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ABSTRACT

The absence of body force and the natural orientations of two phase-
gas-liquid systems in space produce major differences between liquid fuel
transfer in space and that on earth. A vortex-induced, liquid handling
process adapted to two-phase fluids in zero gravity has been analyzed for a
selected range of fluid and flow parameters. This transfer process has been
divided in two stages: the initial "spin-up" stage and the liquid "pump-
out" stage from the "sender" tank. The initial spin-up stage is established
by tangential fluid injection. The model is based on a two-phase, two-fluid
continuum with severalrphase interactions - namely fluid drag and pertinent
virtual mass effects.

A computer program was developed to study the fluid dynamical behavior
of two-phase fluids in the sender tank. Several examples are given to
demonstrate the products of the program. The interesting and plausible
results indicate the simplified two-phase, two~fluid model is a very useful
one. However, detailed evaluations of the results are only possible with
accurate local measurements. These verifications should be devised and
carried out to check both the formulations selected for phase interactions

as well as the results predicted.
Key Words: Fuel transfer in zero gravity, gas-liquid separation, numerical

modeling, rotational flows, two-phase flows, vortex motions,

vortex-induced phase separations.
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1. Introduction

This work is mainly concerned with liquid fuel transfer in space, i.e.,
in zero gravity. A number of concepts for liquid transfer between "sender"
and "receiver" tanks in a zero-gravity environment have been proposed [1].
All of these are concerned in part with the problem of collecting the liquid
phase and feeding it to a pumping unit while providing for the return of
gases from the receiver tank to the sender tank. The major difference
between the fuel transfer in space and that on earth is fhe absence of body
forces In space. Thus, there is no natural orientation of the liquid and
vapor-in a tank.

The transfer of fuel by pumping requires separation of the liquid and
gas. The basic requirement is to orient/collect the liquid to be
transferred in the sender tank and to provide the vent system in the
receiving tank to prevent excessive liquid loss. Depending on different
situations, there are several techniques used to separate liquid from gas in
order to optimize the transfer process. |

Positive displacement, linear acceleration, tumbleée acceleration, roll
acceleration, centrifugal fluid motion, dielectrophoresis, aéoustic, and
magnetic forces, and surface tension, étc. are the most common techniques
referred [1]. Each technique has its own shortéoming. For example,
rotation of the entire vehicle and receiver was not considered practical due
to adverse dynamic effects and changing center of gravity while
tPansr’erring. Rotation of the tankage within the vehicle was not desirable
due to the requirement for stationary to rotatidnal connections. An
alternative to the roll adceleration method is to create a centrifugal

Wotion in the fluid while holding the vehicle system stable.



Fluid rotation can be.provided by various mechanical systems or by
fluid injection. The main disadvantages of mechanical systems are their
requirements for motor drives and potentially higher residual weights (e.g.,
long diameter paddles that would sweep liquid away from‘the wall while short
diameter paddles might not be effective for partially filled tanks).
Therefore, in this report,-fluid rotation created by fluid injection is
considered.

The centrifugal forces created by vortex motion have been used for
various separation applications. The hydrocyclone used to separate solid
particles via specific gravity differences is a very economical hydraulic
device with no moving parts. However, some basic questions are:

(1) Can a vortex motion be used practically to orientate the fuel
location for fuel transfer in zero gravity?

(2) If so, can it do the job more effectively than other methods?

To answer these questions, one requires a more complete understanding
of the hydraulic characteristics of two-phase vortex motion. Normally the
residuals are dependent on the volumetric, pump-out flowrate from the
tanker. Intuition suggests that one should set a desirable acceleration
level for pump-out, select the optimum flow rate and control this flow rate
toward the end of thé transfer time. The basic approach is to determine at
what rate the fluid must be rotated to insure liquid at the wall. Thus, it
is desirable to properly describe thé pertinent flow processes and to
produce the proper set of equations that can be manipulated and solved to
give the necessary answers for design purposes.

To help in answering the above questions and to provide design
guidance, we have developed a physical/mathematical model for the fluid

dynamical behavior of liquid-gas flow in a cylindrical tank at zero—-gravity.




The general objectives of the study are: 1)_to develop a computer model for
a two-phase vortex motion at zero-gravity; 2) to study fluid dynamical
behavior of the two phase in the sender tank; 3) to provide a mathematical
framework containing the essential physical mechanisms on vortex induced
phase-separation; 4) to provide quick/easy sensitivity tests on various
parameters; and 5) to provide guidance for the design and testing of MIST
(Mechanically Induced Settling Technology) transfer systems, and their

scale-up to appropriate sizes.

2. Transfer Concept and Mode of Operation

The MIST Transfer Concept recently proposed by KSC-NASA uses fluid
induced rotation (vortex motion) to establiéh an annular region of the
liquid phase adjacent to the walls of a c¢ylindrical tank.

Figure 1 presents a simplified diagram of the MIST Transfer Systemn.
Initially, the gas and liquid phases in the sender tank are arbitrarily
distributed. During the start-up stage, the liquid will be centrifuged
outwardly while the gas will move radially inward. The time required to
reach_continuous liquid transfer will vary depending upon the initial
distribution of phases. To provide for~optimum operation of the MIST
transfer system and reliable‘design and scale-up, the fluid dynamical
behavior of tﬁe fluids in the sender tank must be properly modeled. 1In this
Work, the objective was to estimate a characteristic measure of this time,
but no attempt was made to~model the detailed fluid dynamics during start-
up. ’

Optimum performance, in the sense of minimized pumping time, may
require interactive control of the overall pumping rate. Ideally, the flow

In the sender tank is divided into two regions. A central gas core-defined



by a single gas-liquid interface is surrounded by a 1i§uid annulus
containing a dispersed gas phase. Sufficient vortex rotation in the sender
tank must be maintained to provide the radial pressure gradient necessary to
transport the gas bubbles from the wall regioh toward the interface and the
liquid from the tank core region toward the wall. If the rotation is too
weak gas bubbles will be drawn into the MIST unit along with the liquid. oOn
the other hand, intense rotation produced by a high pump&ng rate could
produce a sufficiently high speed injection rate that the injected fluid
will travel along‘the wall directly to the MIST unit collection point. The
optimum pumping rate can be determined by modeling the flow in the sender

tank during the continuous stage of operation.

2.1 Early Transfer Concept

During the early stages of this study, a slightly different operational
mode was proposed. In this mode, the vortex motion was established and
maintained by tangential gas injection at the wall as illustrated
schematically in Figure 1. Interfacial momentum transfer from the gas phase
to the liquid phase was the principal mechanism sustaining the bverall
annular vortex flow pattern illustrated in Figure 2.

The transfer process was controlled by the MIST unit illustrated in
Figure 1. Two stages of operation could be identified. During start-up,
the MIST unit drew an initially arbitrary mixture of liquid and gas from the
sender tank, separated the phases, sent the liquid phase to the receiver
tank, and returned the gas phase to the sender tank through the tangential
injection system (MIST unit). The returning gases initiated rotation of the
tank contents. Once the annular liquid region shown in Figure 2 is

established, a valve closed in the gas return line of the MIST unit and

L




liquid was continuously transferred by the MIST unit to the receiver tank.
During this continuoﬁs stage of operation gas, displaced by the liquid in
the receiver tank, was transferred to the sender tank through the tangential
injection system and sustained the vortex motion.

After preliminary study established a general understanding of the
overall flow mechanics, i.e., the integral momentum balances involved, the
conclusion was drawn that this early transfer concept should be somewhat
modified. The modification made was mainly in procedure rather than in
hardware.

Conceptually, the problem with driving the liquid vortex with an
incoming stream of vapor and extracting a stream of (mostly) liquid is that
more angular momentum is being withdrawn from the tank than is being
introduced. This is due to the large density difference between the two
Streams. The overall decrease of angular momentum will cause the vortex to
slow down, increasing the likelihood that gas bubbles will bgvdrawn into the
outlet stream. Though the flow in the tank is complicated, it would seem
likely that the rotating flow could not even be initiated using this
approach.

Although the incoming angular momehtum can be increased by modifying
the inlet nozzle geometry, an extreme difference in the nozzle geometries
would be required to maintain a constant angular momentum due to the 1a;ge
density difference between gas and liquid phases. Additionally, viscous
losses will further increase the loss of angular momentum. Loss of angular
momentum in the tank will generally result in a decrease in angular
Vélocity. Thus, the radial pressure gradient, and therefore the centrifugal

force .on the liquid will be reduced.



