT TITLE AND CALL CCF FOR CROSS CORRELATION ANALYSIS

WRITE (6* 1021
CALI CCF CV1# Y2» N)

STOP

FORMAT STATEMENTS

100 FORMAT (19)
101 FORNAT (12F6.2)
102 FORNAT CIRESULTS OF STARPAC CROSS CORRELATION SUBROUTINE CCF')

IN©

BATA* 90
'@.18 •0.1© -1.87 -1.12 1.30 2.13 2.76 0.96 -0.69 -1.79 -3.82 -2.JB
1.00 0.70 -0.19 0.98 0.11 -0.39 -0.73 0.89 -1.63 -0.44 -1.37 -1.71
1.22 •2.00 -0.22 0.1B 1.31 0.71 0.32 0.4B -1.B8 -0.94 -1.94 -0.13
lcG2 0.02 -0.77 0.11 -0.00 -0.92 -0.09 1.23 1.46 0.61 0.42 2.16
Sell 2.16
0.70 1.12 -1.10 -2.39 -1.79 -0.82 -0.36 1.27 1.79 2.44 0.36 -2.10
1.99 -1.10 -1.79 -0.34 0.74 0.49 0.70 0.71 0.09 0.99 1.94 0.14
6. 99 “1.40 -2.99 -1.66 -0.43 0.90 2. 18 -0.24 0.98 -0.18 -1.99 -0.64
•1 ,6% 0.90 -0.66 -0.39 0.4B 0.90 0.09 -0.6B 0.24 0.96 -1.26 -0.29
6.29 2. IB

Figure F-2a

Example program using CCF
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Univariate Fourier Spectrum Analysis

WAIN PR06RAHJ
c

e

c

c

e
c

e

c
c
c

c

c
c
e

c

c

c

PROGRAM EXAWPL

DEMONSTRATE UFS USING SINGLE PRECISION VERSION OF STARPAC
RUN ON CYBER 160/840*

OUTPUT UNIT IS 6 ( AUTOMATICALLY EOUATID TO FILE TAPE6 ON CYBERSI
{SEE CHAPTER 1» SECTION 0*4]

N.6. DECLARATION OF Y MUST BE CHANGE 0 TO DOUBLE PRECISION
IF DOUBLE PRECISION VERSION OF STARPAC IS USED*

REAL Vf 306)

READ NUMBER OF OBSERVATIONS
OBSERVED SERIES

READ 100* N
READ 101* mil* I-1*NS

PRINT TITLE AND CALL UFS FOR UNIVARIATE FOURIER SPECTRUM ANALYSIS

WRITE (6* 1021
CALL UFS IT* N)

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (19)
101 FORMAT C10F6.2)
102 FORMAT I '1RESULTS OF STARPAC*

• • UNIVARIATE FOURIER SPECTRUM ANALYSIS SUBROUTINE UFSM
C

END

DATA* 90
-0.8B
-2.76
0.06
0.14

”0 . 8?

”0®12 ”0.60
•1* TT 0.98
-0,17 -1.01
1.99 -0.76

-O.At 0.26

-1.36 -0.6?
1.00 -0.70

-1.04 -0.66
-l.ee -1.77
1.90 2.14

1.03 2.14 0.39 -1.10 -1.76
”1.01 -1.30 -0.89 -0.46 1.63
”1.12 -0.91 -0.71 -0.20 -0.13
-1*20 0.49 -0.07 -0.63 -0.39
1.09 0.31 1.07 2.67 2.44

Figure F-3a

Example program using UFS
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Autoregressive Spectrum Analysis

MAIN PR06R AMI PR06RAH EXAMPL
C

C DEMONSTRATE UAS USING SINGLE PRECISION VERSION OF STARPAC
C RUN ON CYBER 180/640.
C
C OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPES. ON CYIEPSI
C CSEE CHAPTER 1* SECTION ©.A3
C

C N.B. DECLARATION OF Y MUST BE CHANGED TO DOUBLE PRECISION
C IF DOUBLE PRECISION VERSION OF STARPAC IS USED.
C

REAL Y ( 300)
C

C READ NUMBER OF OBSERVATIONS
C OBSERVED SERIES
C

READ 100* N
read ioi* mn« i>i*n)

c
C PRINT TITLE ANO CALL UAS FOR UNIVARIATE AUTOREGRESSIVE SPECTRUM ANALYSIS
C

WRITE (6* 102)
CALL UAS (Y* N)

C

STOP
C

C FORMAT STATEMENTS
C

100 FORMAT (IS)
101 FORMAT (10F6.2)
102 FORMAT (*1RESULTS OF STARPAC * *

• • UNIVARIATE AUTOREGRESSIVE SPECTRUM ANALYSIS SUBROUTINE UAS 1
)

END

DATA! 90
-0.88 -0.12
-2.76 -1.77
0.06 -0.17
0.14 1.99

—0.87 -0.62

-0.89 -1.38
0.98 1.00

-1.01 -1.04
-0.76 -1.08
0.28 1.90

-0.07 1.03
-0.70 -1.01
—0.66 —1.12
-1.77 -1.20
2.14 1.09

2.14 0.39
-1.30 -0.89
-0.91 -0.71
0.49 -0.07
0.31 1.07

-1.10 -1.78
-0.46 1.63
-0.20 -0.13
-0.63 -0.39
2.67 2.44

Figure F-4a

Example program using UAS
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Direct Fourier Transform of a Univariate Series and Utility Subroutines

MAIN PROCRAHl PR OCR AH EXAHPL

OENONSTRATE DIRECT FOURIER TRANSFORM SUBROUTINES USIN6 SINGLE PRECISION
VERSION OF STARPAC RUN ON CYBER 1BO/SAO.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE6 ON CYBERS)
(SEE CHAPTER 1# SECTION D.A1

N.B» DECLARATION OF Y, YFFT* PER* FREQ AND PEAF MUST BE CHANCED TO DOUBLE
PRECISION IF DOUBLE PRECISION VERSION OF STARPAC IS USED.

REAL Y(600)» YFFT(600I* PER(SOO)* FREQ(SOO)* PERF(iOO)
INTECER KMD(IO)
DOUBLE PRECISION DSTAKUOOO)

COMMON /CSTARS OSTAK

SPECIFY NECESSARY DIMENSIONS

IDSTAK • 1000
LPER « 600
LFREQ * 300
LYFFT e 600

READ NUMBER OF MODIFIED DANIEL FILTERS TO BE APPLIED
FILTER IENCTHS
NUMBER OF OBSERVATIONS
OBSERVED SERIES

READ 100* NK
READ 100* (KNDm* I - 1* NR)
READ ISO* N
READ 101* (Y(I)» I si*M)

CENTER THE SERIES AND APPLY A TEN PERCENT TAPER TO THE ENOS OF THE DATA

YAPERP » 0*10
CALL TAPER «Y» N* YAPERP* YFFT)

PRINT TITLE AND CALL PCNS TO CONPUTi PER I060CR AM OF TAPERED ANO
EXTENDED SERIES.

