

AFML-TR-77-145
//? VCr ~ / Ct &

)R^ yc ')f f.3

Standards for

Computer Aided Manufacturing

Office of Developmental Automation and Control Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D.C. 20234

January 1977
Final Technical Report, March— December 1977

Distribution limited to U.S. Government agencies only; Test and Evaluation

Data; Statement applied November 1976. Other requests for this document

must be referred to AFML/LTC, Wright-Patterson AFB, Ohio 45433

Manufacturing Technology Division

Air Force Materials Laboratory

Wright-Patterson Air Force Base, Ohio 45433

NOTICES

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement opera-
tion, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawing, specification, or other data,

is not to be regarded by implication or otherwise as in any manner licensing the
holder or any person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be related
thereto

.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specified
document

.

This final report was submitted by the National Bureau of Standards under military
interdepartmental procurement request FY1457-76 -00369 ,

"Manufacturing Methods
Project on Standards for Computer Aided Manufacturing."

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER:

DtiWJNlb L. WlbNUSKY
Manager, ICAM Program Office
Manufacturing Technology Division
Air Force Materials Laboratory

AIR FO RC E/567 80/6 February 1978 — 400

SECURITY CLASSIFICATION OF THIS PAGE (When Deta^ Entered)
^1 i

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

!. REPORT NUMBER 2. GOVT ACCESSION NO.

AFML-TR-77-145

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

STANDARDS FOR COMPUTER AIDED MANUFACTURING

5. TYPE OF REPORT & PERIOD COVERED

Final Report
April 1 976-December 1976

6. PE^LPO'RMTFTG 07G. REPQR T NUMBER

fNBSIR 76-10941 Rl
7. AU THOR(s)

Dr. John M. Evans, Jr., et„ al.

0'\ CONTRACT OR G R ANJP-NTTm B E Rfs

)

FY145776-00369

9. PERFORMING ORGANIZATION NAME AND ADDRESS

National Bureau of Standards
Department of Commerce
Washington, D.C. 20234

10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

78011

F

6 CAM 9999

II. CONTROLLING OFFICE NAME AND ADDRESS

ICAM Program Office
Air Force Materials Laboratory
Wright-Patterson Air Force Base, OH 45433

12. REPORT date

June 1977
13. NUMBER 0“ “AGES

352
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED

15a. DECL ASSI FICATION/ DOWNGRADING !

SCHEDULE

16. DISTRIBUTION STATEMENT (ot this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
!

Distribution is limited to U.S. Government agencies only; Test and Evaluation
Data; Statement applied November 1976. Other requests for this document must

j

be referred to AFML/LTC, Wright-Patterson AFB, OH 45433

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

CAM architectures; computer aided manufacturing; computer systems;
standards; system integration; voluntary standards.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
j

This report identifies and evaluates those existing and potential standards which
will be useful to the Air Force in the development and implementation of inte-
grated computer aided manufacturing (ICAM) systems. Such systems, when imple-
mented by the Air Force and by Air Force contractors, will increase productivity
in discrete part batch manufacturing by several thousand percent. The use and

DD
, j an ^73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEfHTian Data Entered)

(Block 20 - Continued)

importance of standards are considered in the context of CAM systems. Since

the Air Force will develop the detailed ICAM architecture after this study
is complete, existing system concepts and archi tectures are examined to

identify the common elements to guide the further presentation and discussion
of relevant standards.

SECURITY CLASSIFICATION OF Tu.c PAGE(When Data Entered)

PREFACE

This report covers the results of work accomplished during a nine month

sponsored program with the Air Force Materials Laboratory, Air Force Systems

Command, Wright Patterson Air Force Base, Ohio under Military Interdepartmental

Procurement Request FY145776-00369. Air Force Project Engineers were Captain

Dan Shunk and Mr. William A. Harris.

The primary authors of this report are: John M. Evans, Jr., Ph.D.- Project

Manager, Joseph T. O'Neill, John L. Little, George E. Clark, Ph.D., James S. Albus,

Ph.D., Anthony J. Barbera, Ph.D., Bradford M. Smith, Dennis W. Fife, Ph.D.,

Elizabeth N. Fong, David E. Gilsinn, Ph.D., Frances E. Holberton, Brian G. Lucas,

Ph.D., Gordon E. Lyon, Ph.D., Beatrice A. S. Marron, Mable V. Vickers and Justin

C. Walker.

TABLE OF CONTENTS

INTRODUCTION 1

EXECUTIVE SUMMARY 3

STANDARDS IN CAM SYSTEMS 11

AIR FORCE ROLE IN STANDARDS 17

SUMMARY OF TECHNICAL RECOMMENDATIONS 43

NC PART PROGRAMMING LANGUAGE STANDARDS 49

CAD/CAM INTERFACE STANDARDS 63

COMPUTER AND COMMUNICATIONS INTERFACE STANDARDS 77

COMMUNICATION CODE STANDARDS 121

PROGRAMMING LANGUAGE STANDARDS 149

OPERATING SYSTEMS 175

DATA BASE MANAGEMENT SYSTEMS 187

SOFTWARE TESTING AND TOOLS 213

DOCUMENTATION STANDARDS 225

MEDIA STANDARDS 237

APPENDIX A. Statement of Work *...247
APPENDIX B. CAM Systems Architecture 253

APPENDIX C. Assessment of Artificial Intelligence Languages . . 275

APPENDIX D. Assessment of Simulation Languages 323

APPENDIX E. DBMS File Structures 349

-

.

'

•••

I

INTRODUCTION

The Air Force is initiating a mjaor new program to accelerate the
establishment of Integrated Computer Aided Manufacturing (ICAM) in discrete
part batch manufacturing industries in the United States, especially in the
serospace industry. The National Bureau of Standards is providing support
to that program by analyzing existing standards relevant to Integrated
Computer Aided Manufacturing.

This document is the final report to the Air Force Manufacturing
Technology Division of the Air Force Materials Laboratory at Wright-Patterson
Air Force Base on the ICAM support project. This report covers all five
tasks of the project as are defined in Appendix A.

Task 1 Identify current standards applicable to CAM.
Task 2 Analyze existing formal and de facto standards.
Task 3 Assess the actual usage of standards in industry.
Task 4 Recommend optimal standards for CAM system development.
Task 5 Identify standards organizations and outline a proper Air Force

role in standards activities.

This report identifies those existing and potential standards which
will be useful to the Air Force in the development and implementation of
integrated computer aided manufacturing systems. Such systems, when
implemented by the Air Force and by Air Force contractors, will increase
productivity in discrete part batch manufacturing by several thousand percent.

The NBS effort provides a comprehensive reference data base on all formal
and de facto standards that are considered to be relevant to the Air Force
Program. Summary data sheets included in the report form an annotated
bibliography on each standards activity for ease of reference.

The report examines the utility of these standards to the Air Force
Program and in each relevant standards area recommends a best approach to
follow either toward adopting existing standards or toward developing needed
standards

.

Finally the report outlines the proper role of the Air Force in standards
activities. Recommendations are made for a comprehensive and rational
approach to computer integrated manufacturing based upon the use of formal
standards, definitive technical guidelines, and precise ICAM program policy.
These recommendations are made in a framework of programmatic objectives that
NBS believes to be essential for the success of the ICAM program.

The work reported here was supported in part by the Air Force Program for
Integrated Computer Aided Manufacturing, Manufacturing Technology Division,
Air Force Materials Laboratory, Wright-Patterson Air Force Base under
MIPR FY 14577600369, Dennis Wisnosky, Program Manager.

1

*

!
t

.

'

EXECUTIVE SUMMARY

The Air Force is initiating a major new program to accelerate the
establishment of Integrated Computer Aided Manufacturing (ICAM) in discrete
part batch manufacturing industries in the United States, especially in the
aerospace industry. This report describes work done at the National Bureau
of Standards (NBS) to analyze those existing standards which are relevant
to the ICAM Program and to outline a policy to achieve Air Force programmatic
objectives thru the use of standards.

The goal of demonstrating computer integrated manufacturing requires the
interaction of a multitude of functional modules some of which are already
in limited use, some just conceived, and others not yet developed.
Coordinating the development of this variety of technologies from an equally
large number of different contractors and doing it in such a way as to have
each module fit into the architecture of an integrated CAM system is a
formidable task.

The goal, however, becomes achievable when approached through the crea-
tive use of formal standards, definitive technical guidelines and precise
ICAM program policy. These three techniques will allow the complete definition
of interfaces between ICAM modules and their environment. Where interfaces
match, modules can fit together and system integration becomes possible.

Standards are an essential component of the ICAM Program; essential for
the development of the ICAM modules, essential for their successful inte-
gration, and essential for encouraging the widespread use of the products
developed. The NBS Office of Developmental Automation and Control Technology
has headed a multi-discipl inary team of Bureau personnel skilled in many
facets of computer technology as it will be applied to manufacturing systems.
In a ten month effort culminating in January 1977 this team investigated

in manufacturing and documented the utility of standards in the Air Force
Program. Standards for computers can be logically divided into ten areas -

each documented in a separate chapter of this report.

For these areas the report first identifies those existing and potential
standards which are useful to the Air Force in the development and imple-
mentation of integrated computer aided manufacturing systems. Next it pro-
vides a comprehensive reference data base on all formal and de facto standards.
Each standard is analyzed as to its benefits, limitations and degree of actual
usage

.

The report discusses the utility of these standards to the Air Force
Program and in each relevant standards area recommends a best approach to

follow either toward adopting existing standards or toward developing needed
standards

.

Finally the report outlines the proper role of the Air Force in standards
activities. Recommendations are made for a comprehensive and rational
approach to computer integrated manufacturing based upon the use of formal
standards, definitive technical guidelines, and precise ICAM program policy.

3

So vital are standards to the successful realization of ICAM program
objectives that a Standards Office should be created as a focal point for
coordination, documentation, and standardization activities. Functions
of this office would include:

Coordination with the NASA effort on Integrated Program for Aerospace
Vehicle Design (IPAD) to mutually define the CAD/CAM interface;

Cooperation and support of various voluntary standardization activities
and of the development of FIPS and MILSPEC standards when necessary;

Development of local ICAM program guidelines where necessary for areas
such as documentation and programming standards;

ICAM data base management system administration;

Maintenance and distribution of system definition, software tools, and
documented ICAM software.

In developing a proper role for standards in the Air Force program it
is instructive to look beyond the ICAM technical goals to identify four
programmatic objectives that are essential for success.

Portability of Software
Integratibility of Modules
Distributed Data Processing
Exchangeable Manufacturing Data

With these points in mind it is possible to examine how the creation
and adoption of certain standards, guidelines and policy will contribute
to achieving ICAM goals. Table] summarizes these various relationships
and presents a suggested Air Force position on the effective use of interface
standards. Table 2 briefly details the content and utilization of the
standards addressed in this report. Data in both Tables are refined in
greater detail by the various sections that follow. Collectively this report
represents an indepth analysis of the importance of interface standards to
the evolution of computer based manufacturing systems.