2.2 An Alﬁernative Mode of Operation

As the result of the general conclusion drawn above, a somewhat
- modified modé of operation was proposed. Instead of the single continuous
process of injecting gas into the'tank while liquid is being pumped out, a
two-stage operation may be employed. The first stage - the start-up stage
(Figure 3), would return all fluid - liquid and gas that is, pumped from the
outlet — back to the inlet. The greater density of the injected fluid
would alléviate the momentum loss discussed above and permit the vortex to
“develop.  Eventually, vapor bubbles would migrate to the core of the tank
and only liquid would be passed through thé pump. When the vortex has
sufficient strength (or when a balance of pumping gains and flow losses
exists) and a certain phase separation has been achieved, the liquid can be
pumped to the receiver tank (Figure 4) and vapor returned to the sender tank
(but to the core, not to the perimeter). In this second stage - the pump-
out stage, as the liquid is withdrawn, the vortex will lose strength, but
since the vapor returns to the core, there is a much reduced risk of
entraining bubbles in the outlet until the vortex strength is nearly spent.
A conceptual sketch of how the two-stage "start-up" and "pump-out"
model might operate is shown in Figure 5. Schematically, the time
evolutions of the vortex strength and the degree of phase separation of the
two-stage operation concept are plotted on an arbitrary ordinate scale for
the purpose of describing the concept. The definitions and the magnitudes
are entirely arbitrary. Nevertheless, the vortex strength can be thought of
as the total angular moemntum of the fluids in the tank, whereas the degree
of phase separation can be thought of as the liquid volume fraction near the
port from which liquid will be withdrawn. Other definitions can also be

found in the section on numerical results. Initially, (i.e., at t = 0) the
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system is shown to have zero vortex strength and an arbitrary level of phase

separation. During the start-up stage, (0 < t < t*) due to fluid injection

action, the vortex is growing and its strength is increasing with time. The

radial pressure gradient produced by the vortex motion will promote fhe
light gas to move inwardly and the heavy liquid to move outwardly and the
degree of phase separation is thus Increasing with time. As the vortex
motion reaches a sufficient strength, additional injection action may no
longer be very effective because higher velocities would be required. At
this time, the injecting action can be either reduced or stopped. 1In the
mean time, the separation process continues because of the existing vortex
motion. Once the degree of separatioﬁ has progressed beyond the critical
value, (e.g., at time = t*), the pump-out stage, in which the liquid
transfer from the sender tank to the receiver is done, can be started.
Critiecal sepgration levels (as one being shown in Fig. 5) can be determined
according to various criteria. As the pump-out (transfer) stage proceeds
(t* < t < t*¥¥), the vortex strength will decrease by virtue of the liquid
being pumped out from the annular layer at the cylinder wall and the degree
of separation can either increase or decrease depending on the strength of
the remaining vortex and the pumping cénditions. When the degree of
Separation reduces to the critical phase separation (e.g., time = t*%*), the
transfer is no longer practical due to the small volume fraction of liquid
being able to be transferred, and the transfer process stops. The liquid
residual in the sender tank when the transfer is stopped is another design
Parameter and should be made as small as possible. It can sometimes be

reduced by increasing the vortex strength and/or by decreasing the pump=-out

rPate,



As discussed above, a two stage operational mode is proposed in this
study. Figure 6 shows the configuration of the modified two-stage MIST
Transfer System. During the start-up stage, Q2 = Qu = 0, and Q1 = Q3. That
is, all fluids withdrawn ére returned to the sender tank. The flow dynamics
in the sender tank during this stage are those of the pertinent two-phase
flow situation. This stage is employed to develop an active vortex such
that the separation of liquid from vapor bubbles can be initiated and
ultimately achieved. In the transfer stage, Ql = Qé, Q3 = Qu = 0 and the
flow could be treated as a single phase-liquid, pump-out problem. To insure
an optimal liquid transfer, a sufficiently high degree of phase separation
during the pump-out stage needs to be maintained. For some cases, if the
vortex loses too much strength either due to a large pump-out rate or due to
friction during the pump—-out stage, a small amount of the pumped liquid, Q3
ébuld be recirculated back to the sender tank to maintain sufficient vortex
angular momentum. Also, any gas, Qu piéked up and separated by the MIST

unit will be sent back to the core.

2.3 Start-Up (Spin-Up) Stage

During the start-up period, since all fluid pumped out is returned to
the tank, the mass of fluid inside the tank remains unchanged. However, due
to the action of the external pump and its injection action, the total
angular momentum {or vortex strength) is increasing with time. Since a jet
at a larger radial location produces a larger angular momentum for the same
linear jet‘speed, the inlet nozzle should be located near the perimeter.
Also, since a @ixture with a higher liquid volume fraction has higher mass

density thus producing higher angular momentum, the outlet nozzle should
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also be located near the perimeter where a higher liquid volume fraction is
expected.
Referring to Figure 6, the net change of angular momentum (or vortex

strength) of the system due to injection action can be estimated by

daM

a
a‘t—‘ = R(m3Vj “‘ le),

where R is the radius of the tank, mi is the mass flow rate at the port
location i, V is the vortex speed, and Vj is the injected jet speed. Thus,
as expected, in order to increase the vortex strength, the Jjet speed should
= m,. In fact,

1 3
unless the jet speed is larger than the local vortex speed, the angular

be larger than the vortex sSpeed, i.e., Vj > V since m

momentum of the systém will normally decrease with time and the desired
rotational motion could not even be initiated. This is due to two facts.
First, during this period, it is expected that the lighter vapor bubbles
would migrate to the core of the tank and the average density near the wall
Will increase with time. Thus, a slight time lag for the mixture to get to

the inlet nozzle from the outlet nozzle normally implies m, < m.. Again,

3 1
this means more angular momentum is being withdrawn from the tank than is
being introduced if VJ = V. Secondly, fluid viscosity will further reduce
the total angular momentum of the system. )
Some characteristiec features to be noted during the start-up stage can
be summarized below:
1) The fluid is a two-phase one -~ where each plays a significant role;
1i) A1l of the fluid mixture which is pumped‘out i3 returned to the
tank (Ql = Q3, Q2 = QM = 0);

111) Both inlet and outlet nozzles are located near the tank perimeter;



iv) The injected jet speed should be larger than the local vortex Speed

to increase the net angular momentum.

2.4 Pump-Out (Transfer) Stage

After the vortex has sufficient strength and the spin-up time is
sufficiently long, the separation of liquid and vapor can be established
according to specified critegia. At this condition (i.e., t = t¥*, see Fig.
5), the liquid forms an annulus against the wall of the tank and around a
core of vapor, and the second operational stage, the transfer stage, can
begin. 1In this, single phase liquid, Ql'can'be pumped out from the tank
perimeter, and vapor from the receiver tank returned to the center core of
the sender tank, see Fig. 6. During this process the total angular momentum
will decrease. To maintain a reasonable vortex strength, a small amount of
high speed liquid, Q3, could be pumped in at the perimeter. Thus, the
transfer stage is mainly a single-phase flow with a central vapor core.

Some characteristies of the transfer stage are:

i) There is an interfacial radius Rc between the vapor core and the
liquid annulus; gas is present only for r < RC; liquid is present only for
r'>Rc;

ii) Inlet vapor flows into the center core and outlet liquid flow, Ql
occurs at the tank perimeter;

iii) If needed, a small inlet liquid flow, Q3 can occur at the tank

perimeter with an inlet jet speed Vj >V

10
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' d 2
iv) Qu = 0, and transfer rate Q2 - It (m Rc )
Q
2 [ ™2 2
or Rc = J P dt + Rco

where Rco is the initial interfacial radius of the transfer stage.

v) Total angular momentum in tank Ma is

R R
¢ r2 Vdr + p [ r2 V dr]
2JR

(
Ma = 2w[pl ]
° e

and also

™,
3 = PR (Q3VJ - QlV)

If, Q, = 0, and V = rw, we have

3
Tw 4 4
M=z [(pl py) Ry * #oR ]

and
M
a 2
dqT = PR Q)

Thus, we have
2 2
2 Ql [(pl 92) R, *+ o R ]

w
w [(pl - 92) Rz + szu] T
2 2
" s {t Ql[(pl - 92) Rc + p2R ]
ln(;—) == 7 ] m m dt
o o (pl - p2)Rc + p2R

1"