WRITE $6* 102)
NFFT * 914
IfKTNO 0
NPRT « f-1)
CALL PCMS (YFFT* N» NFFT, LYFFT, IEXTNO, NF, PER* LPER* FREQ,

1 LFREQ* NPRT)

APPLY MODIFIED OANIELL FILTERS TO SNOOTH THE PERIOOOCRAN

CALL HDFIT (PER* NF* NR* RNO* PERF* LOST AM)

PRINT TITLE ANO CALL PPL TO OISPLAY SNOOTHEO PERIOOOCRAN

WRIT! (6* 103)
HOC « 1
CALL PPL (PERF* FREO* NF* ILOC)

C
STOP

C FORMAT STATEMENTS
C

100 FORMAT (1019)
101 FORMAT (10F7.2)
102 FORMAT ( 'IRE SUITS OF STARPAC
103 FORMAT ( '1RESULTS OF STARPAC

* # DISPLAYED USINC STARPAC
END

PER IOOQGR AM SUBROUTINE PGMS •
)

FILTER SUBROUTINE NDFLT •»
PLOT SUBROUTINE PPL')

Figure F~5a

Example program using TAPER, PGMS, MDFLT and PPL
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DATA!
e

3

0 8

261
9.00 11.00 16.00 23.00 36.00 90.00 29.00 20.00 10.00 6.00
3.00 0.00 0.00 2.00 11.00 27.00 47.00 63.00 60.00 39.00
20.00 26.00 22.00 11.00 21.00 40.00 78.00 122.00 103.00 73.00
47.00 39.00 11.00 9.00 16.00 34.00 70.00 81.00 111.00 101.00
73.00 40.00 20.00 16.00 9.00 11.00 22.00 40.00 60.00 60.90
•3.40 47.70 47.00 30.70 12.20 9.60 10.20 32.40 47.60 94.00
62.90 8 9.90 61.20 49.10 36.40 20.90 11.40 37.00 69.80 106.10
100.00 01.60 66.90 34.00 30.60 7.00 19.00 92.90 194.40 129.90
04.00 60.10 30.90 22.00 10.20 24.10 02.90 132.00 130.90 110.10
09.90 66.60 60.00 46.90 41.00 21.30 16.00 6.40 4.10 6 . 00
14.90 34.00 49.00 43.10 47.90 42.20 20.10 10.10 9.10 2.90
0.00 1.40 9.00 12.20 13.90 39.40 49.00 41.10 30.10 23.90
19.60 6.60 4.00 1.00 0.90 16.60 36.30 49.60 64.20 67.00
70.90 47.00 27.90 0.90 13.20 96.90 121.90 130.30 103 .20 09.70
64.60 36.70 24.20 10.70 19.00 40.10 61.90 90.90 124.70 96.30
66.60 64.90 94.10 39.00 20.60 6.70 4.30 22.70 94.00 93.00
99.00 77.20 99.10 44.00 47.00 30.90 16.30 7.30 37.60 74.00

139.00 111.20 101.60 66.20 44.70 17.00 11.30 12.40 3.40 6.00
32.30 94.30 99.70 63.70 63.90 92.20 29.40 13.10 6.90 6.30
7.10 39.60 73.00 89.10 70.00 64.00 41.00 26.20 26.70 12.10
9.90 2.70 9.00 24.40 42.00 63.90 93.00 62.00 40.90 43.90
10.60 9.70 3.60 1.40 9.60 47.40 97.10 103.90 00.60 63.60
37.60 26.10 14.20 9.80 16.70 44.30 63.90 69.00 77.00 64.90
39.70 21.20 11.10 9.70 0.70 36.10 79.70 114.40 109.60 06.60
67.00 47.90 30.60 16.30 9.60 33.20 92.60 191.60 136.30 134.70
03.90 69.40 31.90 13.90 4.40 30.00 141.70 190.20 104.00 199.00

112.00

Figure F-5b

Example program using TAPER, PGMS
,
MDFLT and PPL (continued)
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Bivariate Fourier Spectrum Analysis

MAIN PROGRAM
C

c

c

e
c
c

e
c
c

c

e

€
e
e

e

e
e

PROGRAM E1AHPI

DEMONSTRATE BPS USING SINGLE PRECISION VERSION OF STARPAC
RUN ON CYBER 160/840.

OUTPUT UNIT IS 6 (AUTOMATICALLY EQUATED TO FILE TAPE 6 ON CYBERS)
(SEE CHAPTER 1* SECTION 0.41

N.B. DECLARATION OF Y1 ANO Y2 MUST BE CHANGED TO OOUBLE PRECISION
IF OOUBLE PRECISION VERSION OF STARPAC IS USIO.

REAL Yl( 100) » Y2C10O)

READ NUMBER OF OBSERVATIONS
SERIES 1

SERIES 2

READ 100* N
READ 101* fYltlli I«1#N)
READ 101# ( Y2 ( I ) * I»1»N*

PRINT TITLE ANO CALL 8FS FOR BIVARIATE FOURIER SPECTRUM ANALYSIS

WRITE (6* 102)
CALL BFS (Yl» Y2» N)

C
STOP

€
C FORMAT STATEMENTS

100 FORMAT (15)
101 FORMAT (12F6.2)
102 FORMAT C'lRESULTS OF STARPAC •*

* • BIVARIATE FOURIER SPECTRUM ANALYSIS SUBROUTINE BFS')
END

DATA* 100
-0.88 -0.16 -1.87
1.00 0.70 -0.15

-1.22 -2.00 -0.22
1.02 0.02 -0.77
1.18 2.10 0.17

-0.12 -1.88 -1.50
0.89 1.71 1.05
1.92 0.51 -1.08

-0.07 0.24 0.55
0.79 1.12 -1.10

-1©93 -1.10 -1.75
0.55 -1.40 -2.55

-1.09 0.90 —0.66
0.25 2.18 2.96

-0.16 -0.37 -1.39
-0.05 0.41 0.15
1.00 1.71 0.58
0.11 0.00 2.14

-1.12 1.18 2.13
0.98 0.11 -0.15
o.se 1.31 0.71
0.11 -0.60 -0.52

-0.24 0.57 -0.51
1.54 1.11 1.08
0.15 -1.04 0.12
0.49 -0.58 0.17

-2.16
-2.19 -1.75 -0.62
-0.14 0.74 0.49
•1.66 -0.41 0.56
-0.95 0.48 0.50
1.56 -0.16 -0.39

-4.19 -0.71 -0.96
2.69 0.57 0.29
1.97 0.99 1.94
1.88

2.76 0.56 -0.69
0.71 0.69 -1.61
0.12 0.46 -1.66
0.09 1.21 1.46
2.44 1.02 -0.51
1.71 0.79 1.55
0.06 0.11 -2.62
1.15 -0.97 -1.61

•0.16 1.27 1.75
0.70 0.71 0.09
2.16 -0.24 0.98
0.05 -0.68 0.24
•0.12 1.01 2.11
0.16 0.06 -1.94
1.10 0.48 -1.06
2.18 1.14 0.60

•1.74 -9. 82 -2.36
-0.44 -1.37 -1.71
-0.44 -1.54 -0.13
0.61 0.42 2.16

-2.44 -2.12 -1.04
0.89 -0.69 —1. II

-1.28 1.07 3.20
1.14 -0.67 -0.86

2.44 0.36 -2.10
0.59 1.54 0.14

-0.16 -1.95 -0.64
0.98 -1.26 -0.29
0.76 0.69 -1.49

-0.08 0.17 1.00
-2.26 -2.03 -0.75
0.91 1.39 0.96

Figure F-6a

Example program using BFS
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CHAPTER 13

ARIMA MODELING

A. Introduction

STARPAC contains five user-callable subroutines for AutoRegressive Tnte-
grated Moving Average (ARIMA) modeling. Three are for computing the least
squares estimates of the parameters of an ARIMA model and two are for
computing the minimum mean square error forecasts using these estimates. Both
the estimation and forecasting subroutines allow several levels of control of

the computations and printed output. The estimation subroutines also allow
the user to specify a subset of the parameters to be treated as constants with
their values held fixed at their input values. This last feature allows the

user to examine the results obtained estimating various subsets of the
parameters of a general model without respecifying the model for each subset.