4

LO
CNI 0

0 N
-P -H
CO i—I i—J

0 0 •H P
P -P 0

0 0 D T5 XI
G Tf G o
0 (D • 0 03
•H Oh TJ -P o
-P P 0 CJH 0 0

cn Id Tl CO 1—

1

Q 0 MH GOh 1—

1

•

& o 0 H rtJ

< X -P Oh G
Q CU -P CO X •H
2 G Td 0 g< 4-) 0 G G a £
E-< X £ 0 0 fd

cn O x P X p
a 0 -P H o Cn

aH P CO 03 0
a i—

1

OS O P
cn XI Oh< U a

G fd TJ rH a 1 cn 0
0 0 P U 0 CN U Eh O 1 <U -H
•H -P 0 , 0^ 0 u • u Eh X Q a c
-P Td 0 < G 1 X Q H a 1 X) 0
fd 0 T5 Oh CN IS] < u X) O (U X
OhCN a p CO CO >H H u c u Oh 2 a
•H ro \ 44 CN X Eh H • fd 2 H u
u a x T5 CO -H • H CO co <d cu

•H 3 o G CO -P !i) CO CO U 2 • • X Eh X 0 x a
a O 44 0 G TJ OJ QC U < i-H G a 0 0 d d)

X X -P H 0 p CD O H < a D a
«J o CO 0 CO 0 0 •• > •H CO d 0
a T5 2 -H 0 1—

1

d) -P s X H a a
0 0 <C G 0 0 X 0 < 0 H

0) in 0 cn O 0 O > U Cn X O'
X (0 G 0 -P -P -P H 0 0 X •H EH Eh G 0 c 0
to H XI P 0 U M-l PI X G • • a U H a -h g
•H P O 04 Q P 0 G 0 < < g a 0
-P CO 0 0 Oh G H \ 0 X s £ 0 a £ < ro -p

•H 0-i -P Oh 0 CO W -P G 4-1 § TJ 0) 2 0 0 a in

G H •H 0 GPS H G H 0) O 0 cn 0 P fO 0) >1
H Cm cn x 0 &> < Q H PI 2 O u D u Cn ro p 0

CO

2
03 M

G 0 G 0 G 0 0 g O 0 0
•H •H •H M-H -P O > p 0 0 > Mh 0
g -P 1

—
1 O 0 • •H 0 0 P 0 • P 1

—
1 1
—

1

§ 0 0 >1 0 P rH rH !>i P rH 0 0 rH 0
0 O TJ 0 0 P 0 0 P Xl G 1

—
1 P 0 -P

P •H H 0 O O X > •H 0) O -P 0 G •H
tn i
-

1 G G S -P •H G 0 P a U 0 u •H 0
0 Oh tr> O G •H 1

—
1 G d 0 0 -p •H

p Oh P U 0 G rH U X 0 X -p Mh TJ
Oh 0 G O H P g X 0 •H 0 0 O Cn

0 M-l P § V P 0 P H Cn p G 0
ts >1 •H 0 G O 0 O -P > G Oh P •H rH

cn 0 M-l a 0 -p O u T5 s 0 0 H G P XI
w TJ •H ro 0 O P p 0 •H < -P 1—

1

0 G 0
2 G O a G 0 0 0 0 •H Td G cu g -P -P

H 0 0 c •H T5 1—

1

-p XJ G > 0 > Oh O P
X g Oh cu r—

1

•H rH G 0 p • £ <D O 0 0 •

H £ CO g 0 G 0 0 0 Td Q 0 0 0 1
1

1—

1

MH Oh 0
Q O d T) CT* P G mh £ 1—

l

0 G 0 0
H O 0 H 0 •H 0 0 0 a 0 > G G Cn

D 0 • 0 G 0 -p G • 0 -P g 0 0 0 0 0
O P 0 XI a a Cn 0 0 0 -p 0 •H 0 Td g p M

0 G 0 U rH 1—

1

G >1 U -p- O
Oh O g ax p Oh 0 0 O 0 0 G 0 -p O 0
O •H ro 0 •rH 0 O MH u O £ O p p S >1 Oh

1—

1

•P X 1—

1

P 1—

l

P 0 O 0 P Oh 0 r—

1

00 U a 01 -P -P 0) 0 -p -P p 0 0 ax •H

> 0 0 > 0 mh > P 0 0 H •P P Td a a 0 -P

0 P X 0) •H 0 di G p p G G O G G •H 0 0
Q Oh a Q Q 0 Q •H Oh Oh CT aa 0 CO 0 Td

CU

a
Cn c ,G | G 0 <
C 0 ro 0 g -P -P G O ,G • a

Td -H 0 s 0 •rH 0 G •H U 0 H
rC >1 <D g a X 0 0 <c p 5 O g X c -P X -p
Cn 0 1

1 rH £ c 0 0 « u 0 s: P d. 0 0 0 0 X
•H 0 G rH <u 0 d) G 44 MH <] H a s P O X X O a
X Cn O 0 X P g O O u 0 0 0 0 >1 O •H a •H "d -H

0 X a Cn <u •H W H p 0 1—

1

u -P MH 0 a 0 MH G Cn
c G 0 a O 0 a -P O -P 0 £ 0 H G •rH 1—

1

G cu 0 •H 0 G
•H Cn Cn c 0) P ro 0 CU c g Q -P > Oh U 0 O 0 O 0 •H c •

G 0 0 a a 0 a O a 0 P 0 O -P g 0 > O c •H 0 *» P 0 H
0 0 G 0 0 -p ui •H cn g 0 0 c Q H G 0 Oh 0 0 P Oh 0 G •H 1

P rH Cn X X 0 rH 0 P •H 0 0 CO rH 0 O 0 -p -P 0 JS
0 G K*1 G 0 1—

1

c Oh 1—

1

p -p P g • 0 U 0
£ Cn 0 1

1 O N G 0) Oh 0 G P G p O 0 G 0 0 X P G Cn 0 •rH u
>4 -P G rH 1

1 O •H g a 0 G O 0 •H •H 0 Mh rH O • 0 1—

l

X Oh O •P MH 1—

1

u MH •H d G T) P a O O 0 0 O Oh •H Td 0 O 0 P G
H O g >ia W P 0 •H MH •rH P G Oh -H 0 g -P G 0 O -P >1 G 0 G
X 0 § rH 0 0 Oh X 0 -P Oh Oh P MH G •rH 0 •H 0 0 a G O 0 0 0 0
O 0 rQ P TJ 5 O 1

—
1 < O MH O P g p -p d) 0 •H -P g O

a rH P g 0 • G >1 G 0 1
—

1 -P O •H "0 0 a 0 c g 1
—

1 0 rH iD
rH Cn 0 O 0 0 • d) P G > 0 0 -P G G G p 0 O T5 1—

l

u CN
0 0 0 G -P 0 > •H • MH •H • P 0 0 • 0 0 •H TJ ax P Oh 0 •

P 0 O 0 0 •H 1—

1

0 -P P 0 P T3 O 0 tn G 0 G CD -P G
a a 0 0 •H t7> -P •H P Oh •H O P 0 P •H P Oh 0 0 G O Oh 0 •H H •—

1

0 P -P MH 0 •H X 0 O a MH 0 •rH 0 MH 0 O rC g 0 -p O O 0 0^ 0 >H

1
—

1 1

—
1 s 0 H O G G ro £ 1

—
1 0 £ G Td •H £ 1

—
1 p 0 1

—
1 •H 0 P rH •H -P

0 0 0 P Cn -H a -P cu a cn -P •H G O P 0 p -P 0 P 0 Oh CD O nd G H
> > rH G 0 G MH X MH > g 2 MH g 0 0 MH > G 0 > 0 Oh > P •H CO
0 0 rH G 0 0 0 0 0 0 0 0 pq O -p Oh O 0 O >1 0 O g G CU G MH 0 s
Q 1

—
1 < H 0 G 1

—
l a 0 Q 0 Q 0 < CO 0 0 Q MH 0 1

—
1 •rH •H 0 Q Oh 0 s <

d
0 cu e

^>1 1
—

1 Td X ‘H
4-p XI 0 Cn X X
•H 0 -P G ro d

0 rH -p G *H cu a
P -H 0 0 X 0 a 0
0 XI P 0 •H 0 c ro

^ 0 a 1
—

1 P 0 ro a
-P -P cu d -P 0 O X d ro

M-l P a x 0 -P O oca
0 0 c 0 •H 0 P x ro ro

CO Oh H S Q Q Oh H 2 Q

5

I

o

o

Q
CrT.

<=C

C3

>-

ctr

<C

S- >
CD I

<1> <D

r-H (/) 4->

>- 0)0
s- <d

—

h

Q. -r-j

00 0)13
2: O' o

•rro
03 4->

<-r

K K I * *

6

I

I

oo

cu

cd.

<c

<c

I

—

oo

QZ

LU

o
c_j>

x

Cd

Cd

<c

GO

CD

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1 -a 1 co 1 1

-Q OO 1 1 1 1

>- c 4-J
1 CD 1 1 1

4-> X =3 c
1 CQ 1 1

03 03 E 03 CD Li_
1 13 1 1c L- Cl oo E 4-4 C OO 1 to
1 Cl 1 1E CD E Cd O s- o z 1 i_ IE CD -C O CJ O -C ct 1 o 03 1 OO I

S- 4-> 4-> CO O CO Cl cl 1 o CD 1 Q_ 1 1

cd CO O £Z 03 E CD >3 » 4-4
I | 1

4-> X O CJ 03 _Q | U 1 Ll_ 1 1

CO c 4—

>

CD 1 CJ 3 1 | 1

CO 4-> 2 CD 4-> "O 1 2: 1 c 1 1

03 c 03 o CD _CD CD 1 1 | 1

4-4 o O O CJ c 4-4 1 -C c 1 1 1O
1 -o i— 03 CL 1

4-4 to 1
1 TD | 1CD 4-J C OO r— 4-4 O l CD 1 1 CD 1 1

03 13 CO O TD | 2 CJ 1 to to 1 I 1

TD a cj E oo 4-J IS CD 03 1 03 1 CD CD 1
4I

1 1E 1 CO 1
TD 4- l to to I 1 1

4— c O oo CD CD a CD 1 <D S- 1 3 3 1 CJ 1 1O 3 ** CJ cd 4-J CJ -Q 1 to CD 1 1 CD J 1

E CO 03 03 E _c l
=> 4-J

1 C C 1 CL 1 1C E - TD CD S- TD 4- CD 4-) C 1 O o 1 to I 1o o 1

—

c -o CD C. 4-4 -r-
1 1 1o Cd 03 CD 03 4-> CD CD 2 4-4
1 CD 1 l

CJ CO CL 4-> >3 IS 1 CD 1 03 03 1 CJ 1 1

cj CD CO S- 03 O C CO to 1 03 CL 1
4—> 4-4

1 C 1 1

cd O S- CD TD TD i
— -

1 03 1 C C 1 CD 1 1e o 03 Q. 03 CO O S- 4-J
1 CD CD 1 3 1 1

+-> c 03 4- -C 3 S- CO c CO E i CD E E 1 cr 1 1c o C Q_ CO CD CD O 03 CD 1 to S- 1 3 3 1 CD 1 1

cd o 03 TD _cr c 4->
i CD 1 S- S- 1 CO 1 1E CD S- CD +-> 4-4 to 1 CD CL 1 4-4 4-4

1 1 1

E S- O CO CD c 4- 03 X >> 1
4-4 03 1 to to 1 4-J 1 1o o 4-> =) CL -C 13 CD U -CD to 1 X CL 1 C C 1 1 1

cj Lu Z2 Q 1

1

1

1

CQ 1

1

1

1

CQ 1

1

1

1

1

1

1

1

CD

1

1

1

1 CD

1

1

1

1

1

1

1

1

1

1

1

1

C 1 C 1 1 1

1 1 1 4-J 1

CO 1 to 1 1 r— 1

03 1 03 1 1 CQ 1

CD 1 CD 1 1 1 1

S- 1 S- 1 • >1 1

CO CJ 1 03 u 1 1 CQ 1

c £Z 1 to c 1 1 1 1

o 1 S- 1 1

1 CD 1 1 "aj 1

4-> 4-4 1 > 1 1

03 3 1 3 1 1

4-4 CO 1 c CD CQ CD CD 1 CD 1 03 1

C 03 1 ZD > > > 1 > 1 S- 1

CD CO TD 1 T3 TD 1 1 03 1

E S- CD aj 1 to CD CD to to 1 to 1 CL 1

CD a» i- 4-4 1 to c +4 c c 1 c 1 1

> 1 o CD CD CD 1 CD 1 4-4 1

Qj 4-J E 1 E 4-> E E 4-> 4-4
1 4-4 1

E c 3 1 X X X 1 X 1 O 1

=0 L— _i 1 <£ LU __i _i LU LU 1 LU 1 1

1 00 1 1 1

1 00 1 1 1

1 *3-
1 1 1

XI 1 LU 1 1 >> 1

>- 1 LU 1 S- 1 S- 1

CD X 1 TD LU 1 03 1 03 1

T3 1 C 1 4-4 1 4-4 1

CD oo 1 03 1 CD 1 CD 1

CO cc 1
c o3 1 1

S- 1 CO CO 1 Z 1 z 1

CO CXI CD CJ 1 O CO O CJ 1 CL 1 CL 1

4-> CL 1 CJ 1 CO CO 1 to 1 O 1 O 1

U X 3 oo i 1 CO LO 1 CVI 3 1 s- 1 S- l

CO oo 1 oo oo oo O 1 CL 1 CL l

1— oo CO 1 cd LU Cd CXJ S- 1 1 1

<4— h— 1 oo 1 CD LU LU CD CD 1 CD l CD 1 CD
C oo 1 C LU LU C oo C E 1 E • E 1 C
o cj Cd oo 1 o LU W Cd o 3 1 O l O l O
cj cj 3 cd 1