Since pl << p2, the vortex velocity becomes

2
" > [ t Qldt f RC dRc
zn(;;) I J (R2 + R 2) " JR RZ + R 2
° c co e
t
W R2 + R 2 2 f Q, dt 2
0 co Jo M1
;'=(2 2)=[1+ 5 2]
R™ + R m (R™ + R )
c co

This equation describes the decrease of the angular velocity of the vortex
as the transfer is taking place.
The pressure at the tank wall Pw is another‘important quantity. It can
be estimated in the vortex flow where the radial velocity is much smaller !
than tangential velocity. Integration of pressure gradient equation ap = ;

ar i
pvm2 gives

w 2 2 2
P, =P *53 [lec + p,(R R, )]
b 0°
2 2 :
= Pc+ 5 (R R 7) if py << oy
2 Q,dt ( tQ,at -l
Yo Po 2 2 [ % Jo ™1
=P + (R - R_“ - ) [1+ ]
e 2 co J 2 2)
ﬂ(R * ROO

where Pc is the pressure at center core. If Pc is kept constant, the wall
pressure Pw will decrease as the transfer stage continues. It is also noted
that the viscous stress on the cylinder wall will further decrease the
vortex strength w, and thus reduce further the wall pressure. Reduced wall

pressure implies the pump will have to pump harder to withdraw the liquid.
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3. Modeling of Start-up Stage

The physical/mathematical model for the start-up stage will be based on
the two-phase, two fluid continuum hypothesis. The work considers the flow
in the sender tank to be épecified by the tank geometry, fluid properties,
nozzle geometry and the overall pumping rate (the volume flow rate of the
mixture in the tangential injection system). The flow in the sender tank is
assumed to be two-dimensional with no flow and no gradients along the length
(axis of symmetry) of the tank. The fluid injection system is modeled as a
direct line source for tangential injection and fluid withdrawal is modeled
as a line sink. Although the cryogenic fluids 6f most interest in space
operations exhibit significant interfacial mass transfer, the fluid motion
is driven principally by the interfacial momentum transfer from the injected
fluid mixture to the fluids in the tank. Therefore, our analysis assumes
Zero interfacial mass transfer as would be closely approximated by an air-
water system. Both phases are assumed incompressible. Surface tension
between the fluids is assumed to be negligibly small compared to the other

interfacial forces.

3.1 General Formulation

The two-fluid or separated flow model is one of several classes of
Possible approaches to the analysis of two-phase flow [2]. It is based on
8eparate conservation equations of mass, momentum and sometimes energy in
two-phase flow for each phase. This model seems to be especially suitable
for the uniformly dispersed two-phase flow. Various forms of the system of
@quations for two-fluid two-phase flow may be found elsewhere [3-9]. Many
of these are obtained via postulating macroscopic qualities without

reference to microscopic relations; others are formulated more rigorously

13



and systematically by averaging the microscopic equations. Some of these
are good only for special cases and are more practical; others are more.
general but are usually too complicated to be practical. Nevertheless, all
of them seem to have retained the expressions for the phase interactions,
i.e., additional source terms or closure laws.

The basic time-dependent fluid dynamical equations consist of averaged
equations of motion for each phase, and two continuity equations written in

terms of the volume fraction. Here we will give briefly the formulation of

the system equations. For a detailed review of this formulation, the reader

is referred to the paper of Drew [6].

In the interior of each phase, the equations of motion are

7 =0 (1)

and

— ——

At V.p, VWV =V. T, * 0B (2)

At the interface, jump conditions are written via conservation of mass and

momentum as

Lo, (Vo -V.)).n=0 (3)
K
and
i[pkvk (Vk - Vi) - Tk] . n = oxkn (w)
Here p is density
V is the velocity
14
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T=-pI+ 1 is the total stress tensor

p is the pressure

T is the extra stress tensor

I is the unit tensor
B is the body force density

Vi is the interfacial velocity
o 1s the surface tension

¢ is the curvature of the interface

n is the unit vector normal to the interface and the subscript k =1
and 2, denotes gas and liquid phases, respectively.

Although the equations in the interior of each phase are well known,
the interface conditions between two phases are quite complicated. That is,
the essential difficulty in the two-fluid formulation comes from the
presence of moving interfaces and the interfacial mass and momentum
transfers. When one considers the local (microscopic)'flow properties, the
shape and velocity of the interfaces is not known a priori. Due to the
00mplication of the detailed interfacial properties, solving the local
instant variables of the flow field based on the system of equations in the
interior of each phase would result in an intraétable (and thus - hopeless)
multi-boundary problem except in the most academic examples. Thus, as in
the field of turbulence, the method of the averaged process isyadopted to
study this complicated two-phase flow.

Referring to Ref. 6, the averaged equations can be written as

a, +a, =1 (5)

15



. o
W*V.akvk=0 (6)

and

Mk - o

%P 4t @, Vpk + V. @ T * akpkB * M (7

with
Ml t M, = 0 (8)

and

de avk

§
(32
[
@
f'l
+
|
X
<J
<5
x

is the total derivative of the velocity Vk.

Here, all the quantities are referred to as the averaged macroscopic

is the volume fraction, ? is the total effective extra stress

values, a K

k
tensor, and ﬁk is the effective interfacial force density of the k-phase.Eq.
(8) merely states that the interfacial forces with opposite signs in the
momentum equations balance between the separate phases. That is, the
interfacial force is just an interﬁal force for the mixture and will not
appear in the equation of motion for a mixture. Thus, from equation (7),
the mixture momentum equation is

dv -
i N -Vp + ¥V . (i o, xk) + I a

where the interfacial force has been eliminated.

kpkBk (9)

In order to obtain the averaged system of equations several assumptions
have been made. Among those are:

i) Constant physical properties for each phase, i.e., LI are

Mg
constant.
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1i) Each phase is treated as an incompressible fluid and there is no
pressure jump inside each phase.

i1ii) No phase change between phases, i.e., there is no interfacial mass
transfer.

iv) Neither heat transfer nor thermodynamics is considered.

v) The physical/mathematical model is based on the two-phase continuum
hypothesis. The initial approach is to assume a bubbly flow regime.

Furthermore, the surface tension (or the contact pressure) is
neglected, and theré is no pressure difference between the phases. Thus,
only one pressure variable is all we need, and equations (6) and (7), with

Py = Py = P

describe the system dynamics provided the variables -t-k and ﬁk can be

expressed in terms of the local state variables.
Our averaging process eliminates complex formulations for the
microscale fluctuations around the bubbles or droplets. This process has

lumped the effects of the interfacial interactions between phases into the

effective stress tensor ?; k'

order to properly model a two-phase flow, the constitutive equations for the

and.the effective interfacial force, M In

averaged stress tensor T,

"and the interfacial force density M need to be

k k

given.
= —

and M, could be functions of various parameters,

In general, both K K

av,
Such as P My Vk’ dk, T etc., in a very complicated way. In

modeling the averaged stress tensor ?k, an analogy in certain aspects

17



between single-phase and two-phase flow is assumed. As given in Refs. (6,

10), the stress tensor due to fluctuations, ?k is modeled by the effective

viscosity and the mean deformation tensor as

t : e — —
T, = 2 (uk * o ) Dk= My (vvk + VkV) (10)

where Hyes ukt and ukez o, o+ t are the dynamic viscosity, the turbulent

k Mk
eddy viscosity, and the total effective viscosity, respectively. Although
there are several models for the eddy viscosity for single phase flow, few
correlations for the eddy viscosity in two-phase flow can be found in the
literature.. In reference 10, the fluctuations of the turbulent velocity,
and thus the turbulent eddy viscosity ukt, in two-phase flow had been
assumed to be due to two distinct mechanisms: (1) momentum eXxchange of the
liquid phase, and (2) movement of the dispersed phase. A proper modeling of

the total effective viscosity uke in a complex two-phase flow requires

further study. In this report a constant effective viscosity is assumed.

The modeling of the interfacial force density ﬁk is much more involved
because the interfacial forces which result from the averaging process are,
in general, véry complicated. Many investigators [4, 9, 11-15] have devoted
considerable effort to define or model these interactions. The most common
effects included are the classical drag forces, the forces due to the
relative acceleration or the so called added mass forces, the lift forces,
the Basset memory forces, etc. Here we assume that the.interface forces are

dominated by the classical drag and added mass terms as:

(V, - V.) (11)

M, = A (V > 1

4
1" %2 N a dt
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the first term represents the classical drag forces and the second term is
the force due to the relative acceleration.