Each of the subroutines in this chapter models the input series, y^,
i = 1, ..., N, with a user-specified general multiplicative ARIMA model using
the techniques discussed in Box and Jenkins [1976]. Briefly, this model is

defined by

NFAC NFAC NFAC

[
n (44> ( j)

(Bs (j)))][( n (vs(j) )
d (j>) yi -u] - [

n (e^^assU)))^
j=l j=l j=l

for i = 1,

N

NFAC

Bs

y

. . .

,

N, where

is the number of observations in the series;

is the number of factors in the model;

is the backward shift operator of order s, i.e.

,

bS
v±

=
yi-s ;

is the expected value of the differenced series, i.e.

,

NFAC

y = E
[

II (

V

s( j
J )) Yi ] ,

j-1

which can be used to allow for a deterministic polynomial trend;

<[>p(j
)(B s (j

)

)

is the polynomial in BS ^J^ of order p(j), i.e.,

Mj) (BS(J)
> *

1 - - * 2>
jB2*s<j> - ... *p( j ),j

BP<J),S(J)
.

which represents the j
th autoregressive factor in the model;
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(V s ( j ) )
d ^^ is the backward difference operator, i.e.,

(v s( j ))
d( j ) = (1 - B s ^ )

)
d^ )

= 1 - d(j)B s ^> + ... Bd (j)* s (j>,

which represents the j
th difference factor in the model;

0_q( j
)(

B

s ^j
)) is the polynomial in B s ^j^ of order q(j), i.e.,

! - 01,jBS(j) - 02,jB2 - s <J) - ... 8 q(j)(j
BqO)-8«),

which represents the j
1-*1 moving average factor in the model; and

a-j_ is the unobservable random noise component at the i 1-*1

observation.

The least squares estimates of the parameters,

4>1,1» $2,1* ***’ <f>p(l),l’ *1,2* ^p(NFAC) ,NFAC» u ’

0 1 S
1» 0 2, 1 » •••» 0

q ( 1 ) ,
1 » 9

1 , 2 » •••» 0
q (NFAC) ,NFAC

are obtained using back forecasts at each iteration as discussed in §E.l.a.
The least squares solution is that which minimizes (with respect to the

parameters) the sum of the squares of the random noise components, a^ ,
i.e.,

N -

I *i
2

i=-oo

where carat (* ) denotes the estimated quantity. The iterative procedure used
is documented in chapter 9.

The user must supply both initial values for the parameters and an array
specifying the orders p(j)» d(j), q(j) and s(j) for each factor j

= 1, ...,

NFAC in the model. Initial parameter values for the estimation subroutines
should be chosen with care since good values can significantly reduce computer
time

.

Users are directed to §B for a brief description of the subrout
declaration and CALL statements are given in §C and the subroutine
are defined in §D. The algorithms used and output produced
subroutines are discussed in §E. Sample programs and their output
in §F.

ines. The
arguments
by these
are shown
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B . Subroutine Descriptions

B.l ARIMA Estimation Subroutines

The simplest of the three ARIMA estimation subroutines, AIME,

automatically summarizes the estimated results and a variety of statistics in

a five-part printed report described in §E.2.a, and returns the estimated

parameters and residuals to the user via the subroutine argument list (level

one control). Most ARIMA estimation problems can be solved using AIME.

The other two estimation subroutines, AIMEC and AIMES, provide greater

flexibility to the user at the price of more input.

AIMEC, like AIME, also returns estimated parameters and residuals from

the fit. In addition, it allows the user to supply arguments to indicate
- a subset of the model parameters to be treated as constants,

with their values held fixed at their input values;
- the step sizes used to compute the numerical approximations to

the derivative as described in chapter 9, §E.l.b;
- the maximum number of iterations allowed;
- the convergence criteria;
- the scale (i.e. ,

the typical size) of each parameter;
- the maximum change allowed in the parameters at the first

iteration;
- how the variance-covariance matrix is to be approximated; and
- what sections of the five-part printed report are wanted.

AIMES has all the features of AIMEC and, in addition, returns the

following estimated values via the argument list:
- the number of parameters actually estimated;
- the residual standard deviation;
- the predicted values;
- the standard deviations of the predicted values;
- the standardized residuals; and
- the variance-covariance matrix of the estimated parameters.

B ,2 ARIMA Forecasting Subroutines

The simplest of the three ARIMA forecasting subroutines, AIMF,

automatically summarizes the estimated results in a two-part printed report.

Forecasts are made using N as the origin and extending [N/10] + 1 steps into
the future, i.e., observations are forecast for indices N+l,

N+2, ..., N+[N/10]+1. Many forecasting problems can be solved using AIMF.

The second forecasting subroutine, AIMFS, allows the user to supply
arguments to indicate the number of forecasts to be made, the origins to be
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used and the amount of printed output. This subroutine also returns the

forecasts and their standard deviations via the argument list.

C . Subroutine Declaration and CALL Statements

NOTE: Argument definitions and sample programs are given in §D and §F,

respectively. The conventions used to present the following declaration and
CALL statments are given in chapter 1, §B and §D.

The <basic declaration block> identifies declaration statements that are

needed by all of the ARIMA estimation and forecasting subroutines. The user
should substitute the following four statements for each occurrence of <basic
declaration block> given below.

<real> Y (n), PAR(npar)
INTEGER MSPEC (4 ,nfaa)
DOUBLE PRECISION DSTAK (Idstak)
COMMON /CSTAK/ DSTAK

Subroutine for ARIMA Estimation

AIME i Compute and print a five-part least squares analysis of the parameter
estimates of an ARIMA model ; return parameter estimates and residuals

<basic declaration block>
<real> RES(n)

CALL AIME (Y, N, MSPEC, NFAC
,
PAR, NPAR, RES, LDSTAK)

AIMEC : Compute and optionally print a five-part least squares analysis of
the parameter estimates of an ARIMA model using user- supplied control
values; return parameter estimates and residuals

<basic declaration block>
<real> RES(n)
INTEGER IFIXED (npar)
<real> STP (npar), STOPSS, STOPP, SCALE (npar

)

f
DELTA

CALL AIMEC (Y, N, MSPEC, NFAC, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX

,
NPRT

)
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AIMES: Compute and optionally print a five-part least squares analysis of

the parameter estimates of an ARIMA model using user-supplied control
values; return parameter estimates, residuals, number of parameters
estimated, residual standard deviation, predicted values, standard
deviations of the predicted values and variance-covariance matrix of
the estimated parameters

<basic declaration block>
<real> RES(rc)

INTEGER IFIXED (npar)
<real> STP(npar’), STOPSS, STOPP, SCALE (npar»)

,
DELTA

<real> RSD, PV(rc), SDPV(n), SDRES(n), VCV (npare,npare)

CALL AIMES (Y, N, M, MSPEC, NFAR, PAR, NPAR, RES, LDSTAK,
1 IFIXED, STP, MIT, STOPSS, STOPP, SCALE, DELTA, IVAPRX, NPRT,

2 NPARE
,

RSD, PV, SDPV, SDRES
,
VCV

,
IVCV)

Subroutines for ARIMA Forecasting

AIMF: Compute and print the minimum mean square error forecasts obtained
using an ARIMA model

<basic declaration block>

CALL AIMF (Y, N, MSPEC, NFAC
,
PAR, NPAR, LDSTAK)

AIMFS: Compute and optionally print the minimum mean square error forecasts
obtained using an ARIMA model; return forecasts and their standard
errors

<basic declaration block>
<real> FCST(nfcst ,nfcsto)

,

SDFCST (nfcst)
INTEGER IFCSTO(nfesto)

CALL AIMFS (Y, N, MSPEC, NFAC, PAR, NPAR, LDSTAK,
1 NFCST, NFCSTO, IFCSTO, NPRT, FCST, IFCST, FCSTSD)

D. Dictionary of Subroutine Arguments and COMMON Variables

NOTE: —> indicates that the argument is input to the subroutine and that
the input value is preserved;

<— indicates that the argument is returned by the subroutine;
<-> indicates that the argument is input to the subroutine and that

the input value is overwritten by the subroutine;
indicates that the argument is input to some subroutines and is

returned by others;
*** indicates that the argument is a subroutine name;
••• indicates that the variable is passed via COMMON.
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DELTA --> The maximum scaled change allowed in the parameters at the first
iteration, i.e.