1

1 1 LU LU 2: 2: 1

1

CO 1 OO
1

1

1

2:

1

1

1

1

1

l

l

1

1 CD 1 1 1 ^

^

1 CJ 1 l 1 to
03 1 >> 03 CD 1 4-4 1 1 CD
C 03 1 4-4 4- CJ to 1 1 1 1

CD 4-4 1 S- 03 3 CJ 1 CO 1 >> 1 to 03
CD E 03 1 CD 4- O c: 1 1 1 _Q 1 3 Cd
C S- CJ 1 03 CD S- C CD 1 >> 1 1 1 O
03 CD C 1 3 C CD O 3 1 -Q l C CD

c -C 1— 3 1 O' -Q s^. 1 1 1 CD 1 O C
o 03 CJ £Z XI 03 E 1 03 C= SI CD 1 1

—

1 S-
s- 03 o >- 4-4 E^ 1 LU E CJ OO 1 03 1 JZ

4-> CD +-> X O CD 1 03 1— E >> 1 1 03 1 CJ 03
03 CL) 4-J 03 4-4 CD CJ CJ 1 C O 03 c 00 to 1 S- 1 L- 1 c C
c OO c O 03 oo 03 1 CD X S- o CJ CD 1 CD 1 03 1 X CD
CT> CJ cr o 03 4- 1 CJ CD <c 4-4 CQ 1 OO 1 CL 1 OO

4-> L_ 1 OO 21 O 4-4 1—

1

03 1 1 OO
CO CJ 03 C 03 CD 1 S- 03 1 Cd 1 1 1

<D 1 -t-> 13 Q 4-J
1 Q_ 4-> CJ (XI CQ 1 1 00 1 X TDo OO 03 03 E CD \ C 1 CO C C\J CD 1 1 00 CD

CO Q E CJ oo 1 OO o CD SZ 1 l CD
TD oo i—

1

O 03 03 1 CO E CO CQ CQ 1 CQ 1 CQ CJ 1 CQ CL
S- 1 >i 1 CJ 4- X C C 1 OO 1 CO 3 CO ZD ZD 1 ZD^ 1 ZD O0 1 ZD OO
03 oo CL s- •r- O 1 X OO S- LO Q_ 03 Cl. 1 CL —

•

1 CL <C 1 Q_
TD CC 03 oo 03 CD 1— E v- 1 cd 4-4 c 1 1 1 -C
c C 4-4 4—> 1— S- 4-4 1 LU to LU OO cn IS) CD 1 00 C_J 1 OO 4-4 1 OO CD
03 =£ c 03 c CD 03 1 oo <c LU C LU Q_ Q_ C 1 CL OO 1 CL -r- 1 CL
4-> CQ O CJ 1— O 1 LU LU 00 1

^ <E 1
•—

< CQ l

oo LU LU CJ 1

1

1

1

1

«=£ LU
! 1

U_
i

U_ 1

1

1

1

1

Ll 1 U_
1

1

1

l

1

1

1

1

1

S-

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l

1

1

1

o 1
1 1 1

<—> td K K 4c
1

1 1 1

05 4-4 1 l 1

^

:

oo
1

1 l 1

7

EIA

RS-423

(FED-STD-1030;

None

Limited

Electrical

standard

for

low

speed

RSXYZ

Unbalanced

Voltage

Circuitry)

I

i

oo

o
Q

i

<r

c=r>

GO

oc:

Q_

CJ

X.

Ct

I

—

X
crl

<C

(X

i

i

i CJ

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- 1

1

1 1

1

1

1

1

1

1

1

1

1

i 1 1 1 1 1 1 1 1 1 1 1 I l 1

i o 1 1 1 1 3 1 1 1 1 1 1 CL 1 1 1 1

i CJ 1 1 1 1 CD 1 1 1 1 1 CD 1 CJ 1 1 CO 1 1

i CO 1 1 1 1 4-> 1 1 1 1 1 1 CJ 1 1 1 1

i LU 1 1 1 1 1 1 1 1 1 JD 1 CD 1 1 3 1 1

i CD 1 1 1 1 3 1 1 1 1 1 03 1 <C 1 1 O 1 1 CD
i CJ -3 1 1 1 1 o 1 1 1 1 1

4-» CJ 1 1 CL 1 2 l 1 CO
i 03 4-> 1 1 1 1 E 1 1 1 1 1 03 CD 1 -3 1 CJ 1 4-3 1 1 ZD
i 4— 1 1 1 1 O C I 1 1 1 1 CL 1 1

4-3
1 CJ 1 CD 1 1

i 3 2 1 1 1 1 X 1 1 1
1 E HZ 1 1 CD 1 3 1 1 CD

i CD 1 1 1 1 CD LU 1 TD 1 1 1 1 o 1 2 1 <C 1 1 1 3
i

-!—

>

+-> 1 1 1 1 1 3 1 1 1 1 CJ a O 1 1 TD 1 1 1

i 3 CJ 1 1 1 1 Ll >> 1 03 1 1 1 1 3 3 OO 1 4-3
1 to 3 1 03 1 1 3

1 CO i 1 1 1 3 1 -Q 1 TD l CO 1 1 1 03 1 <J 1 CD 03 1 l 1 03
i 1 1 1 o 1 1 3 l 1 1 1 TD 1 1

4-3 TD 1 CJ 1 1 SZ
1 03 i CO 4- 1 1 1 C TD 1 03 l 03 1 1 1 O 3 1 1 03 3 1 3 1 1 CO
1 3 i 3 1 1 1 to 1 CD 1 4-3

l E 1 1 1 03 CJ 1 4— 1 3 03 1 CD 1 1

1 cd i 03 o 1 1 1 to 1
*3- 4-) 1 OO 1 S- 1 1 1

4-3 —I 1 3 1 TD O 4->
l E 1 1 CD

1 -3 i 3 CJ 1 1 1 CVI 3 1 1 O 1 1 1 CD OO CD 1 O 1 3 CL CO 1 1 1 E CD
1 Q. i CD 1 1 i E 1 1 O 1

4—3
1 Li- 1 1 1 E OO 1 CJ 1 03 3 1 O 1 1

i -3 1 1 1 CO 1 oo CL 1 03 1 1 1 1 o “CD 1 1 TD O -X 1 O 1 1 O
1 3 i CL TD 1 1 CJ 1 3 1 cc CL 1 E l 03 1 1 1 CO CD 21 1 1 C O 3 1 1 1

1 CD i 3 1 1 oo 1 03 1 3 1 3 1 1 1 1
4-3 CO 1 1 03 3 O 1 1 l CO

l CL i 3 03 1 1 c 1 3 1 CO 1 o l 03 1 1 1 CO 3 1 TD 1
4-> 2 1 1 1 CO

i CD TD 1 1 1 4—

>

1 1 Li- 1 CD 1 1 CD CD 1
4-> • CD 1 3 1 C/l 4-3 1 TD LO 1 1 TD CD

1 3 CL 3 1 1 sz 1 1 03 3 1 l 1 1 TD T3 1 CO CO -3 1 03 1 CD 1 3 CVJ 1 1 3 3
1 CD i 03 1 1 4-> 1 03 1 CD 1 03 1 1 1 O O 1 r- 3 3 4-3 1 TD 1 CO 3 1 03 1 1 03

i 1 1 1 4—3
1 03 03 1

4—3 1 CJ 1 1 CJ CJ 1 1— o O 1 3 1 03 TD 1 TD X 1 1 TD CO
1 =5 i CD OO 1 1 5 1 03 1 CD 3 • 03 i z: 1 1 1 2 1 03 1 3 4-3 1 3 1 1 3 Z3
1 CL i 4-> 1 1 1 TD 1 O 1 CD 1 CJ 1 1 "O CD 1 -a 4-3 4-3 1 4->

1 TD 03 CD 1 03 2 1 l 03 -Q
i E i 13 1 1 4-> 1 1 CJ 1 1 1 s- CD- 1 S- 03 CD 1 l/l 1 CD TD -X 1 4-> 0 1 1 +->
i O i CL 03 1 1 o 1 CD 1 z 1 CJ l 1 1 03 03 1 03 4-3 CO 1 1 TD 3 <J 1 CO 1 l to TD
1 u i E 4-> 1 1 1 3 1 O 1 Z l CJ 1 1 O 1— 1 TD 3 JD 1 CD 1 3 03 03 1 1 1 03

i o 3 1 1 1 3 1 3 3 1 l z: 1 1 1 3 (D TD 1 1 CD 4-3 CL 1 O 0 1 1 TD CD
1 3 i CJ CD 1 1 4- 1 O 1 o 1 4-3 l 1 1 O TD 1 03 E CD 1 03 1 4-3 CO 1 4-3 4- 1 1 CD 3

i E 1 1 3 1 CD 1 4- 3 1 CD 1 1 CD CD 1 4-> CD CO 03 1 3 1 3 3 1 CJ 1 1 CO CL
1 E i CD 03 1 1 o 1 CO 1 CD 1 CD l S- 1 1 -C -3 1 CO i

—

O CL 1 O 1 4-3 O 1 03 1 1 O CO
i 03 TD 1 1 CJ 1 1 CD "O i 3 i 3 1 1 CJ CJ 1 CL CL E 1 CL 1 4- |—

> 1 4- 1 1 CL CD
l 3 i 3 3 1 1 1 3 1 TD O 1 3 1 4-3 1 1 c c 1 CD E O o 1 3 1 4-> 03 03 1 1 1 O TD
1 o i 03 13 1 1 3 1 O 1 O CJ 1 3 1 3 1 1 3 3 1 .3 -r— 3 CJ 1 O 1 O 3 1 CD 2 1 1 3
1 U_ i

i

1 Li- 1

1

1

1

1 1 1 Ll
1

1

1

CJ 1

1

CJ l

1

Li- 1

1

1

1

Cl Cl 1

1

1— Cl 1

1

CJ 1

1

z CD
1

CD 1

1

1

1

CL 12

i

i

1

1

1

1

1

1

1

1

1

1

l

l CD

1

1

1

1

1

1

1

1

1

1 CD
1

1

1

1

1

1

i 1 1 1 1 1 i S- 1 1 1 1 1 3 1 1 1

i 1 1 1 1 1 l 3 1 1 1 1 1 Z3 1 1 1

i 1 1 1 1 1 l 4-3 1 1 1 CD 1 1 4-> 1 1 1

i 1 1 1 1 1 1 3 1 1 1 > 1 1 Z3 1 1 1

i 1 1 1 1 1 l Ll 1 1 1 1 1 4- 1 1 1

i 1 1 1 1 to 1 1 1 1 1 CO 1 1 1 1 1

i 1 1 1 1 1 l C 1 1 1 CD 3 1 1 3 1 1 l

i 1 1 1 1 O 1 1 1 1 1 CD 1 1 1 1 l

i 1 1 1 1 O 1 1 1 1 1 -Q 4-> 1 1 1 1 1

i 1 1 1 1 h- 1 1 CO 1 1 1 03 X 1 1 CD 1 1 1

i 1 1 1 1 1 1 1 1 1 4-3 LU 1 1 > 1 1 1

i 1 1 CO 1 1 CJ 1 l o 1 1 1 03 1 1 •
1
—

1 1 1

i 1 1 1 1 2: 1 l O 1 VI 1 SZL 1 1 CO 1 1 l

i 1 1 1 CD 1 1 1 h- 1 1 1 E CD 1 1 3 1 1 CJ 1

i TD 1 1 1 3 1 1 1 1 1 1 o 3 1 1 CD 1 1 LU 1

i 03 CD CD 1 CD 1 CD 1 3 1 3 1 CD 1 CJ 1 1 CD CD 1 <J 3 1 1 4—3 1 1 CD 1 CD CD
i CD > > 1 > 1 > 1 4-> 1 CD 1 > 1 1 1 > > 1 3 4-> 1 CJ 1 21 X 1 1 1 > >