With the aid of the constitutive equations (or closure laws) for the
total stress (eq. 10) and for the interfacial forces (eq. 11), equations
(5), (6) and (7) now describe the system dynamics of our two-phase, two

fluid problem. The nine equations provide a set of equations in the nine

variables Vk (6 variables), a, (two variables), and p. They are thus the
equations required to provide a mathematical description of the two phase
flow system in terms of local mean variables.

From equations (5) and (6), an important incompressible condition is

obtained

IV.a V =9V.L (qV) =0 (12)

Equation (12) is analogous to the important condition of V . V = o for

incompressible single phase flow. It should be emphasized here that in a

two-phase flow, the condition of V . Vk = 0 is no longer true even though
the fluid is assumed to be 1ncqmpressible for each phase (i.e., Py =
constant).

The equations of the two-phase model are coupled by the interface
forces, Although both the drag and added mass forces are providing the
Coupling effect between the phases, the inclusion of the added mass in the
Interfacial forces make the momentum equation behavior much more
Complicated. This is because the effects due to these two forces are
80mewhat different. In regard to the system of differential equations, the

drag force is just an algebra term and does not alter the characteristic of
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the differential equations; whereas the added mass force involving the total
derivatives does modify the characteristics of the differential equations.

By substituting the interfacial forces, eq. (11), into equation (7), we

have

v, - _ - v, dV,
P18 gg = TP VT tagpg By - Ay (V) - V) - A (T ) (13)
and

av, - _ _ av,  dv,
P05 FE = ~a2Vp + v, a,T, * a2p2B2 - Ad (V1 - V2) - Aa(ag— - ag-) (14
where

dét) = aét) +V .V ( ) is the total derivative operation.

Since the addition of the added mass terms has modified the
characteristics of the equations, the method of solving the system can be
modified correspondingly. Before solving the new system of the differential
equations, it is logical to seérch and rearrange the dynamic equations (13)
and (14) into a more convenient form. An additional motivation to search a
new, more generalized form stems from the important continuity condition of
the two-phase flow, eq. (12).

We can rewrite eqs. (12) and (13) as:

cﬁil dVZ - _ -

(pla1 + Aa) Tt A g < ale + v, a Tyt a0 B - Ay (Vl - V2) (15)
dTi2 dV?_ - 3 o

(92a2 + Aa) Tt Aa rrthi aZVp + v . a,T, * a2p2B2 - Ad (Vl - VZ) (18)
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Thus from Eq. (15) x (pya, + Aa) + Eq. (16) x A, we have

dav
1
Loy, + A, (pyog+ pp0y)] 5= = = (ayayp, + A )7

T. + a.p.B.)

*lpay + A) (V. ayT) + a0 B

(17)

= P04, (Vl - V2)

and from Eq. (15) x Aa + Eq. (16) x (pla1 + Aa) we have
dVé
Cojpompa, + A, (pyag+ pay)] = = = (ajayp) + AV
+ (plal + Aa) (v . a,T, * azsza)
(18)

+ Aa (v . a1y

B,)

t 015

+ plalAd (Vl - VZ)

Equations (17) and (18) can be written into a generalized equation as:

de 2 - _ o
T =" Cpk Vp + 251 Ckl (v . ATy * plasz) + Cdk (v, - V.) (19)

1 2
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where the generalized coefficients are

and

Also

c = (ala + Aa)/<02>

pl 2P2

C -‘(ala + Aa)/<p2>

p2 2P

2
Cll = (a292 + Aa)/<p >

2
012 = C21 = Aa/<p >

2
022 = (alp1 + Aa)/<p >

C /<p2>

a1 = T%aPohy

2
Cd2 = alglAd/<p >

k dt ot I

(20)

(21)

Thus, equations (5), (6) and (19) are the generalized system of equations.

generalized form of eq. (19) are the following.
equation is similar to the well known Navier—Stokés equation.

using eq. (19) and the continuity condition for two-phase flow, eq. (12), a

The major advantages of writing the momentum equations in the

22

First, the generalized

Second, by
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Poisson type equation for pressure field can be obtained. Thus, the
existing techniques can be used to solve this system of equations, and the
pressure field can be determined through the local independent variables.

To do this, taking the divergence of the sum of equations (19), we have

v. (alcpl + GZCpZ) Vp = -V V.3 akaVk
+V.zr [z @ Cpy (v . @ Ty * azszz)
k 2
* @, Cy (Vl - V2)] (22)
since
da, V
vV.:I —5%—£ = o0 from eq. (12).

3.2 Interfacial Force Coefficients

The modeling of the interfacial forces is one of the most challenging
tasks facing those involved with the two~phase flow problems. As discussed
before, the classical drag and added mass terms are the most common and
important contributions cited in the literature. Our discussion which
follows will be limited only to these two forces. In fact, even for these
elassical forces, there are various expressions used in the literature [4,
6, 9, 12, 14]. However, all of these expressions are developed and tested
only for dilute, two-phase cases.

Before modeling the interfacial forces, it is important to discuss the
average bubble or droplet size. The reason for this is that the two-phase,

two fluid model basically assumes the flow field to be in the uniformly
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bubbly or in the uniformly dispersed droplet flow regime and that the
interfacial forces are greatly dependent on the size of bubbles or droplets,.
The importance of the bubble sizes on the drag forces can easily bé seen in
the following discussion. To be more realistic, the average size, dk should
be allowed to vary in the flow field and in general should be functions of
various parameters including the local turbulence intensity, mixing, and the

volume fraction, ak, since all these quantities will affect the break-up and

coalesce of the bubbles or droplets. To discuss the volume fraction effect,

where n, is the particle (bubble) number density of phase k, we have o, =n

k k k
3 . - Y - 1-3Y )
ndk /6. And if dk a, (i.e. dk dokak ) then n, @, . Since one
might expect that both nk and dk Wwill increase as @ increases, we have 0 <

Y < 1/3. The size variations as functions of gas volume fraction, a., for Y

1

= 0.2 and d = d = 1 cm are shown in Fig. 7. Although these are the

01 02

typical values used in
easily be put into the
interfacial forces can

continuous liquid, the

the test runs, it is noted that other e¥pressions can
program. After having the size information, the
be modeled. For dilute bubbles dispersed in a

drag and added mass coefficients, A and Aa are

dl 1
generally expressed as [6, 12, 14]
3a,p
172 - =

Adl B udl p |Vl Vzl

and
1 3
Aay = 4P G+ 5 ay)

Here the bubble particles are assumed to remain spherical,

C, =24 (1 + 0.1 Re3/u

D + ...)/Re
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A ST

via the Oseen drag coefficient [11], where
pody [V -V, ]
u2m

Re = /a..

»and wy) = uy/a,

Here, d1 is the averaged diameter of the dispersed bubbles. If the Stoke's

drag is used (i.e. CD = 24/Re) then the drag coefficient becomes

18u.a
271
a1 5 (23)

which is independent of the velocity field. Also, since the upper bound of
the added mass coefficient should not exceed a292 which corresponds to
carrying all of the continuous liquid with the bubble during its

acceleration, a modified added mass coefficient is assumed to be

= + (2”)
1.3 P
1725 + 5 a) T2%2

On the other hand, if one considers that the two-phase flow consists of

liquid drops dispersed in a continuous gas flow field, a second set of the

Coefficients can be expressed:

. . 18 a, M,
dz2

(1-a /0.8)2d22‘

2
(25)

and
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Al = 1l 3 - (26)
a2 ayp, (3 + 3

where the maximum percentage of 0.8 for droplets in gas is assumed.

Now we have two sets of expressions for the added mass and drag
coefficients, but no existing criteria to determine which set of equations
should be used for a general two-phase flow problem. As a matter of fact, .
neither set of the expressions is expected to be good for the entire range g
= 0),

1
and Aal);

of volume fraction. For a dilute gas dispersed in a liquid (i.e. a

the coefficients should approach those of the first set (i.e. Adl

while for a dilute liquid dispersed in gas (i.e. a, » 1) the coefficients

1 %
should approach those of the second set (Ad2 and Aaz)' In general, the
value of a, could be any value between 0 and 1. Here we will model the ‘

1

coefficients by a weighting technique, and express the coefficient as

A=A

a al wal * Aa2 wa2 (27)

A, = A

a = Rar Yar R4z Va2 (28)

where w and w are the weighting functions to be selected.

al’ "a2' @1 d2

Normally, we set wal + wa2 = wdl + wd2 = 1 and all the weighting functions

are functions of the volume fraction al. In the model here, we choose

W, = e W =1 - W (29)
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Mz T R Wy = 1 - (30)

with n,=n, = y, \

Fig. 8 shows the dilute drag coefficients Adl and Ad2 and the modeling
drag coefficients Ad. Fig. 9 shows the corresponding added mass
coefficients. The modeling coefficients approach those for dilute

conditions as should be the case. It should be noted again that different

models for the coefficients can be easily adopted.