, 6q. [See chapter 9, §E.l.a.] The default value
is 100.0. When DELTA < 0.0 or when DELTA is not an argument of

the subroutine CALL statement the default value is used. Normal-
ly, the default value should be used. However a smaller value of
DELTA may be appropriate if, at the first iteration, the computa-
tion of the predicted values produces an arithmetric overflow or

the parameters leave the region of interest in parameter space. A
reasonable alternative to the default value of DELTA is an upper
bound to the scaled change that the estimated parameters should be

allowed to make on the first iteration,

DELTA = min{ |AmaxPAR(k) |
/SCALE(k), for k = 1, ..., NPAR}

where A_ovPAR(k) is the maximum change allowed for the k 1^
parameter at the first iteration.

DSTAK ••• The DOUBLE PRECISION vector in COMMON /CSTAK/ of dimension at

least LDSTAK. DSTAK provides workspace for the computations. The

first LDSTAK locations of DSTAK will be overwritten during
subroutine execution.

FCST <”- The array of dimension at least NFCST by NFCSTO that contains the

NFCST forecasts computed from each of the NFCSTO origins.

FCSTSD <— The vector of dimension at least NFCST that contains the standard
deviation of each of the forecasts,

K-l
FCSTSD(K) = RSD *

( J
'{'

i

2
)
1/2 for K = 1, ..., NFCST,

‘j-o

where

= 1 and Yj = + ... +
'['p+D *

^
j -P-D “ e

j

NFAC NFAC
with P = £ p(j); D = £ d(j); and

j=l j“l

ip
^

= the coefficient of B 1 in the polynomial defined by

NFAC

1 (tp(j)( BS(J) ))-((V s(j
)dj)

j=l
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IERR *** An error flag returned in COMMON /ERRCHK/ . [See chapter 1, §D.5.]

Note that using (or not using) the error flag will not affect the

printed error messages that are automatically provided even when
the user has suppressed the normal printed output.

For AIME, AIMEC
,
and AIMES:

IERR = 0 indicates that no errors were detected and that the

iterations converged satisfactorily.

IERR = 1 indicates that improper input was detected.

IERR = 2 indicates that the computation of the residual sum of

squares using the initial parameter values produced an

arithmetic overflow. The user should reduce the size

of DELTA or should supply new starting values.

IERR = 3 indicates that the model is computationally singular,
which means the model has too many parameters near the

solution. The user should examine the model and data
to identify and remove the cause of the singularity.

IERR = 4 indicates that at least one of the standardized residu-
als could not be computed because its standard
deviation was zero. The validity of the variance-
covariance matrix is questionable.

IERR = 5 indicates false convergence. [See chapter 9, §E.l.a.]

IERR = 6 indicates that convergence was not reached in the

allowed number of iterations or model subroutine calls.
[See argument MIT.]

IERR = 7 indicates that the variance-covariance matrix could not

be computed because of computational difficulties.

For AIMF and AIMFS:

IERR = 0 indicates that no errors were detected and that all the
forecasts were computed.

IERR = 1 indicates that improper input was detected.

IFCST —> The exact value of the first dimension of the matrix FSCT as

specified in the calling subroutine.

IFCSTO —> The vector of dimension at least NFCSTO that contains the NFCSTO
indices to be used as origins, where l < IFCSTO(J) < N for J = 1,

..., NFCSTO. The default value for each element of IFCSTO is N.

When IFCSTO(J) is outside the range [1, N] or IFCSTO is not an
argument of the subroutine CALL statement the default value is

used.

13-7



IFIXED -—> The vector of dimension at least NPAR that contains values used to
indicate whether the corresponding parameter in PAR is to be
treated as a fixed constant or is to be estimated. If

IFIXED(I)>0, PAR(I) will be held fixed at its input value; if
IFIXED( I )=0 ,

PAR ( I ) will be estimated using the least squares
procedure described in §A. The default values are IFIXED(I)=0, I

= 1, . .., NPAR, i.e. , all parameters are estimated. When
IFIXED(1)<-1 or when IFIXED is not an argument of the subroutine
CALL statement the default value will be used.

IVCV ““> The exact value of the first dimension of the matrix VCV as
specified in the calling program.

IVAPRX ---> The indicator variable used to specify how the variance-covariance
matrix, VCV, is to be approximated. Three approximations are
available:

a <*»

(1) VCV = RSD2 ® (DT«D)“ 1

(2) VCV = RSD2 •

H”
1

(3) VCV --- RSD2 « H” 1
« (DT « D) •H~l

where

Dt j
= aa-jyas (j ) for i

and j
<A. A N <*» /</=>. A

H = DT ® D -
{ l a1 *(3

2 a
i /3e(j)36(k>) for j

i=l and k

The results of a recent study by Donaldso
indicate that approximation (1) is prefe
simple, less expensive, more numerically s

accurate as approximations (2) and

approximations to the variance-covariance matrix are subject to

sampling variation because they are computed using the estimated
parameter values. The variance-covariance matrix computed for any

particular nonlinear least squares solution should thus be

regarded as only a rough estimate [Bard, 1974; Donaldson and

Schnabel, 1985] .

If IVAPRX - lor 4 then approximation (1) is used;
= 2 or 5 then approximation (2) is used; and
= 3 or 6 then approximation (3) is used.

The default value for IVAPRX is 1. When argument IVAPRX is

outside the range [1, 6] or when IVAPRX is not an argument of the

subroutine CALL statement then the default value is used.

= 1,

= 1
,

,
N

,
NPAR; and

= 1 , . .

.

,
NPAR

= 1 , . . . ,
NPAR} .

n and Schnabel [1985]

rable because it is

table and at least as

(3). However, all
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LDSTAK —> The length of the DOUBLE PRECISION workspace vector DSTAK. LDSTAK

must equal or exceed the appropriate value given below, where if

the single precision version of STARPAC is being used P = 0.5,

otherwise P = 1.0. [See chapter 1, §B.] Also,

NFAC NFAC
MBO = maximum

{ [ (p( j )+d( j )) »s( j ) , £ qCj)-s(j) }.

j=l j-1

For AIME, AIMEC and AIMES:

LDSTAK ^ 43 + max{ IS* (N+NPAR)
,
30+NPARE} + 2» NFAC +

max
{

IS«10»N + 6*MB0+606.
94 + 4 • ( N+MB0+ 101) + 5»MBO + ( 3 « NPARE2 +3 5« NPARE ) / 2 }*P

where IS = 1 if default values are used for the derivative
step sizes, and IS = 0 otherwise.