l TD i 3 1 1 3 1 2 1 1 1 1 1 3 1 LU 1 CO CD 1 1 1

1 CD i CL CO CO 1 CO 1 CO 1 Li_ 1 CD 1 to i oo 1 1 CO CO 1 Li_ 1 CD 1 1 1 03 1 CO CO
1 +-> i CO 3 3 1 3 1 3 1 1 Z 1 3 1 => 1 1 C c 1 1 1 l 1 1 3 3

i o> CD CD 1 CD 1 CD 1 CD 1 l CD 1 1 CD 1 CD CD 1 >> 3 1 CD 1 CD CD 1 1 -l-> 1 CU CD
1 E i TD 4-> 1 4-> 1 4-> I E 1 1 1 1 E i 4-3 4-> 1 3 03 1 E 1 E E 1 1 3 1

i X X 1 X 1 X 1 O 1 1 X 1 1 O 1 X X 1 03 a> 1 o 1 o O 1 1 03 1 X X
1 —1 i

i

Z2 LU LU 1 LU
1

1

1

LU 1 OO
1

1

1

C 1

1

LU 1

l

1

1

OO 1

1

LU LU 1

1

z: 1

1

OO 1

1

OO 00 1

1

1

1

CL 1

1

LU LU

i

i

1

1

1

1

1

1

1

1

1

1

l

l

1

1

1

1 CO

1

1 Cl
1

1

1

1

1

1

1

1

1

1

i 1 1 1 1 1 l 1 1 CD 1 CL 21 1 CL. 1 1 1 1

i 1 1 1 1 l l 1 1 ©3 TD 1 C_J CJ 1 C

J

1 1 1 1

i 1 1 1 1 1 l 1 1 O 1 CJ 2: CD 1 CJ 1 <c 1 1 LO 1

i 1 1 1 1 1 l 1 1 S- <J 1 CD CO CD 1 CD 1 z 1 1 CVJ 1

i 1 1 1 1 1 i 1 1 CD 1 •< 1 < CJ 1 CD 1 1 l

i 1 1 1 1 1 1 1 1 CO 4-> S- 1 CJ 1 Z 1 1 1 X 1

i 1 1 1 1 1 1 1 1 4-> CD 1 LU 1 >- 1 1 1 1

i 1 1 1
1

1 1 1 1 E CD TD 1 CJ 00 CD 1 CO OO 1 LO 1 1 1— 1

i 1 1 1 1 zt l 1 1 1 CD 1 zz CVJ 1 CVI 1 CVI 1 1 f— 1

i CO 1 CO 1 CO 1 1 CVI 1 1 1 1 4-3 CD O 1 >-
1 CO 1 <C 1 1 1—1 1

—

1

i 13 =3 1 Z3 1 3 1 1 1 1 1 1 1 to Q. 1 oo oo CJ 1 oo 1 X LU z l 1 CJ LU l

i O o 1 O 1 O 1 1 OO 1 1 1 1 >> >> s- 1 X z: 1 X 1 z CD 1 1 CJ Z 1

i 3 3 l 3 1 3 1 1 cc 1 1 1 1 OO 4-> CD 1 CO >- 1 CJ 1
1
— c 1 1 <C 1

1 CD i CD CD CD l CD 1 CD 1 CD 1 1 CD 1 CD 1 CD 1 CD -3 1 oo 1 —1 1 1

— CL 1 1 « Cl 1 CD CD
1 3 i 3 E E i E 1 E 1 3 1 <c 1 3 1 c 1 C 1 r— 4-3 1 OO 1 OO CD 1 oc C 1 1 «=C CL 1 3 3
1 O i o =3 Z5 1 Z3 1 3 1 O 1 1 o 1 o 1 O 1 CO CD O 1 CO z: CD 1 z: oo 1 CJ <c z 1 1 z =c 1 O O
1 Z i

i

i

z Z z 1 Z
1

1

1

1

1

Z 1 Z
l

1

1

1

1

LU 1

1

1

z 1

l

1

1

1

1

z: 1

1

1

(— 1

1

1

1

1

1

c 1

1

1

CJ LO 1

1

1

1

1

1

OO 1

1

1

Z Z

i

i

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l

1

1

l

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l

1

1

1

1

l

1

i 1 1 1 1 1 i 1 to 1 1 1 1 1 1 1

i 1 1 CJ 1 1 CD 1 l 1 CJ 1 CD 1 1 1 1 1 1

i 1 1 1 1 CO 1 CD 1 CJ 1 TD 1 1 1 1 1 l

1 TD i 1 o 1 1 -O 1 l z: 1 -£Z 1 O 1 1 1 1 1 l

1 CD CD i ~o 1 03 1 CJ 1 1 3 1 JD 1 1 CL 1 ,CJ 1 1 1 1 1 1

1 CO O i CD 1 3 1 CO 1 1 CO 1 03 1 -o 1 03 1 1 1 1 1 1 1 CJ
1 O 03 i CO 1 O 1 LU 1 1 1 1 CL) 1 S- 1 sz 1 S- 1 1 1 1 1

i cm- i O 1 • E 1 1 3 1 CJ 1 CD i 1 CD Cl 1 1 1 1 1 00 1

1 o 3 i CL CD 1 4-> 1 1 -3 1 1 03 1 c 1 1 CD 1 4-3 CJ 1 1 1 1 1 O
1 3 CD i O CD -o 1 03 1 C\J 1 4-3

1 CJ 1 > 1 03 1 i—i i S- -o 1 CJ CJ 1 1 1 1 1 CO CO
1 Cl 4-> i 3 CJ O 1 3 1 o 1 oo 1 1 > 1 <D O 1 03 o 1 1 1 1 1 0

3 i CL 03 CJ 1 3 1 o 1 3 1 «=c 1 CJ l TD 1 CJ 1 CJ 1 S- < 1 1 1 h- 1 1 CJ
i 4- CJ 1 CD 1 1 1 O 1 1 z l <C 1 OO 1 1 03 1 1 1 OO 1 1

l ^ i 3 oo -4—

>

1 4-> 1 o 1 03 1 C_) 1 l 1 C 1 O 1— 1 SZ CTi 1 1 1 O 1 1 0
1 CO 3 i o CD <c 1 3 1 CVI 1 z 1 4-> l 1 >— 1 nz CL 1 CJ CO 1 1 1 nz 1 l 1 I—

1

1 O CD i o 4-> JD 1 CVI i <c 1 l CJ 03 l <C 1 1 CL 1 LO 1 1 1 1 l co 1

i CO 3 1 1 oo 1 1 1 1 E 1 IX 1 CO 1 1 1 1 1 CL 1 1 IX <—

1

1 CVI Z3 i 1
—" 1 1 3 1 CO 1 S- i 1 CO 1 CVJ 1 CO 1 1 LO 1 21 1 l CVJ

1 O't CL i cn 1 oo 4-> 1 oo l o 1 LO 1 rx o 1 1 1 1 CVJ TD OO 1 CL 1 CVJ 1 1 l CVJ

1
1— E i (— CO CD 1 1 CO 1 CVI Ll l 1 CD 1 CO CO 1 • CD LO 1 2: 1 1 1 1 T> CO

i oo O i oo CD ZD CO 1 > -O 1 oo 1 4-3
1 1 i 1 1 ZD 1 ZD ZD 1 OO 4-3 OO 1 CJ 1 <c X 1 1— 1 1 CO ZD

1 X CJ i X 3 CL 1 03 1 oo 1 CL 1 oo 1 oo 1 LU 1 Cl 1 CL Cl 1 X 3 oo 1 CD 1 z 1 LU 1 Z 1 X Cl
i c CO 1 \— -SC 1 CJ 1 CL 1 CL CJ 1 OO 1 1 1 CD 1 CD 1 oo 1— 1 Z 1 CD 1

3 i 03 OO 1 (— CL 1 i V
1

1 O 1 1 OO 1 OO oo 1 1 1 h- 1 <c 1 1 OO
i oo i CO -3 CL o 2: 1 CJ 1 <=t 1 <£ 1 1 CL 1 Q- CL 1 OO C- oo 1 CJ 1 2: 1 Cl 1 CJ 1 00 Cl
i 2: i CJ oo 1 CJ C 1 CO 1 3 1 1 CO 1 1 1 z: o z: 1 LU 1 CO 0 1 CL 1 LU 1 z
i <C i

i

i

i

i

<c 1 CJ
1

1

1

1

1

1

1

1

1

1 LU
1

1

1

1

1

1

1

1

1

LU 1

1

1

1

1

LU 1

l

l

l

1

LU 1

1

1

1

1

U_ i

1

i

1

1

Li_ Ll_ 1

1

1

1

1

<C <c 1

1

1

1

1

CD 1

1

1

1

1

CJ 1

1

1

1

1

<C 1

1

1

1

1

CD 1

l

l

1

1

c U_

i

i

i

i

i

i

i

i

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

*

l

1

l

1

1

1

1

1

-

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l

l

1

1

1

l

1

1

£ !

Q_

cn

oox

oozc

Crl

<=£

C=i

O
cj>

>-

Od

<c

i

i

i

1

1

1

1

1

1

1

1

1

1

i

i

1

1

1

1

1

1

1

1 >0
1

1

i 1 1 1 1 +->
i 1 1 1 1 s_ 1

i 1 1 1 c 1 i- i 1 1 1 1 o 1

i 1 1 1 o 1 o i TD 1 1 1 DO 1 4-> 1

i 1 1 1 CL i 1 to ra CD 1 1
4->

1 ra 1

i 1 1 1 to 1 OO CL i ra 1 E o c 1 1 1 TD 1

1 1 1 c 1 23 i TD 1 CD 1 1 1 c 1

!
“p c: 1 1 l CD 1 to i c 1 4-> sc E 1 1 1 ra 1

1
S— L- 1 1 1 +->

1 OO i ra 1 to CJ E 1 1 JD 1 E 1

1
TS CD 1 1 1 X 1 CD i

+-> 1 >> S- ra 1 1 ra 1 1 E
S- 1

TD TD 1 1 1 CD 1 TD %- to i to 1 to ra s_ 1 1 4->
1 CD 1 i~

o 1
C CD O 1 1 1 1 CD ra TD i 1 S- CD 1 1 S- 1 SD 1 o

4- ,
ra C E 1 1 1

4-> 2 S- i 1 oo CD O 1 1 o 1 1 4-
1

+J
1 1 ' >> 1 c +-> ra i ra 1 z: S- 1 1 CL 1 TD 1

TD 1
CO 4—

1 1 1
4->

1 CD 4- TD i E 1 CO DC CL 1 1 1 1
4-J

CD 1 CD TD 1 1 1 CD 1 O c i £- 4-> 1 o 1 1 CD 1 =3 1 CJ
to 1

fo TD CD 1 1 1 S- OO ra i o C 1 O 1 1 C 1 O 1 ra
ZD N 1 1 1 S- 1 o 4->

i 4- ra 1 TD _J 4-> 1 1 1 SI 1 S-
1 -M 1 1 1 CL 1 to to i 1 CD C 1 1 S- 1 to 1

4—

*

' -9 O TD 1 1 1 O 1 C- to i o S- 1 C f— 1 1 1 1 to
I

21 C S- 1 1 1 S- 1 <D O o i +-> o 1 o C 1 1 to 1 to 1 JD
TD l ra 1 1 1 CL 1 to S- 2 i CL 1 ra 1— o 1 1 c 1 TD 1 ra
S- l to TD 1 1 1 1 13 c_> i +-> E 1

4->
1 1 1 S- l

ra 1 CD cz 1 1 1
•

"

1 i 1 c TD to 1 1 1 ra CD
TD * ' O ra 1 1 1 CD 1 S- to i CD 1 o C c: 1 1 S- 1 TD C2
c r— 1

+J TD 4->
1 1 1 CD 1 C o s- i to CD 1 o ra CD 1 1 o 1 c 1

ra o i -r to 1 1 1 ra 1 S- 4- CD i c S- 1 4-> 1 1 4- 1 ra 1 CL
i

s- TD 1 1 1 23 1 CD +->
i Z3 1 4- O) X 1 1 1 4—

>

1 O
to 4-> 1

TS S- 20 1 1 1 CD 1 TD i v_D 4-> 1 z LU 1 1 1 to 1

c /f"'— ra 1 1 1 C 1 O CL i O 1 CD 1 1 c 1 1 CD
° 1 ^ TD c 1 1 I ra 1 E —1

£=
i O 1 1 ra ra 1 c: 1 >

CS) U 1
°- c o 1 to 1 1 CL o i S- 1 CD 1 CD 1 to CD 1 o 1 CD2 1 ra 1 TD 1 TD 1 1 4— o i TD 4-> 1 S- to 1 S- 1 TD E 1 1 TD