3.3 Equations in Polar Coordinates

Due to the nature of the problem, it is more convenient to write the
System of equations in polar coordinates. For a two-dimensional flow in

polar coordinates, some of the useful relations are:

a( )= 3() =
V() - ar T * rag @

_ p arC) a8 Yo

v. () - r or ¥ rae

r ér 00
V. () =I2 or Y T —
. [l ar( )re . 9( )ee ( )er] s
r ar ragé r
& f—-uaakv“w @V 7V (31)
k dt ot * Tkkk
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e 9
ork = M T 37 (Vge/m)

e
Toox = 2 M Vpk/T (32)
Thus, equations (6) and (19) become
@ *ta, =1 (5)
i
Bakr . arakvrk Bakvek . (33)
ot ar a0 ‘
3.V . r draV > daV V
%k % rk Skrkok _ 2 _ o .9
ot ar 30 kUBk k ‘pk ar
2 ora,T d9a,T
% rrd L red
Fh I G Tt T % Tgee" %Py Bpy
oy Cge v (Vo — VL) (38
oa, V  pr ora, V. V da, V 2
%k "ok fkrklok , ek L .o, L. . @
ot ar 38 k 8k rk k “pk 36
2 ara, T °a,T
L ref L 864
fh G T T T T MTren T %PeBee”)
* oo Cdk r (Vel - Vez) (35)
for Kk = 1 and 2.
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For the axisymmetric case, %e = 0, and we have

@ *ta, = 1 w (5)
Brak . arakvrk o (36)
ot ar
ara, V ara, V 2
kK rk krk _ 2 _ _ P
3t~ " ar % Vok %Cok T 3p
2 ara, T
L rrf
f ok % T %Te0r * %Py Bryl)
*a Cdk r (vrl - vr‘2) (37)
ora, V ora, V..V 2 ora,t
k' oK k'rk' K 2 reg
e ar A ekdek T % B ke TER Tt %Tren T %P P )
*a Cdk r (’Vel - VGZ) (38)

for k = 1 and 2. The incompressible condition of eq. (12) reduces to °1Vr1
+ 02VP2 = Qr/r, wWhere Qr is the net radial volumetric flow. 1In the start-up

stage, Qr = 0,

3.4 Initial and Boundary Conditions

Eqs. (33)=-(35) are the governing differential equations for the two-
Phase fluid motion in cylindrical coordinates under zero gravity conditions.
To completely define the system, we need to specify both the initial values

and the boundary conditions.
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The program was developed to accept arbitrary ipitial conditions. 1In
addition, a few classical initial velocity fields are also provided. All
these classical velocity fields have zero Eadial velocities, i.e. Vr = 0 and
their tangential velocities are:

1) Pure rotation

| Ve = ru
where w 1s the circular rotation speed.
2) Hammel-Oseen Vortex (H.O0.)
1.398 v
v, = —L2 (1 -

r
3) G. I. Taylor Vortex (G.I.T.) é

o-1.25643 re)

=2
v, =V el /2
0 p

In H.O0. and G.I.T. vorticies, r = r/rp, rp is the vortex core or the

location of the maximum velocity, and Vp is the maximum velocity. Also when

{

the classical vortex is used, the velocities for both phases are assumed to
be the same.

The specification of the initial condition is rather straightforward,
while the boundary conditions are much moré involved. In general, the |
mixture could be pumped in and out of the system in a very complicated way.
If determining the detailed flow field is the primary interest, detailéd
boundary conditions should be included. Here, we have tried to simplify the
situation somewhat and model the boundary condition via global effects since
only the global dynamical behavior of the two-phase flow in the tank is
expected to be useful from the modell For example, at the boundary location

(i.e. at the inlet or outlet nozzles) the pumped flow conditions are

specified by the average volume fraction of the fluid mixture @ , the

k)
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average pump volume density qJ, the average jet speed Vj’ and the effective
punp region, Hj = } hdR = hAR, where AR is the nozzle width, and h is the
effective jet penetration depth. For axisymmetric cases, h = 2mr. The
global_values of VJ and qJ could be estimated from pump fiow rate Q. and the

J

nozzle geometry as: Vj = QJ/AR, and qJ = QJ/HJ = Vj/h. Thus, the volume

source rate for the k—-phase at the nozzle location is

and the momentum flux density for the k-phase at the jet location is

- where n is the unit vector of the jet.

In general, these source terms should be added to the system of
equations at the nozzle location. That is, a volume source term of qu for

the continuity equation (33) and a generalized momentum flux density of

ra, I Ckl an for eqs. (34) and (35) should be added at the nozzle location.
%

Since the cylindrical boundary is fixed, the net inlet flow should be

zero,

L quJ = I QJ =0 (42)
The summation is taken over all the inlet and outlet nozzles.

In reality, a source or sink is arranged at the nozzle location.
However, during the start-up stage the mixture pumped out is injected
1mmediate1y back into the tank at the nearby location. The net volume or
mass in the system is effectively unchanged except for the net change on the
angular momentum. Thus, the pump system (withdrawal and injection) during

the Start-up stage acts as a body force on the mixture at the nozzle

1ocation. The net momentum gain during the start-up stage is thus the
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momentum introduced into the system minus the local momentum pumped out.
Therefore, we will model this pumping dynamic by body forces without

considering the mass transfer. That is, in equations (34) and (35),the body

force density akpkﬁk will be replaced_by the net momentum gain, ﬁk-akpkqjv
and
- - = akkaJ - =
@ p B r = akpkqu(vjn - V) = —5 (an -V (43)

will be assumed at the nozzle location. So the total net momentum gain due

to the pumping is

Q. (v.n - T) (4l)

( - -
§ i ] akpkvj (an V) dr = £ Py j j

J k

Besides the pump flow condition, the boundary condition at the tank wall is

also required. 1In general, a non-slip condition at the cylindrical wall

should be used, (i.e. V, = 0 at r = R). If the detailed flow field is not

k
expected to greatly affect the global phenomenon of the fuel transfer of the

tank system, the shearing stress at the wall could be simulated by a
momentum sink (a negative source) near the wall. For example, these wall

stresses could be modeled as

aVv
gk
Wk = %% B T % T (45)

T Kk Twk

is similar to a momentum sink at the wall, since ka < 0. The

= 0 at r = R) will

where 1
wk

condition of no radial velocity at the boundary (i.e. Vrk
be maintained. To avoid a numerical singularity at the origin, a finite
center core region was excluded from the analysis. At this inner boundary,

a free surface with no radial velocity will be assumed at all times.
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3.5 Numerical Method

Equations (5), (33), (34) and (35) comprise the system of equations for
an axisymmetric, two-phase fluid flow. The complete solution of these
complicated equations can only be obtained through numerical methods. An
improved Lax-Wendroff, two—steb scheme, (also referred to as MacCormack's
method) [16, 17, lBj 1s adopted for solving this time-dependent problem.
This non-centered differencing scheme, using a full step backward prediction
and forward correction version, requires no explicit artificial viscosity if
a proper stability condition is satisfied. Using this technique for solving
fluid flow problems is very efficient and has been in widespread‘and
successful use for some time. It is good both for the time-accurate
computation of steady and unsteady flow problems. The general features of
the scheme are: i) its explicitly conservative form, ii) it is a two-step
predictor-correction type, iii) it is three point, two level - that is, the
solution of fn+l at level n+l depends only on three values of fn at level n,

i i
and iv) it is second-order accurate in time and in space.

3.5.1 Equations Utilized

Since there are five independent variables (e.g., Vrl’ Vr2’ Vel’ Ve2
and al) for the system, only five independent equations are needed to define
the time dependent problem. The equations selected are one continuity
equation and four momentum equations. The final solution is thus to find
the correct pressure field so that the other continuity equation is
Satisfied. Also, the condition of equation (5), a *a, = 1l is used all the
timg.