For AIMF and AIMFS

:

LDSTAK > 18 + 2» NFAC + ( 5*MBO+2« (N+MBO+101)) •

P

MIT —-> The maximum number of iterations allowed. This argument is also
used to compute the maximum number of model subroutine calls,
(2*MIT). The iterations will stop if either limit is reached,
although, as a rule, the maximum number of iterations will be

reached first. The default value for the maximum number of

iterations is 21. When MIT < 0 or when MIT is not an argument of

the subroutine CALL statement the default value is used.

MSPEC —> The array of dimension exactly 4 rows
that contains the orders p, d, q and
model where p(j), j

= 1, ..., NFAC must
d ( j ) , j = 1, ..., NFAC must

q(j), j
= 1> •••» NFAC must

s(j), j
= 1, ..., NFAC must

Values of p(j), d(j), q(j) and s(j), j

equal or exceed zero.

by at least NFAC columns
s for each factor in the

be in row 1,

be in row 2,

be in row 3, and

be in row 4.

= 1, ..., NFAC, must each

N —> The number of observations.

NFAC —> The number of factors in the model.

NFCST —> The number of forecasts to be computed. The default value is
[N/10]+l. When NFCST<0 or when NFCST is not an argument of the
subroutine CALL statement the default value is used.

NFCSTO —> The number of forecast origins supplied. The default value is 1.

When NFCSTO<0 or when NFCSTO is not an argument of the subroutine
CALL statement the default value is used.
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NPAR —> The number of parameters in the model including both those held
fixed at their starting values and those which are to be
estimated,

NFAC
NPAR = 1 + l (p(j) + q(j)) .

j-1

NPARE <— The number of parameters actually estimated, i.e. , the number of
zero elements in IFIXED. N.B. This value is returned by the
estimation subroutines.

NPRT —> The argument controlling printed output.

For AIME, AIMEC and AIMES:

NPRT is a five-digit integer for which the value of the I
th

digit (counting from left to right) is used to control the I
th

section of the output.

If the I 1-*1 digit = 0 the output from the I 1-*1 section is

suppressed

;

= 1 the brief form of the I^ section is given;

> 2 the full form of the I c ^ section is given.

The default value for NPRT is 11112. When NPRT < -1 or when
NPRT is not an argument in the subroutine CALL statement the

default value is used. If the convergence criteria are not

satisfied, the subroutine gives a suitable warning and provides

a printed report even if NPRT =0. A full discussion of the

printed output is given in §E.2.a and is summarized as follows.

Section 1 lists the starting estimates and control values.

Brief output and full output are the same for this

section.

Section 2 reports the results of the iterations. Brief output
includes information only about the first and last

iteration while full output includes information about
all of the iterations.

Section 3 provides information for each observation based on the

final solution. Brief output includes information for

the first 40 observations while full output provides
the information for all of the data.

Section 4 is a set of four residual plots. Brief output and

full output are the same for this section.

Section 5 is the final summary of the estimated parameters.
Brief output does not include printing the variance-
covariance matrix while full output does.

— continued —
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For AIMF and AIMFS:

If NPRT = 0 the printed output is suppressed.

If NPRT * 0 the printed output is provided.

The default value for NPRT is 1. When NPRT<-1 or when NPRT is

not an argument in the subroutine CALL statement the default
value will be used.

PAR The vector of dimension at least NPAR that contains the parameter
values. For both the estimation and the forecasting subroutines,
parameter values must be ordered

*1,1* ^2,1* •••» *p(l),l. ^1,2’ '

*

0 ’ ^p(NFAC) ,NFAC S

M >

0 1,1» 8
2, 1 » 8

q( 1 ) , 1 ’
8

1 ,
2> •••» 0 q(NFAC),NFAC»

i.e., the parameter values from the autoregressive factors are
first, followed by p, followed by the parameter values from the

moving average factors. For all estimation subroutines PAR must
contain initial values for the parameters on input and will
contain the final values on return. For the forecasting subrou-
tines PAR must contain the parameter values for which the
forecasts are to be computed.

PV <—• The vector of dimension at least N that contains the predicted
values of the dependent variable at the solution,

A

PV(i) = yi
“ a

i
for i = 1, . . ,

N.

RES <-- The vector of dimension at least N that contains the residuals at

the solution,
A

RES(i) = a(i) for i = 1, ..., N„

RSD <— The residual standard deviation at the solution,

N
1/2

RSD = [( l RES(i) 2 )/(N-NPARDF-NPARE)]

i=l

NFAC
where NPARDF = £ s(j)*d(j) .

j-1
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SCALE --> The vector of dimension at least NPAR that contains the scale, or
typical size, of each parameter. The vector SCALE is used to

normalize the size of each parameter so that

|

PAR^ ( j ) / SCALE( j )
|

» |PAR.£ (k) /SCALE (k)
|

for j = 1 , ..., NPAR

and k = 1 , .

.

.

,

NPAR,

where PAR^ ( j ) is the value of the j
th parameter at the £

th

iteration. Values of |SCALE(k)| > |PAR^(k)| can be used to

increase the step size in cases where the model function is known
to be insensitive to small changes in the value PAR^(k), although

normally the default values should be used.

The default values for SCALE are selected by the NL2S0L algorithm
[Dennis et al® 1981a and 1981b] and are updated at each
iteration. When SCALE is not an argument in the subroutine CALL
statement or when the user-supplied value for SCALE(1)<0 the

default procedure will be used to select scale values. When
SCALE(1)>0, values of SCALE(k)<0 for k = 2, ..., NPAR will be

interpreted as an input error. User-supplied scale values may be

either a vector of the typical size of each parameter or a vector
of ones if the typical sizes of the parameters are roughly equal;

user-supplied scale values can sometimes result in reduced com-

puting time since these values are not updated at each iteration.

SDPV <— The vector of dimension at least N that contains an approximation
to the standard deviation of each predicted value at the

solution,
A A

SDPV(i) = the i t
^1 diagonal element of

[
(D» VCV» D^)]

for i - 1, N, where

Djj = 9 a^/88 (j ) for i = 1, . .., N and j = 1, ..., NPAR.

This approximation is based on a linearization of the model in the

neighborhood of the solution; the validity of the approximation
depends on the nonlinearity of the model. This approximation may

be extremely inaccurate for a problem with a highly nonlinear
model.

SDRES <— The vector of dimension at least N that contains an approximation
to the standardized residuals at the solution,

SDRES (i ) - RES(i) / [ RSD2 -SDPV(i )
2

]

1 72

for i = 1, . N, which is the i
11 *1 residual divided by its

individual estimated standard deviation. This approximation is

based on a linearization of the model in the neighborhood of the

solution; the validity of the approximation depends on the

nonlinearity of the model. This approximation may be extremely
inaccurate for a problem with a highly nonlinear model.
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STOPP --> The stopping value for the convergence test based on the maximum
scaled relative change in the parameters at the most recent
iteration. The convergence criterion is satisfied if the current
step is a Newton step and

max{ |PAR„+i (k)-PAR„ (k)
||

/SCALE (k) for k = 1, ..., NPAR}

max{
|n PARj£ + 1

(k)
|

+ PAR^ (k)
|

J / SCALE (k) for k = 1, ..., NPAR}
< STOPP

where PAR^(k) is the value of the k*-*
1 parameter at the 2^

iteration. [See Dennis et al. 1981a. ] This convergence test is

roughly equivalent to the test based on the maximum relative
change in each parameter as measured by

max{ |PAR£+1 (k)-PAR£ (k)|/|PAR^(k)| for k = 1, ..., NPAR} .