<C >S '
°- 4-> 1 S- 1 C- 1 E 1 O 4- o i CD to 1 ra CD to 1 ro 1 S- 1 4-> 1

S- 1 to CD 1 ro 1 ra l CD 1 O S- i to 1 ra S- CD 1 1 ra 4-> 1 ra 1

TD o 1
° to CD 1 TD 1 TD 1 4-> ' 1 CJ i ra 1 to CD 1 SC 1 TD c 1

4-> 1 LL
CD +-> ,

-r- 4-> 4-> ra 1 C 1 c 1 to X 1 CD to i -Q s- 1 o CD 4-> ra 1 CJ 1 c ra 1 £2 1 CO
to c 1 E £Z CD z 1 ra 1 ra 1 20 —1 1

4-> E i o 1 S- CJ 13 1 S- l ra 4-> 1 CD 1 X
O CD 1 CD CD 1

+J 1 1 to Q_ 1 CL CD i —

1

2 1 CD CL Z3 CD 1 ro 1 4-) s_ 1 E 1

CL > l "O S- -Q cz 1 to 1 to 1 1 E to S- i O 4-> 1 E E S_ C 1 CD 1 to o 1 13 1

o c 1 p s_ 13 ra 1 1 1 ^ 4- 1 ra -O o i CO CD 1 E ra 4-> ra 1 1 CL 1 CJ 1 oo
c. •

1
— 1

c_> Z3 to 1 o 1 o 1 CO o 1 X 13 4- i O 2 1 o X to 1 CD 1 O E 1 O 1 2
Cl 1 c

1

1

CJ 1

1

1

2 1

1

1

2
1

1

1

1

1

LU oo i

i

i

C_D 1

1

1

C_D LU 1

1

1

Cd 1 2
1

1

1

1

1

CD 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

i

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 1

—
i 1 1 1 CD 1 1

1 1 1 1 1 CD i CD 1 1 1 S- 1 1

1 1 1 1 1 2 i C 1 1 1 23 1 1

1 to 1 1 1 1 i 1 1 1 4—

>

1 1

1 CD 1 1 1 1 CD i to 1 1 1 23 1 1

1 c 1 1 1 1 C i ra 1 l 1 Li_ 1 l

1 1 1 1 o i CD 1 1 1 1 1

1 -C 1 1 1 1 =c i S- 1 1 1 C2 1 1

1 cj 1 1 1 1 i o 1 1 1 1 1

1 ra 1 1 1 1 i c 1 1 1 1 1

1 E 1 1 1 1 z: z: i 1 1 1 to 1 1

1 1 1 cj 1 1 CO CO i 1 1 1 S- 1 1

1 CD 1 1 LU 1 1 i 4-> 1 1 1 CD 1 1

1 CD 1 1 CD 1 1 i =3 1 1 1 SC 1 1

CD 1 S- 1 1 1 1 i CO 1 CD 1 1 4-> 1 CD 1

> 1 ra 1 1 1 z 1 C_D c_> i 1 > 1 1 G 1 > 1

1 1 1 TD 1 CO 1 LU LU i TD 1 1 1 1 TD 1

to 1 1 1 CD 1 a O i CD 1 1 CD 1 1 CD to 1

c 1 1 1 4-> 1 1 i -M 1 c 1 S- 1 1 1 4-> C2 1

CD 1 CD CD 1 1 1 CD 1 CD CD i 1 CD 1 13 1 O 1 CD l

4-> i E E 1 1 E 1 E 1 E E i E 1 4—

>

1 4-> 1 CO 1 E 4—5
1

X 1 o o 1 1 1 o 1 o o i 1 X CO 1 =3 1 O 1 X 1

LU 1 OO
1

OO 1

1

1

1

_1 1 OO
1

1

1

OO oo i

i

_J 1

1

LU 1

1

Ll_ 1

1

C_) 1

1

—

1

LU 1

1

1

1

1

1

1

1

1

1

1

1

i

i to

1

1

1

1

1

1

1

1

1

1

1 1 1 1 1 i CD 1 1 1 1 1

1 1 1 1 1 i SC 1 1 1 1 1

1 1 1 1 1 i CJ CD 1 1 1 1 1

1 1 1 1 1 i ra > 1 1 1 1 c_> 1

1 21 1 1 1 1 i o 1 1 1 1 C 1

1 «C 1 1 1 1 i S- 4-> 1 1 1 1 > 1

1 Cd 1 ! CD CD 1 1 i CL 1 1 1 1 1

1 1

—
1 1 S- > 1 1 i CL4—

>

1 1 1 1 2 1

1 Cd 1 1 ra •!—
1 1 i ra CD 1 1 1 1 CD 1

1 o 1 1 4-J 1 1 i CL 1 1 1 1 1

1 u_ 1 1 OO •—
1 1 i OO E 1 1 1 1 z

:

1

1 1 1 1 4-> 1 1 i z: o 1 1 1 1 CO 1

1 1 1 K-r CD 1 1 i CO o 1 1 1 1 1

1 _l 1 1 OO CL 1 1 i o 1 1 1 1 1

CD 1 CD o 1 1 E 1 1 i CD 1 1 1 CD 1 CD CD 1 CD

C 1 c CO 1 1 r— O 1 1 i S- 1 1 1 C 1 E C2 1 cz

o l o o 1 i — CJ 1 1 i ra 1 1 l o 1 o O 1 o
2 i 2:

i

i

C_D 1

1

1

1

1

1

<C 1

1

1

1

1

1

i

i

i

1

1

1

1

1

1

1

1

1

2 1

1

1

oo 2 1

1

1

2

i

i

i

1

1

1

1

1

1

1

1

1

1

1

1

i

i

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i 1

1

1

I

1

1

1

1

i

i

1

1

1

1

1

1

1

1

C2 1

1

i 1 1 1 1 i 1 1 1 1 CJ 1

i 1 1 1 1 i 1 1 l 1 o 1

GO i 1 1 1 1 _l i 1 1 1 1 CD 1

Cl. i 1 1 1 1 CL i 1 1 1 1 1 CD

z: i OO 1 1 1 1 z: i 1 1 1 1 E 1 S-

ZD i 1 1 1 1 i 1 1 1 1 ra 1 ra

i OO 1 1 1 1 TD i 1 1 1 1 S- 1 2
i <c 1 1 1 1 c t 1 1 1 1 CD 1

4—

>

i CO 1 1 1 1 ra i 1 1 1 1 O 1 4-
i 1 1 1 1

1—
i 1 1 1 s- 1 O

co i CO 1
1—

1 1 1 o LU i 1 \— h— 1 h- 1 h- 1— 1 CL 1 OO
i to 1 LU 1 1 1 o LU i 1 LU LU 1 1 LU LU 1 1

o3 i 1 LU 1 1 1 CO = i CD 1 LU LU 1 LU 1 LU LU 1 1

i CO 1 ZC 1 1 1 to OO i \—
1 = DC 1 DC 1 DC DC 1 CO 1 O

CO i X 1 OO 1 1 1 z: i CO 1 OO OO 1 OO 1 OO OO 1 CO 1 CO
CO i 1 1 1 1 >- i o 1 1 1 1 2 1

i Cd Q_ 1 X 1 1 1 C_D 1 Cd i 1 >- >- 1 >- 1 >- >- 1 CO 1 CO DO
i OO 1 Cd 1 1 1 CL <C i —

1

1 Cd cd 1 Cd 1 Cd cd 1 => 1 ZD s-

CO i _j CO 1 <c 1 1 1 o3 z: i >- 1 <C 1 c i <c «£ 1 > CL 1 CL ra

C\J i <c 1 z: 1 OO 1 1 z: i oo 1 z: 1 z: z: 1 Cd 1 E\ 1 CJ CNJ 1 1 OO 1 OO 1 1 z: => i c 1 z: z: 1 i z: z: 1 LU OO 1 OO E
C_D 1 OO OO 1 1 2 1 1 Q_ oo i o 1 ZD ZD 1 CD 1 ZD CD 1 > CL 1 CL 13

CD i <£. 2: 1 OO 1 _J 1 1 1 C_D —

J

i o 1 oo oo 1 OO 1 oo OO 1 o 1 OO
z: I Cl.

1

1

1

1

1

c 1

1

1

1

1

1

1

1

1

1

1

1

CO 1 Q_
1

1

1

1

1

1

1

1

1

1

1

CO CL i

i

i

i

i

i

C_D 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Li_ 1

1

1

1

1

1

U_

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

l *
1

1

1

1

1

1

1

1

1

1

*

i

i

i

i

i

i

i

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-X

1

1

1

1

1

1

1

1

-X

1

1

1

1

1

1

1

1

*=c
c_>

ra
4-J
ra

TD
TD

cd a;
c 4->

to •!—

-r- S-

X o
LU

>,
S-
1X3
c
o

2
cd
c

Q-
o
CD
>
CD
TD

IS)2

to
cz
CD
4->

X
LU

-X

•—
' O
E -M
CD ra CD >-

to to OO
to E<
CO CD Q

4-> O
ra to o
4-> >>
ra IS) •

I— _J ra —I =3
CO >-+-)>- CDa s) cz oo c

•=C O C ra
_l O (_J CD I

3>- O l o
: 4— C_> 4-3

FIPS

PUB

(Flowchart

Symbols)

None

Cd.

CD

C_)

or:

P S- O) ro XI
n3 (U U i— S-

O Q- O Z3 03
•r- 03 S- DIU
<+- Cl Q_ C
•r- 03 -O
U (D C +J (D

LD Q- -4—1 Cd C

rouro 03 c cn cd

03 CO CD O iUZC5 4-;
<c

I C «T3 Q_

C 4-> • " 03 •

CD CD
C 4-> '

o> c -

CD CD
cr +->

O') c -

CD CD O
CL C U
>1 CJ) (D

I— 03 CC

E —• o
S- Q_ O
O o (D

O C S- c

S- S- 03

CD Cd
CD CH^
CL C
03 03 *'

O S- C_) O S- CD
CD O CD O
Cd 4- O QZ 4— O

) "O sj- CM CM
• C «—i S- '— CM S~

) 03 • O • C
CO 4- CD CO 4- CD CO

) CO X DIX COX O
: I— CD C (DC *r—

CD*—' CL 03 •—
< CL 03 *—iD

;
CD O0 03 -C C/3 03X100 CD

i CL Z I— O 2^ I— 02: c •

P CD CD
C CL C CO XT
CD 03 03 C O I

CD I— -C O C

~0 CD O O

C S- P>
CD CD 03
CL +-> O

> "O C O

CO CD
r- CL CD
CD 03 OO

CL O CD h- C
C 4-> Cd 03
ZD 03 "O XZ

C Q_ CD O
P- O => P> S-

O 4- l 03 CD

CD -C •

CL O CO I

03 O X

CD CO
•i- CL CD l

+->O0 *i-

03 —- +->

E S-
S- 03 CD

O CM CL

S- CD S- P

CD C
CL OCD

CLO
03 CM XI 4->

Cl • O 03
CO C E

"O X I—I s_

CD I O
CD «

:oo"oc:oocoooo-r-oocc

10

STANDARDS IN CAM SYSTEMS

THE IMPORTANCE OF STANDARDS IN CAM

TYPES OF STANDARDS

Why Voluntary Standards Work

Standards for Computer Aided Manufacturing

STANDARDS RELEVANT TO CAM

Standards Relevant to Manufacturing

Standards Relevant to CAM Software

Standards Relevant to Computer Systems

11

THE IMPORTANCE OF STANDARDS IN CAM

The applications of computers to the control of machines represents a fundamental
revolution in manufacturing technology. This trend, which first started with numerically
controlled machine tools, has its logical extension in a totally automatic factory which
can run seven days a week without human intervention and can automatically reconfigure
itself to produce custom designed products at mass production costs.

Numerically controlled machine tools are now widely used and understood in manufac-
turing in a stand alone context, even for small shops. There is a new technology emerging
in which general purpose NC machine tools are integrated with automated materials
handling systems and higher level computers for planning,, scheduling and control. Such
systems are able to perform machining operations on randomly sequenced parts.