For using the MacCormack's numerical technique, the system of equations

is eéxpressed in the conservative form as:
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wt = Fr + Pr + gGr + 8 (46)
Here the subscripts (t and r) denote partial differentiation with respect to
t and r, respectively, and W, F, Pr’ gGr and S are column matrices with five
elements defined as follows. The components of W are:
/ N
% Ve
% Vro
Wer la V. (47)
% Vo2
\al 0y
The components of F:
4 v 2 ~
% rl t
2
e Vr2
Fer tog Vg Vg (48)
% Vez Voo
{
* Vrl §
™~ /
The pressure components:
,
\
al Cpl
a, Cp2
-p 3P
P. roas 0 (49)
0
0
~ /
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The components of gGr:

g

G

’
a

ora. T

[c

1 11 ar

ora. T

a, [y —5¢

ara.t

fc

11 ar

ara. T

ay [Cyy or

and the components of S:

All the components of F,

the components of W which are

i [-v

a, [~y

81

ay L Voo + Cyor (Vg

rl

r2

*Cqat (Vg = Vg

2
Vr2

(v

81 dl 81

Vo * Cqor (Vgy

P
r

1l rrl

)

) +

-V

-V

lrrl .

1 rol .

1 rel .

4

T L=l

82

82

arazxrr2]~

%2 o

1712

ara.t

2 rr2

22

Braztrez

12 or

3ra21r92
12

or

2
Cig (agPeBrgr =

2
z

(a,p,B_,r -
L=1 L7 r

Coy

2
) + L

Cc,, (a,p,B.,r
oy 18 %2Pees

2
L
%=1

) * Coq (agpyBgyr

the independent variables.
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aztéel)J

)]

%.Te08

T % Treg,

T % Tren

)]

)]

’ gGP and S can be regarded as functions of

(51)



3.5.2 Numerical Scheme

One way to solve equation (46) numerically is to solve the pressure
field first from equation (22) then integrate equation (46) to obtain the
solution at the new time step. To ensure an accurate result, the solution
so obtained should be used as a check to satisfy both the continuity
equations in addition to the phase definition of @y + a, = 1. In general,
the continuity equations probably will not be satisfied by the solution due
to the numerical approximation. Thus, an iteration on the pressure fiel§ or
other treatment would be needéd to attain a desirable accuracy.

Another numerical procedure that has been used very extensively [19]
will be adopted here for our purposes. Basically, the procedure first

solves the equations with no pressure terms, then adds the pressure

correction back to the solution. Thus, from equation (46), we could have

WE o~ W n n n (52)
At = Fr * gGr + 8
and
T LA (53)
At r

where W¥ is the intermediate solution of W without pressure terms at the new
time step n+l, the superscript n and n+l denote the values at the initial
time and the new time steps, respectively, and the elements of Pr have the

similar format as those of equation (49), i.e.,
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b
f alel
aZCpZ
P w -p OP
Pr = -p " 0 (54)
0
;oJ

The overhead symbol " here indicates the corrected terms of the pressure
field. This is used to distinguish the pressure from those of the regular
time steps n or n+l.

From the continuity‘condition of equation (12), we have

W, + W_.n W, + W, n
V.3 T« (—3—r—ﬂ> 31 =0 (55)

for each time step. Substituting eqs. (54) and (55) into equation (53). We

have the Poisson type equation for pressure field as

+ a,C_.) V;] At =V . [(

v. [(alcpl 2%p2 ) r ) 8] (56)

Thus, the numerical procedure is: 1) to get W¥ by solving the system of
equations (52) without the pressure gradient terms; 2) to get pressure
gradient Vp by solving eq. (56); and 3) then to correct the solution by

using equation (53).
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For axisymmetric cases, equation (56) reduces to

. * *
+
. N
or (“1Cp1 + a2Cp2) rAt
and
3
5 " O

And the solution after the pressure correction is

* *
a.C W, - a.C W

W n+l g n+l = _27p21 l1'pl2
1 2 a,C + a.C
1 pl 2°p2
* * *
Y T R R LA T

3 3’ 4 475 5

(57)

(58)

The fundamental theory of the MacCormack's scheme is briefly given

below.

For second order accuracy, the solution of eq. (46) could be written as

2
o) o (At) o
Wl W- + At Wt + > th

[}
PO

WP+ W)

N

_ Where

wP = w® + at w.° is the predicted value,

t

and

W™ =W + At wtp is the corrected value.
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The superscripts denote the time-level of the infbrmation and subscripts
denote the partial derivative with respect to either time t or space r.
Specifically, superscripts 0 and 1 are the initial and the completely
advanced time (here two steps) plane; p and ¢ are the predicted (lst step)
and corrected (2nd step) time plane. Thus, W © is the time derivative of W

t

evaluated at the initial time, and W P is time derivative of W evaluated at

t
the predicted time.

Fig. 10 shows the diagram of the two step difference scheme used in the
computer program. Due to the difference scheme, the spatial location after
each step in time is a half grid off from the original one. Thus, the
spatial offset which resulted from a backward predicting step will cancel

Wwith those of the forward correcting step.

Numerically, the predicted values are

P_ 1 P p
Woo= 3 iy, * Wi0) (60)

where
p - 1 o} o] e}
Wiyp =3 (Wyoy + W) + AL W,
g,° +g.°)
1 0 0 At (o} 0 i i-1 o} o]
=3 (wi—l + wi ) + i [(Fi Fi-l) + 5 (Gi Gi_l)]
At L0 ) opP
+ > (S1 + Si-l) + At Pi-l/Z (61)

and the corrected value is evaluated at the predicted time place, that is at

p
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W o= w® +atwP

i i t
. ‘ (g.p +g P )
- 0 At P - P i+l/2 i-1/2 o] - P
W o Dy = Froye) 2 (Cyi1/2 7 G4o1/2)]
At (o D p 5 ¢
* 5o (80 0 * Syl ) AL P (62)
Here PiEl/Z and Pic are the pressure correction terms as discussed

before (eq. 52-58). Thus, for each time step, the advance 1is carried out in
two steps: a full step backward prediotdr, eq. (61) and then a forward
corrector, eq. (62). As indicated in the diagram, the subscript i in the
regular mesh spatial location at which solution is to be advanced, i + 1 is
the spatial location of regular mesh points immediately to the right and
left of the location i, 1 + 1/2 is the location midway between i and i + 1
or between 1 -~ 1 and i at the predictor plane. Thus, for each time step as
the procedure advanced, the outermost data points at the boundary are not
updated through the numerical scheme. The values at.the boundary are to be
given through some suitable boundary conditions. The numerical procedure
utilizes a uniformly preselected spatial mesh and variable time increment.
To avoid a singularity at the center of'the core region, a finite radius Ri
is used for the inner boundary. The tank radius R is the outer boundary.
The time step is determined at each time step to ensure numerical stability

[20]. For a finite grid size Ar, the maximum time step At is given by

2 e e
At = l/flCdkl * erkl/Ar + Z;E (a,uyC .y * ayu; C )] (63)
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where k = 1 and 2. The minimum At (with some rounding off) is used for the
time step. Normally, the technique with the time step condition of equation
(63) gives fairly good numerical stability. However, in critical conditions
numerical damping can be added either for damping oscillations due to large
gradients or for accelerating the calculation by increasing the time step. .

A damping factor, D thus was added in the program as

1D 1 1
WP Wt (D) ¢ (Wi e W, - W) D (64)
where W 1 is the value obtained based on the two-step scheme, and wlD is the

i
value after the damping factor D is added. A typical value of D is 0.2.

All the examples presented in the followiné section are based on D=0. That
is, no damping factor is used.

The computer program was written in a Fortran 77 based computer code.
The code will permit evaluation of the effects of various parameters which
control ﬁhe fluid dynamical behavior. These include tank size, fluid
properties, such as density and viscosity, etec., charactéristic gas bubble
and liquid drop sizes, and relative location of injection nozzles. Also,
the program was developed and arranged in such way that different modelings

can be easily adapted.

3.6 Numerical Results

The flexibility and ease of changing test conditions are the major
advantages of a numerical test as opposed to an experimental test. The
computer program is developed to accept various conditions and model
Parameters. Fluid properties, (pk, “k)? initial volume fraction

distributions (al), initial velocity distributions, boundary and injection
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conditions, Reynolds number and several modeling constants are among the

input quantities. Various cases have been tested during the course of the
program development. To limit the size of this report, only a few typical
cases will be presented. The common conditions for all the test runs
presented here are as follows:

1) Uniformly distributed initial volume fraction (initially, gas volume

fraction = 0.25 everywhere).