STOPP is not a scale-dependent value; if its value is 10“**
,
then

this criteria will be met when the first four digits of each
parameter are the same at two successive iterations regardless of

the size of the parameter values.

The default value is approximately io~DIGITS/2^ where DIGITS is

the number of decimal digits carried by the user's computer for a

single precision value when the single precision version of
STARPAC is being used and is the number carried for a double
precision value otherwise. When the user-supplied value for STOPP
is outside the interval [0.0, 1.0] or when STOPP is not an
argument of the subroutine CALL statement the default value is

used.

STOPSS --> The stopping value for the convergence test based on the ratio of

the forecasted change in the residual sum of squares at iteration
2+1, ARSS^+i, to the residual sum of squares at iteration 2 ,

N -

RSS^ =
£ .

i=-oo

The convergence criterion is satisfied if certain conditions are
met and

ARSS£ +1 /RSS£ < STOPSS.

[See Dennis et al. 1981a.] This convergence test is roughly
equivalent to the test based on the relative change in the
residual standard deviation between two iterations 2 and 2+1 as
measured by (RSS£ 1/2 - RSS^+j 1 /2 VRSS^ 1 /2

. STOPSS is not a scale-
dependent value; if its value is 10

-
^ this criteria will be met

when the first five digits of the residual sum of squares are the
same at two successive iterations regardless of the size of the
residual sum of squares.

— continued —
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STP

VCV

The default value is approximately the maximum of 10 ^ and
10~2.DIGITS/3

>
where DIGITS is the number of decimal digits

carried by the user’s computer for a single precision value when
the single precision version of STARPAC is being used and is the

number carried for a double precision value otherwise. When the

user-supplied value for STOPSS is outside the interval
[10 0.1] or when STOPSS is not an argument of the
subroutine CALL statement the default value will be used.

— The vector of dimension at least NPAR that contains the relative
step sizes used by the estimation subroutines to approximate the

derivative matrix numerically. The procedure used to select the
default values is described in chapter 9, §E.l.a. When STP is not

an argument of the subroutine CALL statement or when STP(1)<0 the

default values will be used for all of the step sizes; when
STP( 1 )>0 s

values of STP(k)<0 for k = 2, ..., NPAR will be

interpreted as an input error.

<-- The matrix of dimension at least NPARE by NPARE that contains the

variance-covariance matrix of the estimated parameters, approxi-
mated as designated by argument IVAPRX. The parameters which are

held fixed (as specified by argument IFIXED) are not included in

the variance-covariance matrix.

The approximation of the variance-covariance matrix is based on a

linearization of the model in the neighborhood of the solution;
the validity of the approximation depends on the nonlinearity of

the model. This approximation may be extremely inaccurate for a

problem with a highly nonlinear model.

Y —> The vector of dimension at least N that contains the series being
modeled.

E o Computational Methods

E . 1 Algorithms

E.l.a ARIMA Estimation

The ARIMA estimation subroutines use the NL2S0L software package written
by Dennis et al. [1981a and 1981b]. The observations of the series, which are

measured with error, are iteratively fit to the ARIMA model by minimizing the

sums of squares of the estimated random noise component as described in §A.

The back forecasting technique discussed on pages 215-220 of Box and Jenkins
[1976] is used to compute the random noise component. Up to 101 back

forecasts are computed. The back forecasts are assumed to be negligible when
their magnitude is less than 0.01 times the first value of the differenced
series (centered about its mean) obtained entirely from the observed data.

If, at the last iteration, the 101 st back forecast is not negligible a warning
message is printed.
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The iterations continue until the convergence criteria based on the

change in the parameter values or in the residual sum of squares are satisfied
[arguments STOPP and STOPSS], the maximum number of iterations (or model
subroutine calls) is reached [argument MIT], or the iterations are terminated
due to singularity in the model or false convergence. All but the first of

these stopping conditions may indicate computational problems and will produce
an error report. [See chapter 1, §D . 5 . ] Singular convergence means that the

model contains too many parameters, at least near the solution, while false
convergence can indicate that either STOPSS or STOPP is set too small for the

accuracy to which the model and its derivatives are being computed or that

there is a discontinuity in the derivative. Iterative procedures for solving
nonlinear least squares problems are discussed in Dennis and Schnabel [1983],
Draper and Smith [1981] , and Kennedy and Gentle [1980] . The specific
procedure used in STARPAC is discussed in chapter 9 and Dennis et al.

[1981a]

.

E.l.b ARIMA Forecasting

The ARIMA forecasting subroutines use the techniques discussed in Box and

Jenkins [1976], chapter 5. The back forecasting technique discussed on pages
215-220 of Box and Jenkins [1976] is used to compute the random noise
component needed for the forecasts. Values of a^ for i greater than the

forecast origin are assumed to be zero. Up to 101 back forecasts are
computed. The back forecasts are assumed to be negligible when their
magnitude is less than 0.01 times the first value of the differenced series
(centered about its mean) obtained entirely from the observed data. If the
101 st back forecast is not negligible a warning message is printed.

E . 2 Computed Results and Printed Output

E„2.a The ARIMA Estimation Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the ARIMA estimation subroutines consists of five
sections, several of which include tables summarizing the results. In the
following descriptions, the actual table headings are given by the underlined,
uppercase phrases. Results which correspond to input or returned subroutine
CALL statement arguments are identified by the argument name in uppercase
(not underlined).

Section 1 provides a summary of the initial estimates and control values. It

lists the following information.

© The initial values of the parameters, PAR, and whether they are to be

held fixed or not as indicated by argument IFIXED.

• The scale values, SCALE.
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• The step sizes used to approximate the derivatives numerically, STP.

• The number of observations, N.

• The maximum number of iterations allowed, MIT.

• The maximum number of model subroutine calls allowed.

• The two convergence criteria, STOPSS and STOPP.

• The maximum change in the parameters allowed at the first iteration,

DELTA.

• The residual sum of squares computed using the starting parameter
values.

• The residual standard deviation computed using the starting parameter
values, RSD.

Section 2 lists selected information about each iteration and includes the

reason the iterations were terminated. The information provided for

each iteration includes the following.

• The iteration number.

• MODEL CALLS ; the total number of times since execution began that the

user's model subroutine has been called, not including calls required
to approximate the derivatives numerically.

• RSD i the residual standard deviation computed using the parameter
values from the current iteration.

• RSS s the residual sum of squares computed using the parameter values
from the current iteration.

® REL CHNG RSS ; the relative change in the residual sum of squares
resulting from the current iteration.

• FORECASTED REL CHNG RSS : the forecasted relative change in the resid-
ual sum of squares at the current iteration and whether this value was

checked against STOPSS ( CHKD = Y) or not ( CHKD = N).

• REL CHNG PAR : the maximum scaled relative change in the parameters at

the current iteration and whether this value was checked against STOPP

( CHKD = Y) or not ( CHKD = N).

• CURRENT PARAMETER VALUES : the estimated parameter values resulting
from the current iteration.
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Section 3 provides the following information for each observation, i = 1,

N, based on the final solution.

• ROW : the row number of the observations.

© SERIES : the value of the dependent variable, Y.

• PREDICTED VALUE : the estimated predicted value, PV, from the fit.

© STD DEV OF PREP VALUE : the standard deviation of the predicted
value, SDPV.

© RESIDUAL : the error estimate, RES.

• STD RES ; the standardized residual, SDRES.

Section 4 displays the following plots.