Such systems range from the Sundstrand Omni line and the Kearney and Trecker Flexible
Manufacturing System, which are operational at Ingersoll-Rand, Caterpillar and Allis Chalmers,
respectively, to the proposed Japanese Methodologies for Unmanned Manufacturing Systems
program. The Japanese program will result in a prototype automatic factory for the
production of machine tool parts. The predicted increases in productivity in this facility
will be 7000 to 8000 percent compared with a conventional facility.

The key to productivity increases in such manufacturing systems is the coupling of
the various elements of the manufacturing process into an integrated system with a

centralized computer control system and data base structure.

In a larger context, the integration of computer aided design with computer aided
manufacturing, that is, systems in which design of the part creates a geometric data

base which directly results in control programs for the NC machine tools, and in which
computer systems are used in process planning, inventory control, scheduling, and control

of production, offer even larger problems of development and integration of many dissimilar
parts. There is now no company offering complete systems on the market.

The largest manufacturing industries have created their own internal integrated systems
which are specific to their needs and which are generally held as proprietary and not

placed on the market. One can go to a machine tool company and buy NC tools, to a

computer service company and buy time sharing support for programming those tools, and

one can go to many sources and buy special computer programs or computer programming
support for special applications. Further, one can buy stand alone graphic systems
including integral software programs, but often the problems of putting together an

entire CAD/CAM system for all of these components involves so much engineering and software
development effort as to make such systems practically and economically viable for only
the largest firms.

The key to developing and using integrated computer aided manufacturing systems in a

free marketplace, particularly for medium and small firms who cannot afford special

software and engineering, will be the use of adequate standards to insure the compatabi 1 i ty
of modular system components obtained from competitive suppliers.

TYPES OF STANDARDS

The oldest standards, and the usual standards that one normally brings to mind, are
those for weights and measures, that is, units for length, weight, and volume that are
the basis for commerce and trade and for science. These standards originally were based
on dimensions of the human body, which produced measures that were reproducible wherever
there was a man, such as the cubit or the yard, the fathom, the foot, and digit, and
so on. These units in turn produced artifacts such as yardsticks. For example, in the

16th Century a measuring rod was defined as follows:

"to find the length of a measuring rod the right way and as it

is common in craft . . . take 16 men, short men and tall ones
as they leave church and let each of them put one shoe after
the other and the length thus obtained shall be a just and
common measuring rod to survey the land with."

Such standards of weights and measures are now generally based on independently
reproducible constants of nature rather than artifacts and are mandatory and controlled
by law.

The second class of standards are those set for consumer protection, in the public
interest, such as standards involved in building codes, in pollution control, and in

the flammability of carpets, draperies, and children's sleepwear.

The third class of standards are voluntary industry standards which are set by

consensus agreement among concerned parties. There are now some 20,000 voluntary
standards in force which have been created by more than 400 organizations, covering a

multitude of products, practices, test procedures, materials, and other characteristics
which have been found to be in the interest of those parties involved to reach a common
understanding and common practice.

The driving force behind voluntary standards is economic. The first step in this

direction occurred at the start of the 19th Century when Eli Whitney produced the first
rifles from interchangeable parts which obviated the need for handwork in assembly. Pro-

duction became simpler and less expensive. Mass production is the logical extension of

this concept through an entire industry, and it requires standardization through the
entire economy. In fact, it is hard to imagine a time during this century when nuts and

bolts wouldn't fit together unless they came from the same manufacturer. Such a situation
would obviously bring modern assembly lines grinding to a halt.

De facto standards can be created by common usage or by oligopolistic markets such

as exist in the computer field. Such standards are usually internal company standards
that are picked up by others using or interfacing to that company's products. An example
is the existence of a billion dollar independent computer peripherals industry that produces
products that interface with EBCDIC as the code for data interchange, in conflict with
the ANSI Standard (ASCII). EBCDIC is thus a de facto standard in the industry.

Finally there are internal company standards that have been set by fiat, planning,
or historical accident. Such standards are necessary to the efficient operation of any
large organization and can become extremely rigid and formalized. An example, is a

part or drawing numbering scheme. However, they are generally unique and are not relevant
to the Air Force ICAM program.

Why Voluntary Standards Work

Voluntary standards work because of the economic forces that are involved. Standards
can be a powerful management tool to improve efficiency and reduce costs.

13

In 1920, Herbert Hoover initiated a study of six industries as President of the
Federated American Engineering Society. The conclusion was that nearly 50 percent of the
cost of production and distribution could be eliminated through standardization and simpli-
fication. Fifty percent of the costs of production and distribution is worth the large
amount of effort needed to reach voluntary standards in any manufacturing industry.

Standards are not necessarily fixed and inflexible. Obviously, any vol untary system,
can only work as long as the parties involved believe the standards are useful. When
change is appropriate, change occurs under a voluntary system.

Standards for Computer Aided Manufacturing

Most engineers and computer scientists readily agree that modular design is a good
philosophy. Indeed, that is the concept that is most appropriate in CAM. The standards
that are most needed for computer aided manufacturing systems are the interface specifi-
cations that allow all of the various modular components of manufacturing systems, computer
programming, and the computer language and standards that will make the software independent
of the specific hardware environment. This concept is particularly important to medium-
and small-size firms, those below the top 1000 firms who account for 60 percent of the
value of shipments in the discrete parts manufacturing industries.

In many cases the existance of an appropriate interface can actually stimulate
technological innovation and market place competition. The development of numerical control
and APT offer an excellent example of this concept. When NC tools were first installed
in the aerospace industries between 1958 and 1960, it was almost impossible to make tapes
that ran tools. Each different system had its own tape sizes, data codes, formats, servo
characteristics and programming requirements, and the programs had to be figured out with
a hand calculator and punched on a Flexowriter. This state of chaos was brought under
control by standards that are now controlled by Electronic Industries Association Com-
mittee IE-31 on Numerical Control. Standards were necessary for widespread industry use
of NC.

The APT language, which was created in this environment as a computer program to
prepare the tapes for all of those dissimilar and incompatible machine tools, was created
in a two level structure, where the APT processor produced a CL (cutter location) data file

which was then run through a post processor to convert it to specific output format for
a given machine tool.

This CL tape or CL file has become as excellent interface standard for computer aided
manufacturing systems. For example, the interactive graphics systems now available from
several suppliers can produce a CL data file which can be directly run through existing
post processors. At this point, from the point of view of information flow in a computer
control hierarchy, all of the machine tools are functionally equivalent. In fact, one
new CNC system takes CL file as direct input.

This concept of standard interfaces is very powerful and if extended into a total

manufacturing system, would allow the possibility of creating a system out of modules
bought from competitive manufactures. A1 ternati vely , large aerospace prime contractors
could create proprietary application modules to maintain their competitive position
without the total cost of overall system design and implementation.

In addition, if the system modules are written in standard languages that are
machine independent, then the modules can be transferred to other users and be integrated
into a total system without special engineering or software development.

The Air Force has recognized these concepts in the Statement of Work for the NBS

support project. The next section will consider the identification of the standards

relevant to the Air Force ICAM program.

14

STANDARDS RELEVANT TO CAM

There are three distinct architectures involved in a CAM system. While these are defined
in more detail by Appendix B, the standards which are relevant to these architectures are
discussed here.

Examples of Standards relevant to Manufacturing :

drawing specifications
fastener standards
tooling standards
safety standards
pallet standards
part numbering conventions
quality control standards

Examples of Standards relevant to CAM:

data base formats
NC part programming languages
group technology coding schemes
standard process plans
inventory
programming languages for robots and automatic test equipment
CAD/CAM interface

Examples of Standards relevant to Computer Systems :

communication codes and protocols
documentation standards
programming languages
data base management systems
media standards.

In considering the standards relevant to the Air Force ICAM program, NBS has made
the following decisions:

1. No manufacturing standards will be considered. Most of these standards are
internal company standards. Hence arbitrary decisions by the Air Force or

ICAM contractors will become valid de facto standards. Better yet, every effort
should be made to make the ICAM software independent of such detailed data formats

so that companies may continue to use internal standards for such things as part
numbering. This will maximize the utility of ICAM software. Standards on

hardware (tooling, fasteners) will be well known by the designer of new equipment
under the ICAM program and can best be selected at the time of implementation.
Material will be provided to the Air Force separately on the metric issue.

2. In the CAM area, only NC part programming languages and the interface with design
will be considered. There are formal standards in both of these areas. Group
technology codes will not be considered since that is the specific subject of

study under the ICAM program. Programming languages for robots are not stan-
dardized, and ATE and process control languages are oriented to electronic testing
and continues process control rather than discrete part batch manufacturing,
which includes air frame manufacturers.

Again, because of lack of formal standards, the Air Force can make decisions that
will result in de facto standards but should strive to create a system that will

allow each user maximum flexibility in implementation. The CAM-I process planning
system (CAPP) is an example of this concept since it allows use of any group
technology coding scheme.

15

3. Standards for computer systems will receive the bulk of the attention of this
report. Three key concepts will be pursued in evaluating standards:

0 System integration: data interfaces between CAM application programs
0 Software portability: interfaces between CAM programs and host computer systems
° Distributed processing capability: interfaces between computers in distributed

system

The second concept is the key to widespread utilization and impact of the Air
Force program. The third concept, distributed processing capability, will be

important if ICAM is to remain relevant over any length of time. The rapidly
dropping costs of mini and microcomputers and the availability of software
to create and utilize distributed processing and distributed data structures
indicate that the next generations of computer systems will be distributed in

nature.

Within this set of assumptions, then, the standards that are relevant to the Air
Force ICAM program, in priority order are:

A. Communications Standards
B. Programming Languages
C. Documentation
D. Validation and Testing

v

E. Media Standards

In addition, standards and common practices for operating systems and data base

management systems will be discussed to identify the technical issues involved
system integration.

16

1

THE AIR FORCE ROLE IN STANDARDS

INTRODUCTION

ICAM Standards Office
Existing Standards Organizations
Programmatic Objectives

PORTABILITY OF SOFTWARE

Software Development Philosophy
Standard Programming System Definition
System Validation
System Portability Requirements
Programming System Implementation
System Primer and Reference Manual
Documentation Guidelines and Aids
System and Application Program Testing
Summary
Recommendations

INTEGRATABLE MODULES

Applications Program Interfaces
Data Base Interfaces
System Interfaces
Peripheral Interfaces
Recommendations

DISTRIBUTED DATA PROCESSING

Standards for Distributed Systems
Recommendations

EXCHANGEABLE MANUFACTURING DATA

Engineering Drawings
Digital Data Package
Recommendations

17

The goal of complete computer integrated manufacturing throughout the
aerospace industry requires the interaction of a multitude of functional
modules some of which are already in limited use, some just conceived, and
others not yet developed. Coordinating the development of this variety of
technologies from an equally large number of different contractors and doing
it in such a say as to have each module fit into the architecture of an inte-
grated CAM system would appear to some to be an impossible task.

The goal, however, becomes achievable when approached through the creative
use of formal standards, definitive technical guidelines and precise ICAM
program policy. These three techniques will allow the complete definition
of interfaces between ICAM modules and their environment. Where interfaces
match, modules can fit together and system integration becomes possible.

Standards are an essential component of the ICAM Program; essential for
the development of the ICAM modules, essential for their successful inte-
gration, and essential for encouraging the widespread use of the products
developed. They are primarily an arbitrary solution to a recurring problem.
Therefore, it is important that any standards evolved by ICAM be relevant
to the solution of problems as they are normally perceived and acted upon
by various classes of users. Equally important is that they be sufficiently
well documented that they can be easily understood and implemented by poten-
tial suppliers of the products.

It should be remembered that the standardization of_ a product, CAM
module, interface or technique is infinitely more important than standardiza-
tion on it. In other words, the establishment of an acceptable functional
definition of the product is the most difficult and meaningful part of
standardization. If this part is done well, that is if it results in broad
implementation and use, then informed management decision policy can be
formulated. Policy can be set regarding the strictness or looseness of the
standards enforcement and the degree to which a product's use must be
considered mutually exclusive in relation to the use of similar products.
Therefore, standardization effort in the ICAM Program must be viewed
as an activity which will create management options by making nonstandard
things more understandable, usable, and controllable rather than an activity
which limits options.