2) Air/water case: pl/p2 = 1.293 x 10-3, ul/u2 = 1.13 x 10—2, o, = 103
kg/m>, and by = 1.514 x 1073 kg/m-s.
3) Bubble/droplet size obeys the power law of dk = 0.01 x akO.Z
4) Jet opening: 0.85 < rJ < 0.95 .

5) Weighting powers for drag and added mass coefficients: ng=n, = h
6) Characteristic Reynolds number, Re = pZVSR/u2 = 105
7) Length scale = tank radius R = 1 meter, Velocity scale = 0.1514 m/s, Time
scale = 6.605 s, and Pressure scale = 22.922 P,
The other test conditions are summarized in Table I. These test runs assume
either an initially pure rotational flow (linear swirl velocity
distribution) or that the fluid is initially at rest. The initial angular
rotation speed is w (radians per unit time). The averaged mean injection
speed across the jet opening is Vj' To specify the boundary condition at
the tank wall, Iw is used - with Iw = 1 being a non-slip condition and Iw =
0 being a free surface condition with no shearing forces. In either case,
there is no radial veiocity at the wall boundary. In addition, Iw is also
used to modify the initial velocity condition near the wall. For Iw =1, a
factor of (1 - r)o'l was included on the initial tangential velocity field

when a simple vortex flow is assumed. This is assumed to simulate the power

law velocity distribution near the wall. To avoid the effects of numerical
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Test I.C. B.C. Injection uf/ul “g/“z

Run Iw Speed, Vj

No.
148 w =1 1 0 115 1000
149 w =1 1 0 1000 1000
150 w =1 0 0 115 1000
151 at rest 1 10, (t < 3) 115 1000

0, (t > 3)

152 at rest 1 10, (t > 0) ‘115 1000
153 at rest 1 10, (¢t > 0) 1000 1000
154 at rest 1 5, (£t > 0) 115 1000

For all the above cases the following conditions prevail: 1) Uniformly
distributed initial gas volume fraction of @ = 0.25; 2) pl/p2 = 1,293 x

10-3, B /M, = 1.13 x 10—2; 3) Bubble/droplet size obeys d, = 0.001 x ako'z;

4) Jet opening: 0.85 < r, < 0.95; 5) n, =n 5

J d
3 3, u, = 1.514 x 10"3 kg/m~s), Length scale = tank

radius = 1 meter, velocity scale Vs = 0.1514 m/s, Time scale = 6.605 s, and
pressure scale = 22,922 Pa.

= 4; 6) Re = 107; 7) Air-water

fluids (p2 = 10~ kg/m

Table I. Conditions of Test Runs.
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singularities at the origin, a finite center core region was excluded from

the analysis. For the data presented here the inner radius is 10% of the

tank radius. At this inner boundary, the free surface with no shearing

forces is assumed at all times. The eddy viscosity factor is ui/uk. For

liquid phase, ug/u2 = 1000 was assumed for all cases, while two values of

ug/ul were tested for gas phases. The value of ui/ul = 115 corresponds to

the condition of the same kinematic eddy viscosity for both phases (i.e., v§
t

= v2). This is based on the expression of the eddy stress that pvv = utVV.

‘
i
=4
3
i

As discussed by Drew [6], if both phases have similar velocity fields, the

t

kinematic eddy viscosities (vi = My

/pk) representing both velocity scales
and mixing lengths of large eddy processes should be approximately equal. §
If this is the case, then the eddy viscosity factor ui/ul = (“2/v1)(“§/“2)‘ f
For air water case, if ug/u2 = 1000, then uf/ul = 115.
Thus, as shown on Table I, test runs 148 to 150 are for an initially
pure rotational flow with no flow injection. Test runs 151 to 154 begin
with the fluid at rest initially but with flow injection. Although the
initially pure rotational flow cannot exist in reality, it is a good way to
test the essential physical mechanisms of vortex-induced, phase-separation.
On the other hand, the vortex flow induced by the flow injection of tests
151 to 154 are good simulations to the aétual situation. These spin-up
tests are thus good examples to study the fluid dynamical behavior of the
two~phase fluids in the sender tank.
Figs. 11 to 15 show the velocity vector distributions for various test
runs. The test results for #149 and #154 are not shown here because the
result of #149 is practically identical to that of #148, and that of #154 is

very similar to that of #152. In these figures, Fig. (a) shows the gas

phase and Fig. (b) shows the liquid phase. At this point, it should be
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noted that the actual flow fields are all axisymmetric and the angular
coordinate replaced by the'temporal variation in the displays is done only
for ease of observation. To produce these displays, the radial
distributions at the different times are oriented along equally—spaced
angles. This angular separation arrangement should not be interpreted as an
angular variation in the flow field for the results.

In Figs. (13), (14) and (15), the region of injection is shown in the
annular region between two dashed circles.

These velocity vector fields indicate all flows are primary in angular
rotation with gas phase tending to move inward and liquid phase trying to
move outward, as expected. Since the wall shear stress will slow the flow
movement, the vortex flow will diminish eventually if there is no injection
introduced, as Figs. (11) and (13) indicate. The effect of eddy viscosity
factor can also be seen from Figs. (14) and (15). Fig. 15 shows the
velocity distribution is more uniform and extends more into the center
region than that of Fig. 14. This I3 due to the larger gas eddy viscosity
factor, u§/u1 on #153 than on #152. Since the main mechanism to establish a
flow rotation outside the region of injection is the shearing stress
distribution that results frém the finite effective viscosity flow having
larger eddy viscosity should transfer and diffuse the locally injected
momeﬁtum more effectively. Although the effect of eddy viscosity can be
found in the injection cases, it shows practically no difference between
cases of #148 and #149. This is because in these cases, the flows are
i already in pure rotation and thus the transfer or diffusion of the momentum
| 1s not very important.

Figs. 16(a),(b),(c) and (d) show more details of the velocity

§ distributions of the test #148. To keep the figure clear, most of the
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following figures will show only the data at six times, t = 0,1,2,3,4, and
5. The tangential velocities shown in Figs. 16(a) and (b) for gas and
liquid phases respectively are decreasing in time due to the wall stress,
Figs. 16{(c) and (d) show the corresponding radial velocities. They indicate
the gas phase has negative radial velocity and the liquid phase has positive
radial velocity. That is, gas is moving inwardly and liquid is moving
outwardly. Also, except near t = 0, the strength of these movements is
decreasing. This decrease is mainly due to the decreasing of the tangential
velocity. Near t = 0, the radiallvelocity is accelerating since the
analysis starts with no radial velocity.

As the result of these radial movements, the volume fraction
distribution is also changed with time. Fig. 17 shows the gas volume
fraction distributions of test #148 as functions of time. As expected, the
gas volume fraction is increasing at the inner region and decreasing at the
outer region. However, because of the decaying vortex as the result of the
wall stresses, the minimum gas volume fraction can only reach about 0.18
even near the wall. That is, for this case a complete separation between
gas and liquid phases seems to be impossible. Fig. 18 shows the gas volume
fraction distributions of test #150 as functions of time. Since a free
surface, (Iw = Q) was assumed for this case, the vortex strength remains
nearly constant. As the result of the constant rotational strength, the
radial movements continue and the gas volume fraction approaches zero near
the wall. That is, there is a liquid layer formed near the wall region for
this case.

Fig. 19(a) shows the liquid tangential velocity of test #152. Near the
region of injection (0.85 < r < 0.95), the tangential velocity is increasing

from zero very quickly at first and then approaching an asymptotic value.
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Meanwhile the angular momentum (or the tangential velocity) is transferred
and diffused into the inner region. Fig. 19(b) shows the liquid radial
velocity of the same test. Although the maximum tangential velocity always
appéérs near r = 0.85, the location of the maximum radial velocity continues
to move inwardly. This can be explained more easily from the time eyolution
of the volume fraction distributions as shown in Fig. 20. Except t = O,
there is an annular layer formed near the wall, in which the gas volume
fraction is zero. This annular liquid layer grows with time, and the
interfacial radius of this layer is moving inwardly. Since a liquid layer
contains little or no gas, the associated radial movement will be very small
even if the flow has a large angular rotation. Therefore, the location of
the maximum radial velocity is moving inwardly despite the fact that the
location of the maximum tangential velocity remains nearly unchanged at r =
0.85.