© The standardized residuals versus row numbers.

• The autocorrelation function of the (non-standardized) residuals.

• The normal probability plot of the standardized residuals.

Section 5 summarizes the following information about the final parameter
estimates and their variances.

• The variance-covariance matrix, VCV, of the estimated (unfixed)
parameters and the corresponding correlation matrix,

rjk
= VCV(j,k)/(VCV(j,j) VCV(k,k))

1/2
for j

= 1, ..., NPARE
and k = 1, ..., NPARE.

• PARAMETER ESTIMATES (PAR) : the final value of each parameter, PAR(k),
k = 1 ,

. . .

,

NPAR.

© STD DEV OF PARAMETER ESTIMATES : the standard deviation of each
estimated parameter,

( VCV(k,k)) 1/2 for k = 1, ..., NPAR.

• RATIO PAR/SD OF PAR : the ratio of each estimated parameter to its

standard deviation,

RATIOk
= PAR(k)/(VCV(k,k)) 1/2 for k = 1 , ..., NPAR.

• APPROXIMATE 95-PERCENT CONFIDENCE LIMITS : the lower and upper
95-percent confidence limits for each parameter, computed using the
appropriate value of the Student's t distribution with
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NFAC
N -

( l s(j )*d(j ))
- NPARE

i=l

degrees of freedom.

• The residual sum of squares at the solution.

• The residual standard deviation at the solution, RSD.

NFAC

® The residual degrees of freedom, N -
( £ s(j)*d(j)) - NPARE.

i=l

• An approximation to the condition number of the derivative matrix,

Djj = 3a
i /8g(j) for i = 1, ..., N and j = 1, ..., NPAR

(the Jacobian), under the assumption that the absolute error in each

column of D is roughly equal. The approximation will be meaningless

if this assumption is not valid; otherwise it will usually

underestimate the actual condition number by a factor of from 2 to 10

[see Dongarra et al. 1979, page 9.5],

NOTE ; The standard deviation of the predicted values, the standardized
residuals, the variance-covariance matrix, the standard deviations of the

parameters and the 95-percent confidence limits on the parameters are all

based on a linear approximation to the model in a neighborhood of the

solution; the validity of this approximation depends on the nonlinearity of

the model. The statistics based on this approximation may be extremely
inaccurate for a problem with a highly nonlinear model.

E„2.b The ARIMA Forecasting Subroutines

The argument controlling the printed output, NPRT, is discussed in §D.

The output from the ARIMA forecasting subroutines consists of a summary
of the model used to produce the forecasts and, for each origin, a plot and a

list of the computed forecasts and a 95-percent confidence interval about the

forecasts along with the actual series value when known.

The sample
table 9.1 of Box

programs of this
and Jenkins [1976]

section use the

; the model is

model and data given in

V
1
X *V 12

1
® y± - v = (i-e 1>r Bi) ° (1—01,2*®^) *

a-L for i = 1 ,
... ,

N.
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ARIMA Estimation . In the sample program of figure F-la, AIME is used to
compute the least squares estimates of the parameters; figures F-lb through
F-lf show the output from AIME.

ARIMA Forecasting . In the sample program of figures F-2a, AIMF is used
to compute the minimum mean square error forecasts using the least squares
estimates obtained in example 1; figures F-2b and F-2c show the output from
AIMF.
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ARIMA Estimation

IAIN PROGRAM*
c

c

c

c

e

c

c

c

c

c

c

c

c

c

e

c

c

c

c

e

c

PROGRAM EXANPL

DEMONSTRATE AI«E OSINS SINGLE PRECISION VERSION QF STARPAC
PUN ON CYBER 180/8*0.

OUTPUT UNIT IS % ( AUTOMATIC ALLY EQUATED TO PILE T* 9 E6 ON CY8EPS)
ISEE CHAPTER 1, SECTION D.*3

N.B. DECLARATION OP Y» **, PAR AND RES NUST 9E CHANGED TO OOUBLE PRECISION
IP DOUBLE PRECISION VERSION OF STARPAC IS USED.

INTEGER “$ PEC ( *» 5 )

REAL Y ( 200 ) f P AR t 5 J # 8ES«200>
DOUBLE PRECISION 0STAM5006I

CONNQN /CSTAN/ ostak

DEFINE VARIABLES FOR VARIOUS OINENSIONS

LDSTAK • 5006

READ NU“BER OP FACTORS IN MODEL
VALUES OP »» 0, a AND S p nR EACH factor
NU»BER OP PARANETERS
STARTIN6 VALUES FOR PARANETERS
NUNBE® OP observations
OBSERVED SERIES

READ 100* N F AC
READ 100* UHSPEC(X.J)* I»1**J» J«l f NPAC)
READ 100* near
READ 101* (PAR(I), I«1*NPAR»
READ 100* N

READ 101, (YCH* I-l.NJ
c

C COMPUTE LOG OP OATA
C

DO 10 I 1. N
Y( I ) « AL06 ( Y( I )

)

10 CONTINUE

c PRINT TITLE and CALL A I* E TO PERFORM ARINA ESTIMATION ANALYSIS
C

VR XTE <6* 192)
CALL A I N | (Y, N» N$P|C» NF AC » 9 AR » NPAR, RES* LDSTAK)

C
STOP

c

c FORMAT STATEMENTS
c

loe format i*is)
101 FORMAT { 12F6 . 1 )

10 1 POR«AT (UBESUITS OP STARPAC ARINA E ST ! AT ION SUBROUTINE A INE ' )

C

END

DATA* 2

0 111
0 1 1 12
3

9.0 0.* 0.6
U*

112.0 118.0 132.0 129.0 121.0 135.0 1*8.0 1*8.0 136.0 119.0 10*.

C

118.9
115.0 13 6.0 1*1.0 135.0 125.0 1*9.0 170.0 170.0 138.0 133.0 11*.

0

1*0.0
1*5.0 150.0 1TB.

0

163.

C

172.0 178.0 199,0 199.0 18*. 0 162.0 1*6.0 166.0
171.0 1 80.0 193.0 181.0 133.0 218.0 230.0 2*2.0 299.0 191.0 172.0 19*.

0

196.0 196.0 236.0 235.0 229.0 2*3.0 26*.

0

272.0 237.9 211 .0 180.0 201 .0

20*.

0

198.0 235.0 227.0 23*.

0

26* .0 302.0 293 .0 259.0 229.0 203.0 229.9
2*2 .0 233.0 267.0 269.9 270.0 315.0 36*.

0

3*7.0 312.0 27*.

0

237.0 278.0
28*.

0

277.0 117.

S

33 3.0 319.0 37*.