ICAM Standards Office

So vital are standards to the successful realization of ICAM program
objectives that a Standards Office should be created as a focal point
for coordination, documentation, and standardization activities. Functions
of this office would include:

Coordination with the NASA effort on Integrated Program for Aerospace
Vehicle Design (IPAD) to mutually define the CAD/CAM interface;

Cooperation and support of various voluntary standardization activities
and of the development of FIPS and MILSPEC standards when necessary;

Development of local ICAM program guidelines where necessary for areas
such as documentation and programming standards;

ICAM data base management system administration;

Maintenance and distribution of system definition, software tools, and
documented ICAM software.

18

All subsequent recommendations assume an ICAM Standards Office. The
minimum staff of such an office would be three professionals: one responsi-
ble for the CAD/CAM interface, one would be the Data Base Administrator, and
one responsible for maintenance of the system definition and documented
ICAM software. Additional clerical staff may be needed as the ICAM program
matures

.

The ICAM Standards Office will have to contend with three general types
of relevant system standards, namely,

True standards that exist and must be maintained, improved, corrected,
reimplemented, tested, documented, etc.;

Those that do not exist and that therefore must be created, then
maintained

;

De facto standards which are really not standards at all but which work
and therefore require practical consideration.

All three types will require a commitment of resources if they are to remain
or become responsive to ICAM requirements. Table 1 summarizes the various
standardization efforts to direct interest to the ICAM program and the
degree of Air Force commitment which is recommended by NBS. This commitment
need not be of direct involvement of the program staff. Rather, it would be
wise and more effective to arrange expert technical representation on the
various standardization activities. The technical representatives could
intelligently and authoritatively express ICAM needs and be in a prime
position to analyze the best use of the developed standard in ICAM products.
This function would be given the emphasis of a primary mission and not as
a collateral duty assigned to a member of the ICAM staff.

Active Standards Organizations

Voluntary industry standards for products and engineering procedures are
set by consensus agreement among concerned parties. There are now some
20,000 voluntary standards in force which were created by more than 400
organizations, covering a multitude of products, practices, test procedures,
materials, and other characteristics which were found to be in the interest
of parties involved to reach a common understanding and a common practice.

The driving force behind voluntary standards is economic. In a study
that was done in the 1920's on standardization during World War I it was
found that the cost of production and distribution could typically be reduced
as much as 50% through standardization. Cost figures that are comparable
to that figure are possible in dealing with computer aided manufacturing
systems

.

Standards for numerical control and CAM are voluntary standards. The
second interim report has identified 64 standards which apply to computers
in manufacturing. These standards have been developed by several different
organizations

:

Electronic Industries Association

The EIA has an engineering committee (IE-31) on numerically controlled
machines. This committee has been in existence throughout most of the

history of numerical control, and is responsible for those standards
that will stimulate the interchange of information between different NC

systems, particularly paper tape size, command and data formats, and

electrical interfaces between numerical controls and machine tools. The

committee has attempted not only to standardize de facto marketplace
practices, but to play a role of leadership by issuing bulletins that point
out preferred directions for design and implementation of various aspects
of machine tool control systems.

19

Table 1 - Participation on Standards Groups

Degree of
Technical Area Standards Group Participation Technical Objectives

COMMUNICATIONS CODES ANSI X3.4 Monitor Maintain awareness of basic
ASCII code.

PROGRAMMING LANGUAGES
FORTRAN ANSI X3J3 Monitor Insure 1977 revision is

made available from ICAM.

COBOL ANSI X3J4
FIPS TG-9

Moni tor
Moni tor

Extract methodology and
guidelines for input to

programming policy.

PL/I Monitor Define useful subsets to

run on smaller computers.

PASCAL

DATA BASES
CODASYL ANSI/X3/SPARC Moni tor Identify the need for ANSI

Standards in DBMS.

FIPS TG-24 Active Provide ICAM requirements
for DBMS in a distributed
system environment.

NC LANGUAGES
APT ANSI X3J7 Active Influence Complete Specifi-

cation of language for
portability.

FIPS TG-19 Acti ve Develop Federal Standard
and guidelines for use.

COMPACT ANSI X3J5 Review Maintain awareness and
watch for CLTAPE output.

CAD/CAM INTERFACE
Physical Object
Description

ANSI Y14.26 Monitor Analyze for use in I CAM 1

s

interface with Design.

CAM- I Geometric
Model ing

Monitor

Electronics IPC Review Evaluate developments for
use with Avionics systems.

General NASA IPAD Moni tor Resolve any incompatibili-
ties which are noted.

COMMUNICATIONS
Data Terminal Equip IE-30 Active

Peripheral Interfaces ANSI X3T9 Acti ve

Link Level Protocols ANSI TG-4 X3S3 Monitor

Packet Network
Protocol

s

ANSI X3S3 Moni tor

Host to Host Protocols None

DNC Interface IE-31 Active Help refine interface
descriptions

.

20

The EIA committee has set standards on character codes; formats for
numerical control tapes; and interfaces between numerical controls and
machine tools, peripheral equipment, and higher level computers.

National Machine Tool Builders' Association

The NMTBA develops various publications relevant to the manufacture,
procurement and utilization of machine tools. These include a Directory
of NC Machine Tools and Related Products, an NC Character Code Cross
Reference Chart, a Definition and Evaluation of Accuracy and Repeatability
of NC Machine Tools, Common Words as They Relate to NC Software, and
Guidelines for the Measurement of Machine Tool Utilization.

Note: For a listing of standards on the components of machine tools and
on the design, manufacture and sales of machine tools, the reader
is referred to the Standards Index published by NMTBA.

American National Standards Institute

The American National Standards Institute is the nationally recognized
coordinator of voluntary standards development and the clearinghouse
for information on national and international standards. Its federated
membership includes some 180 voluntary organizations representing virtually
every technical discipline, every facet of trade and commerce, organized
labor, and consumer interests. These organizational members join with some
1000 individual companies, representing both large and small business,
and with representatives of government at federal, state, and local levels
in programs dedicated to meeting this country's needs for national consensus
standards through voluntary action.

ANSI's approval procedures for recognizing standards as American
National Standards ensure a consensus of affected interests. Its require-
ments for due prodess and the right to appeal actions at several levels of
review establish confidence in, and credibility for, the standards it
approves. It provides and administers the voluntary system through which
standards, no matter what their origin, may be recognized and accepted
nationally and internationally.

Whereas anyone may submit proposed American National Standards to the
Institute, the Institute recognizes only three methods for the development
of evidence of consensus for approval of American National Standards. These
are the Accredited Organization Method, the American National Standards
Committee Method administered by the ANSI X3 Committee, and the Canvass Method.

Computer Aided Manufacturing-International

CAM-I is a non profit organization devoted to advancing the state-of-
the-art in computer aided manufacturing. CAM-I has an active standards
committee. Current projects include a glossary of CAM terms and an analysis
of the architecture of CAM.

International Organization for Standards

The ISO is a worldwide federation of national standards institutes
(ISO Member Bodies) . The work of developing International Standards
is carried out through ISO Technical Committees. Every Member Body
interested in a subject for which a Technical Committee has been set up has
the right to be represented on the Committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in
the work. The United States is one such Member Body and is represented on
the various ISO committees by ANSI.

21

Draft International Standards adopted by the Technical Committees
are circulated to the Member Bodies for approval before their acceptance
as International Standards by the ISO Council. ANSI generally adopts
in total those ISO standards it feels have merit. It is recommended thatthe Air Force should consider ISO standards for informational purposes onlvand not for adoption. 1

International Consultive Committee on Telegraph and Telephone

CCITT is the French abbreviation for the International Consultive
Committee on Telegraph and Telephone which sets standards primarily in the
field of communications. In most nations of the world CCITT recommenda-
tions are given the force of law. This is not true of the USA. The CCITT
is an organ of the International Telecommunications Union (ITU) which
is reported to be the oldest international standardizing body in the world.
The ITU is now an organ of the United Nations, The USA is represented on
the CCITT by the the US State Department in contrast to the ISO where the
USA is represented by ANSI.

Society of Manufacturing Engineers

The SME has a standards committee that is currently evaluating standards
for computer aided manufacturing systems. Present projects include a
newsletter of CAM standards and an analysis of the architecture of CAM.
SME publications include technical papers, reports and text books on NC
and CAD/CAM.

Numerical Control Society

The Numerical Control Society Standards Committee has been active in
identifying and promoting those standards which apply to NC and CAM.
While the committee does not write or set standards, they have recently
published a directory of standards for NC machine tools and for the use
of computers in manufacturing.

Aerospace Industrial Association

The AIA sets standards relevant to aerospace manufacturing. These
standards are issued as National Aerospace Standards (NAS) and include
machine tool specifications, systems configuration specifications, and
standards adopted from EIA and ANSI.

Department of Defense

DoD writes the bulk of standards that influence Federal procurement of
NC and CAM equipment. These military standards and military specifications
primarily cover machine tool specifications. DoD issued military standards
are available from the Navy Publications and Forms Center.

National Bureau of Standards

NBS administers the Federal Information Processing Standards (FIPS)
Program which develops standards for Federal procurement and use of
computer systems. Whenever possible these FIPS standards adopt existing
ANSI voluntary industry-user standards. However, the FIPS Program may
develop in house standards or cite those developed by other industry
standards groups to satisfy the requirements of the Federal ADP Community.
The FIPS program is organized around interagency Task Groups each of which
addresses a single standardization area. Currently there are 16 Task
Groups. Membership is open to all agencies of the US government. Draft
standards developed in the Task Groups are submitted to NBS for coordination
with all Federal agencies and with the public and industry. Final approval
is by the Secretary of Commerce on behalf of the President. FIPS standards
are mandated in all Federal procurements and can only be waived when justified
by the head of an agency. Copies of standards are available from the
National Technical Information Service of the Department of Commerce.

22

Programmatic Objectives

In developing a proper role for the Air Force in this area, it must
be recognized that a standard is never an end in itself, but rather a means
to an end. Therefore, a careful mapping must be made of program objectives
and the manner in which these objectives become more attainable through the
creation and adoption of certain standards. The National Bureau of
Standards endorses the Air Force view that there are four programmatic
objectives that are essential to the success of the ICAM program.

Integratable Modules Distributed Data Processing

Portability of Software Exchangeable Manufacturing Data

These programmatic objectives, diagrammed in Figure 1, will strongly
influence the Air Force role in ICAM standardization.

Each objective will now be examined in detail with specific recommenda-
tions made regarding required standards, guidelines, policy and new
developments

.

ANSI 3.37-1977
IPC-D-350A

Validation
Testing
Certification

Documentation
DBMS Administration
Software Maintenance

Figure 1 - ICAM Programmatic Objectives

23

Standard

Standard

Programming

Application

System

Module

Definition

—

J

Definition^

!

v-* c/5 a> a>m >, g a
O C/> 0) CO

-^AC-

ID o
O *H O

» C w H
u d Cd O
W C ^ T3
d) Cl t>0 o

<D X
c u U
•H C Q>

£ ^ x

&©

H *-»

/

/

/

/

/

CO
4->

CJ
3
“O
o
Q_

+->

c
CD
E
CL
o
CD
>
CDO
E
03
S-
CD
O
Q_

CD
S-
3
CD

24

PORTABILITY OF SOFTWARE

The ability to transport computer programs among different computer
systems with a minimum of software engineering is an essential component of
the ICAM Program; essential for achieving the Air Force objectives to
stimulate the widespread use of integrated CAM systems and essential for
meeting the Department of Defense objectives to provide good technology
transfer

.

While many will agree that application program portability is desirable,
most will disagree on how to achieve it. Obviously the specifying of a few
ANSI standards will not produce the desired result. Many more elaborate
schemes have been tried -- most having only limited success. Some have
sought a common subset of a programming language which will execute on a
variety of different configurations. One shortcoming of this approach is
that it results in such a limited language set that coding becomes very
inefficient. True portability of applications programs without sacrificing
language power demands attention to minute detail in the definition, specifi-
cation, documentation and testing of both system and application software.