For comparison, the liquid velocity distributions of test #151 for t =
4 and 5 are also shown on Figs. 19(a) and (b). The conditions for #151 are
Same as those of #152 except the injection rate is shut off after t = 3.
Thus for ¢t < 3, all the data are exactly the same as those of #152. Due to
the effect of the viscosity, the peak momentum will continue to diffuse and
transfer to the region of lower momentum, particularly at the wall where a
momentum sink is located. Figs. 19(a) and (b) show that both the tangential
and radial components of the velocity are decreasing with time as the
injection is turned off at t = 3. However, the decrease of the tangential
velocities is much larger than that of the radial component. Fig. 20 also
Sshows the gas volume fraction distributions of #151. Even the velocity
fields are quite different between cases #151 and #152 especially for the

tangential component. The volume fraction distributions between these two
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cases are practically the same. This indicates the final part of the
injection (i.e., t > 3) is very ineffective.

Fig. 21 shows the gas volume fraction distributions of test #153. This
shows that a larger gas eddy viscosity can produce a better separation,
especially for the region far away from the region of the injection. Fig.
22 shows the gas volume fraction distributions of test #154. As expected,
lower injection speed will produce smaller phase separation. However, the
effect is not linear. From Figs. (20) and (22) the time required to produce
a liquid layer of 15% of radius, is about 1 for #152 and about 3 for #154,
That is, a factor of 2 reduction on the injection speed will require a
factor of 3 increase on time.

To study fluid dynamical behavior of these two-phase fluids, it is
useful to know the velocity fields. To design a practical tank system, it
is important to know the pressure distribution in the tank. Figs. (23) and
(24) show the pressure distributions of tests #148 and #152, respectively.
The pressure distributions of test #151 at ¢t = 4 and 5 are also shown in
Fig. 24 for comparison.

As expected the data show the maximum pressure occurs at the tank wall
for all cases. For the case of initially pure rotation (#148), the pressure
field is decreasing as the rotational speed reduces. The slightly different
character that appears in the pressure distribution at t = 0 is due to the
assumption of no initial radiai velocity. The initial pressure field
essentially is that of the centrifugal forces due to the pure rotation. As
time goes by, the radial velocity increases and the pressure field is thus
adjusted accordingly. In the injection cases, the pressure field gradually
increases as the injection continues. As soon as the injection is stopped,

the pressure field is changes as shown by #151 in Fig. 24,

48




ot neigg
i

As discussed earlier regarding the operation concept, the time
evolution of vortex strength and the degree of phase separation are the
important operation parameters. The definitions of these parameters are
arbitrary aﬁd depend on various situations or requirements. Some of these
quantities are defined below:

a) Vortex Strength T', the total angular momentum per unit volume:

[ 2
2
2 2 !uiveir dr
=2 apVgr= 1 py "5
f=1 =1 ' (R%- B9

b) Separation Strength ar’ the averaged radial flow rate per unit volume:

Ql’"

( (
J 21ra Vrzdr 2 J V rdr
(R 2

R)(RR)

2
2 2. |
w(R -Rl) J dr

This indicates the rapidity with which the liquid phase moves to the

wall region and the gas phase moves to the inner region of the circular

tank. Thus a larger Qr means a fast phase separation.

¢) Liquid Purity, 32 (rl,rz), the averaged liquid volume fraction between

the radii of rl and r2:

i [PZ
a, (r,,r,) = : Jrlazrd
2 1ne (r2- p2)
i 2 1

% For the data presented below, ry = 0.8 and r, = 1 are chosen. This is

the region where the withdrawal port will most likely be located.
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d) Separation Index, SPI.

where

[

z . akrdA
k ;

Jade

is the center of gravity of phase k, and Rk

phase k when the two phases are completely separated.

s is the center of gravity of

When two phases are completely separated, the liquid forms an annulus

against the wall of the tank around a core of gas with a contact radius of

2 ( 1/2
R, = (R 2 ] a,rdr)”c.
Thus
= 3 3 2_, 2
R g = 2/3 (R,>-R; %)/ (R “-R, )

= 3 5 3y,52p 2
R =2/3 (R Rc )/ (R Rc

2s )

Thus, SIP = 0 indicates that the two phases are uniformly mixed together,
SPI = 1 means two phases are completely separated, and SPI < 0 means more
gas is in the outer region than in the inner region.

e) Mixing Index, MXI

This is another quantity to identify the degree of.separation. When mixing

index equal to 1 (MXI = 1) it means two phases are completely mixed and the
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volume fractions are uniformly distributed. When mixing index decreases to
0 (MXI = 0) it means there is no mixing between the two or they are
separated completely.

Thus, some of the fluid dynamical behavior of the two phase fluids in

the tank can be identified. These are the vortex strength I', the separation

strength 5}, the liquid purity 52(0.8, 1), the separation index SPI, and the
mixing index MXI. These are plotted versus time for various tests as shown

on Figs. (25)-(29). 1In order to present these using the same ordinate

scale, the quantity SOEP (rather than ap) was plotted. For test #148, Fig.
25 shows that the vortex strength 1s decreasing, and the separation strength

reaches a maximum at t = 0.5 and then decreases monotonically. It also

shows both liquid pur'ity_a2 (0.8, 1) and separation index SPI are continuing
to improve even though the vortex strength is decreasing. However, because
the separation strength is small and decreasing, the mixing index maintains
a very high value (™ 1) and the two phases are still mixed very well even at
t =5, (MXI = 0.95 and SPI = 0.27 at t = 5).

If the effect of the wall stress is removed as shown in test #150, the

situation is somewhat different. Fig. 26 indicates the vortex strength

remains nearly unchanged. Liquid purity 32 (0.8, 1), separation strength Er
and separation index, SPI are all improved much more as compared to Fig. 25.

Although the two phases are not completely separated as indicated by both

the values of SPI and MXI, the liquid purity a., has nearly reached the value

2
of 1 when t > 4, This suggests that, even when the two phases are not
completely separated, the liquid transfer could be started provided the

withdrawal port is located near the wall. Fig. 27 shows the same quantities
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for tests #152. For t > 3, the values for test #151 are also shown on the
same figure. The figure shows there is little or no difference on the
degree of separation between tests #151 and #152, although the corresponding
vortex strengths are quite different for t > 3. This indicates again that |
the continuation of the injection of #152 for t > 3 is not very effective,
Fig. 28 shows the results of test #153, As compared to Fig. 27, the
larger eddy viscosity factor improves the degree of separation. This is
partly due to the more effective injection as the result of the larger

diffusion of the injected angular momentum produced by the larger effective

viscosity. Despite a better degree of separation, the values of 32 (0.8, 1)
are practically the same. That is, the eddy viscosity does not noticeably

affect the flow dynamics in the region of 0.8 < r < 1 near which the

injection was made. The value of 52 (0.8, 1) indicates the liquid layer at
the tank wall reaches 20% of radii thick at t = 1 for both cases.
Fig. 29 shows the degree of phase separation for the lower injection

case, test #154. As expected, the degree of phase separation increases

slower than in the higher injection cases. Nevertheless, liquid purity Eé
(0.8, 1) reaches 1 at t 3 as opposed to at t = 1 for the higher injection

cases.

3.7 Conclusions

A vortex-induced, liquid handling process adapted to two-phase fluids
in zero gravity has been analyzed for a selected range of fluid and flow
parameters. This transfer process has been divided in two stageé: the
initial "spin-up" stage and the liquid pump-out stage. The initial spin-up

stage is modeled in the circular tank via tangential injection techniques.
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The model is based on a two-phase, two~fluid continuum and itAincorporates
several interactions between phases -~ namely fluid drag and pertinent
virtual mass. The model provides a mathematical framework containing the
essential physical mechaniéms on vortex-induced phase separation.

A computer program using a FORTRAN 77 based computer code and HP-1000
minicomputer was developed. The program is flexible and accepts various
input parameters for different flow conditions. It can also be modified
easily to include additional interaction effects. This program can be used
to study the fluid dynamical behavior of two-phase fluids in the sender
tank. It provides a quick/easy sensitivity test on various parameters and
thus provides the guidance for the design and use of actual physical systems
for handling two—-phase fluids in space.

Several examples are given to demonstrate the products of the program.
The interesting and plausible results seem to indicate the simplified two-
phase two-fluid model is a useful one. However, detailed evaluation of the
result is only possible with the aid of accurate local measurements. It is
therefore concluded that this model should receive further attention in the
form of experimental verifications. These verifications should be devised
'to check both the formulations selected for phase interactions as well as

the results predicted.
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Gas/Liquid Mixture .
Qq .

Figure 3. Start-up Configuration

e o/ —
Mostly Llquid Liquid

MIST

Figure 4. Pump-out Configuration
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Figure 12. Velocity Vector Distributions
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