0

*13.0 *05.0 355.0 306.0 271.0 306.0
915.0 101.0 156.0 3*8.0 359.0 *22.0 *65.0 *67.6 *04.0 3*7.0 305.0 336.0
3*0.0 318.0 1*2.0 3*8.0 363 .0 *35.0 *91.0 505.0 *0* .0 359.0 310.0 337.0
360.0 3*2.0 *06.0 396.0 *20.0 *72.0 5*8.0 559.0 *63.0 *97.9 367.0 05.0
*17.0 391.0 *19.0 *61.0 *72.0 535.0 622.0 606.0 308.0 *61.9 390.0 *32.0

Figure F-la

Example program and data using AIME
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ARIMA Forecasting,

A I N »» OSSA "

6

••C 6*A*
e

e OfiONSTMTI Al BE USINS SINGLE EtfCISION VEtSIO* OE STAt»AC
C »UH ON CT8E» 180/840.
C

C OUT tuT UNIT IS 8 (AUTO»lTK»UT EOUATED TO ERE T*t E 6 ON CTBEIS)
C tSEE CHAtTIt l, SECTION O.AJ
C

C 9.8. OEClAtAYIgN OE v ANO »At nusT BE Chanced To DOUBLE ••ECISIPN
C 1 E DOUBLE B*EC IS I ON VEISION OE ST At E ac IS USED.
C

INTfSE# NSt«C(A,5)
•E*L v(200). t At ( J

)

DOUBLE ttECISION 0STAM8000)
c

CONNON / CSTAK / ostak
c

C OEEINI VAt I able S to* VAtlOUS 0 I*ENS IONS
c

LOSTak e 9090
c

C *E AO NUNBEt Of EACTOtS IN n<J0EL
C VALUES OE t, 0, 0 ANO S E 01 Each EaCTQC
C NUNBEt OE t At A "E TM J

C VALUES E Qt EAt ANfTEtS
C NU«8Et OE rtSEtVATIONS
C OBSItVEO Situs
c

t

f

ao loo , ne ac
•E AO KO* UNSEEC(I»JI» i«i.4i» j*i,neac>
•E AO 100* NEAt
BEAD 101, (EAtCII, I«l,NEAtJ
• I AO lOOt N
bead 102 * <vm* i *i# n i

c

C CO-EUTE LOS OE CATA
C

DO 10 I • 1, N

raj • ALOsmin
10 CONTINUE

•BINT TITLE AH C CALL A 1*8 TO *|tEOtN aIINa eoiecaSTINC ANALYSIS

vtfTf ( 8, 101)
CALL A I "E (V, N, *S»EC, NE AC » *At * NEAt, LDSTAO

STOE

EOtNAT STATENfNTS

106 EOtNAT (415)
101 E08NAT (12E4.1I
102 e Dt *AT (12E4.3)
103 EOtNAT CHESULTS OE STAtEAC AtINA EOtECASTINS SUBtOUTINE AlNf«)

END

9 aTa 8 2

9 1 1 1
0

3

1 1 12

0.000 0 . 3<»5 0.615
144
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149.0 150,0 1 ? 8.3 163.0 172.0 17 8.0
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346 .

C

318.0 362.0 348.0 163.0 415.0
3 * 0.0 342.0 406.0 306 .

C

420.0 472 .0

417.0 301.

0

419.0 461.0 472.0 535.0

Figure F-2a

148.0 141.0 136.0 114.0 104.0 118.0
170.

0

1 TO .0 158.0 133.0 114.0 140.0
1 *9.0 199.0 184.0 162 .0 146 .0 166.0
230.0 242.0 209.0 191 .0 172.0 1 «4.0
264.0 272.

0

237.0 211.0 180.0 201.0
302.0 293.0 29B.O 229.0 201.0 224.0
364.0 3 *7.0 112.0 274.0 237.0 278.0
* 11.0 403.0 395.0 106.0 271.0 306.0
465.0 4 * 7.0 *04.0 347.0 105.0 116.0
491.0 505.0 *04.0 354 .0 110.0 > 37.0
548.0 559.0 463.0 407.0 162.0 405.0
622.0 606.0 508.0 461.0 390.0 432.0
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Appendix A

CONTINUITY OF VERTICAL PLOTS
ON THE CDC CYBER 840 AND 855

Normally, a line printer will automatically provide margins at the top

and bottom of each page causing a break in the continuity of a vertical plot
extending over two or more pages. However, these automatic page-ejects
within a vertical plot can be suppressed by the user on many systems. On the
CDC Cyber 840 and 855 model machines this would be done by printing a Q
carriage control in column one immediately before the call to the vertical
plot routine. Printing an R carriage control will cancel this effect. For
example, the sequence

WRITE (6, 100)

100 FORMAT (1H1 ,
23HTITLE FOR VERTICAL PLOT)

WRITE (6, 101)

101 FORMAT (1HQ)
CALL VP (Y, N)

WRITE (6, 102)

102 FORMAT (1HR)

will produce a vertical plot beginning on a new page, without any breaks in

continuity and without affecting the automatic page-ejects in the rest of the

output. Users of other systems should consult their Computer Center staff for
any equivalent method available.
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Appendix B

WEIGHTED LEAST SQUARES

Weighted least squares can be used to eliminate observations from the
analysis and to compensate for unequal variances in the observational errors.

Observations can be eliminated from the analysis by using weight values
consisting only of zeros and ones. This will produce the same results as

performing an unweighted analysis with the zero-weighted values removed except
that the predicted values, the standard deviations of the predicted values,
and the residuals of the zero-weighted data are computed. There are two main
reasons for weighting observations zero. The first is to obtain the predicted
values and their standard deviations for a set of independent variables not

included in the observed data. (This is done by assigning any arbitrary value
to the dependent variable of the desired set of independent variables, and

then weighting these values zero. ) The second reason is to allow easy
examination of the effect of outliers and influential data points. Outliers
often appear as large values in residual plots. Careful checking of the data
often leads to confirmation that the data are in error, and sometimes to a

correction. When a cause for suspicious data cannot be found, it may be
advisable to compare the analysis with and without the questionable data.

Caution is in order if the estimates or conclusions are highly sensitive to a

small amount of suspicious data. Data that have a very high influence on a

fitted curve may not result in large residuals, however, even if they are in
error. In fact, extremely influential observations may force the fitted curve
to be very close, leading to very small residuals. It is therefore desirable
to identify influential observations and to compare the results obtained with
and without these points. Several methods for detecting influential
observations are discussed in Bement and Williams [1969] , Cook [1977] ,

Hoaglin
and Welsch [1978], and Belsley et al. [1980].

Using weights to compensate for unequal observational error variances is

not as straightforward as using zero weights to eliminate observations from
the analysis. When the variances of the observational errors, e^, are not
equal, the unweighted least squares estimates remain unbiased but do not have
minimum variance. Minimum variance estimates are obtained by using weights
wt^ = 1/Variance [e ^ ] when the error variances are known . If weights must be

estimated, they should be based on at least 10 degrees of freedom [see Bement
and Williams, 1969]. In practice, however, weights are derived from theory,
or obtained from the data being fit, and either of these methods can do more
harm than good. When the need for weights is suspected and the error
variances are not known, first fit the data using unweighted least squares;
analysis of the residuals may confirm the need for weighting and may also
provide estimates for the weights themselves. If the need for weights is

confirmed, then a statistician should be consulted to assist in selecting the
weights and in interpreting the results.
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Appendix C

ESTIMATING THE NUMBER OF RELIABLE DIGITS
IN THE RESULTS OF A FUNCTION

The number of reliable digits, p, in the results of a real valued
function, g(B), can be estimated in most cases by evaluating

p = -log 10 ( { 1
g( B

J ) - [a + j»b] 1} )

j -—2 , ...

,

2
|

g

( B ) |

where

B 3 is the vector of the NPAR parameters of the function given by,

B^(k) = B(k) + B (k)« j « io"( DIG1TS/2) for j
= _ 2? 2,

and k = 1 , . . . ,
NPAR,

where

DIGITS is the number of decimal digits carried by the user’s computer
for a single precision value when the single precision version of

STARPAC is being used and is the number carried for a double precision
value otherwise.

2

a = (0.20). I
g(0J).

j=-2

2

b = (0.10). I j. g(0J).

J—

2

This procedure may underestimate the number of reliable digits if g(6) is

extremely nonlinear. A more elaborate and more robust procedure is described
in Gill et al. [1981].
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