Software Development Philosophy

Such an approach was used very successfully with the MUMPS programming
system. It evolved over a three year period from several proprietary language
dialects into a widely used, public domain programming system capable of
easily transportable applications programs among 23 configurations of 15
different computer manufacturers. Experience gained by NBS personnel from
the MUMPS success story has been formalized and tailored to address Air Force
needs for an ICAM software development philosophy to achieve application pro-
gram portability. Figure 2 depicts the major segments of this philosophy
with the double vertical lines indicating the separation of system functions
on the left from the application program functions on the right. The model's
notation uses squares to indicate a document or set of papers and circles
to indicate a computer program. Vertical lines indicate dependence of a lower
entry upon a higher one. Horizontal lines indicate influence or interaction.

Figure 2 is intended to present a model of a software development
philosophy which summarizes the processes and products that should exist or
be brought into existence for the orderly development, testing, and manage-
ment of applications programs such that they will be transportable across
different computer lines. As this model represents only a single programming
system, there will be one such model for each language used, i.e., FORTRAN,
COBOL, PL/I, etc.

The system software which results from the definition, specification,
implementation and testing on the left can be viewed as an "aid" to the
development, testing, and operation of the applications modules shown on
the right. Since applications programs must be expressed in a language
that is acceptable to the computer, the construction of the system software
which interprets that language becomes of critical importance. It defines
the media of communication between man and machine, and much of what will be
easy or difficult for the man in this relationship will be a direct result
of the quality of this system software, its documentation and its techniques
for testing and debugging of programs. Each of the functional elements of
this software development philosophy will now be examined.

25

Standard Programming System Definition (Si)

i

This is the principal system element in the model. It is a meticulous

and comprehensive functional definition of the programming language. The

term "standard programming system definition" should evoke the image of a

public domain document, one that is the result of a consensus arrived at by

a representative group of interested users and suppliers, and one that has

been used as the basis for successful implementations, hopefully on a variety

of computers. Of the hundreds of programming system definitions in everyday

use, only a few of them can qualify as standards. To date, only five

programming language system definitions have been submitted for consideration

as National or Federal Standards: FORTRAN , COBOL ,
PL/I, MUMPS, and BASIC.

Many of the newer system tools are highly proprietary, and no standards

action is currently being taken on them. What this means is that the Air

Force must either sponsor a variety of standardization activities that it

feels are needed or resign itself to the use of proprietary products and the

attendant miseries of sole source procurements, hardware dependencies, and

the like. Clearly the route is easier if standardized products are chosen for

Air Force use. However, ICAM may not wish to prohibit the use of non standard
languages where their capabilities are superior. In these cases an effort
should be initiated to formalize the Programming System Definition through
a concensus opinion of users and suppliers so that compilers may be implemented
on other computers to effect portability.

By way of clarification, the suggestion here is not that end products
like compilers, data base management systems, and operating systems, should
be in the public domain, but rather that standard definitions, upon which such
products can be based, should be in the public domain. This approach is
sound from a business standpoint, in that the definitional activity becomes
a resource-sharing operation, thereby attracting to the task of orderly sys-
tem definition, growth, and maintenance many of the most talented and
interested individuals from the user and supplier communities. Also the
implementation activity is strictly a free enterprise operation in which
suppliers are rewarded for their ingenuity and innovativeness, and thereby
are encouraged to separately build, from these standard definitions, ever
more capable and efficient standard products.

System Validation

Functions in this area represent elements of the first phase of system
testing, that of system validation, wherein an assessment is made of the
degree to which a programming system implementation such as a compiler (S 9

)

conforms to the standard definition (SI) which it purports to follow.
Shown in Figure 3 the actual components of such a test are a supplier-
developed programming system implementation (S9) and system validation
routines (S8). The routines consist primarily of data and are specific to
the standard programming system in question (SI) but are implemented in a
general fashion that enables them to interact with any product (S9) that is
based on the standard definition (i.e., any product that follows the develop-
ment plan depicted by the vertical path SI, S3, S9). The validation routines
are then "run" together with the programming system implementation, (S9), to
provide a pass/fail analysis. Upon completion of the test, the programming
system implementation (S9) is classified as either valid (Sll) or invalid
(in which case it remains an "S9" product) . As can be seen in the figure,
establishment of programming system validity is crucial to the development
of portable application programs

, as it provides the single system "link"
with application programs (A4

)

,

thereby making such development possible.

26

Changes

Standard
Programmi ng

System
Definition

(SI)

Test,
Maintenance &

Integration
Methodology

peratinc
Manual

1 Difference

s^Operati nc

nVlanual

9
1

Reports

Figure 3 - System Validation

A few words might be said here
about the "difference reports" that
are shown accompanying the validated
programming system (S 1 1) . In order
to be a constructive aid to standard-
ization, one that will be used by both
implementors and users, the validation
process should support rather than
interfere with the other important
processes of system definition,
specification, implementation, docu-
mentation, and maintenance. A re-
commended way of doing this is to
allow, and in some cases, even en-
courage differences in all of these
areas so long as application program
portability objectives are not compro-
mised. The following is an example of
how this can be done. Assume that
a supplier "extends" his specification
(S3) beyond the standard (SI)

,

implements new, nonstandard features,
and incorporates them in his pro-
prietary product (S 9 , Sll) . The
supplier will then want to document
these extensions in his instructional
literature. However, this is not
sufficient for the user who wants to
preserve program portability, as the
use of these extensions will render
his application programs nonportable.
Such a user will require notice of
the presence of the extensions so
that he can invoke a management
prerogative to either permit or pro-
hibit their use. Since the notice
must precede the choice, the notice
should always appear; its ideal place
is in a document similar to the port-
ability requirements (S7)

,

whose
purpose is to give an "early warning"
of impending problems. If an extended
system implementation (S9, Sll) is
chosen for operational use, then the
user should write an installation-
specific version of the portability
requirements document which clearly
delineates policy regarding the use
of nonstandard constructs.

System Portability Requirements

This document originates in the standard programming system definition
(SI) and may even be an appendix to that document. Its purpose is to high-
light, for the benefit of implementors and application programmers, aspects
of the system that must be accorded special attention if program transfer-
ability (i.e., portability of application source code between various system
implementations) is to be achieved. It makes an a priori identification of
potential problem areas that one could be expected to encounter during the
specification phases of standard systems (S3) and standard applications (A2),
and issues appropriate cautions regarding the definition and implementation
of system extensions and, to application programmers, corresponding cautions
regarding the use of such extensions.

27

Changes

Sta
Progr

Sys
Defi

ndard
'ammi ng

tem
nition .

©
> f

Programmi ng
System

Implementatior
Specs

jDi fference Reports
iperati nb
-Manual

Figure 4 - System Implementation

Programming gystem Implementation

Products required for the imple-
mentation of a validated programming
system are shown in Figure 4 . Pro-
gramming system implementation speci-
fications, (S3), are owned, developed,
and maintained by the various system
suppliers and consist of the standard
programming system definition (SI)

,

with or without extensions, and are
augmented by configuration-specific
implementation instructions.
These specifications serve as the
basis for an "interim" product, a
programming system implementation
(S 9) and the validation version of
that implementation (Sll)

.

System Primer and Reference Manual

A primer (S5) and a reference
manual (S 6), represent two different
'levels of training aids, the former
for the novice technicial, the latter
for the more experienced one. They
serve as a bridge between system
implementation (S3) and application
implementation (A2) . Both can be
developed centrally as part of the
definition phase (SI) , thereby en-
abling potential implementors to share
costs, without risk of violating
antitrust laws. Furthermore, imple-
mentors who find it necessary or
desirable to extend their system
implementations beyond that of the
standard may extend these documents
accordingly

.

Documentation Guidelines and Aids

Program documentation guidelines (S4) and automated documentation aids
(S10) , represent two system products that are indispensable to the program
preparation process. The guidelines (S4) are specific to the programming
system in question, taking into consideration certain eccentricities of that
system and the resulting need for lucid representation of logic, data, etc.
The automated aids are computer programs that render the system "self-
documenting .

" These are an optional extension to the system guidelines.
They encourage and assist programs in the production of detailed, uniform
application program documentation.

28

SYSTEM AND APPLICATION PROGRAM TESTING

Figure 5 shows how criteria used for testing an applications program
closes the loop in this philosophy of software development. The testing
of the applications modules produced insures that they do in fact conform
to the criteria established in the test methodology (S2 and A3). Application
Validation tests (A5) certify that an implemented module satisfies the
problem to be solved, that it adequately detects and handles all erronious
input data and that it is coded in acceptable programming language for
probability requirements. Dynamic tests (S12 and A 6) are those which probe
the behavior of system software or application programs while they are in an
operating state. The tests differ substantially from the static tests
performed under system or application validation (

S

8 and A5) . Dynamic
measurable behavior generally includes timing and memory space utilization.

In brief, dynamic system tests are ones that probe the behavior of

system components (e.g.~^ compilers ,
operating systems, data base management

systems, hardware devices, etc.) either individually or in combination; they

are "driven" by hooking them on to "live" applications (S/A, resulting from

the interaction of Sll and A4) or by hooking them on to simulated applications

(S/A, resulting from the interaction of Sll and A 6_, where A 6 is a "rigged"

substitute for a live application (A4)). Dynamic application tests, on the

other hand, probe the behavior of application programs by isolating and

analyzing certain aspects of the "A portion" of the S/A entry.

Figure 5 - Program Testing

These dynamic tests provide information that ip indispensable to the
processes of understanding, maintaining, and improving the performance of
both system and application components of complex automated systems.

Summary

Portability of applications programs among different computer systems
or configurations is an essential component of the ICAM Program. This
portability cannot be achieved without giving detailed attention to both
the programming system and the applications program development process.
A model of a software development methodology has been presented which
addresses the various elements of standards, guidelines, and discipline that
are needed by ICAM to permit the development of:

1. portable application program modules,

2. maintenance and improvement methodologies for both system and
application programs, and

3. "fail-back" procedures for the eventual replacement of individual
system or application modules.

For this methodology to work all of the elements starting with the
standard programming system definition must be available to an ICAM contractor
Table 2 shows for the five existing standard system definitions the availa-
bility of the system elements. Where none exist, resources will be required
for the needed development.

Table 2 - Available Software Development Definitions
and Supporting Products

FORTRAN COBOL MUMPS PL/I BASIC

Programming System Definition X
System Implementation Specs X
System Validation Routines X
Applications Validation Routines
Dynamic Performance Tests X
Difference Reports
Primer and Reference Manual X
Portability Requirements

X
X
X

XXX
X XX
X X

X
X
y
X

XXXX
X X

Air Force insistence on the availability of standard system software
and willingness to sponsor the type of effort needed will vastly facilitate
solutions to the long term problem of producing :>rtable software for com-
puter integrated manufacturing systems.

30

RECOMMENDATIONS

(Policy)

1. ICAM should formulate a definitive written policy on how it intends
to achieve portability of applications software among different manufac-
turers and configurations of computer systems. The document should
conform closely to the philosophy presented above.

2. Applications programs should be developed only with high level program-
ming languages except in those rare instances where acceptable performance
can only be achieved through assembly language. These cases must be
carefully controlled and documented.

3. The Air Force should encourage the use of standardized programming
languages. NBS believes their effective use to be the key to software
portability

.

4. While FORTRAN and COBOL will suffice for near term applications,
conversion to the use of a more modern language should be encouraged
whenever the various standardized supporting products are available
to meet ICAM requirements for portability.

(Guidelines)

1. Guidelines for recommended programming practices are needed to assure
that applications code generated will be legible and maintainable.

2. Program documentation guidelines are required to be consistent with
the software development philosophy and to assist in the transfer of
software technology among different Air Force contractors.

(Standards)

1. The Air Force should support the expeditious establishment of a Federal
FORTRAN standard based upon a revised national standard. If ANSI does
not approve the revised FORTRAN in 1977, CAM officials should support
NBS effort to establish a Federal standard from the best available
ANSI proposal.

31

J ® ‘

,(g)
USERS J

1® *
1|®

HOST
SYSTE
SOFTW

M
ARE

ICAM
SYSTEM
SOFTWA

©

'

RE

1

ICAM
APPLICA
PROGRAM

r

TION
;

S

DBMS

,
J i

1 © RTSM © RTSM © DBMS
INTERFACE (S

1 I

OPERATING SYSTE

1

M © ^
1

1 HARDWARE

©
TO PERIPHERALS
AND COMMUNICATIONS SYSTEMS

MAJOR INTERFACES MAJOR ICAM FUNCTIONS

APPLICATION PROGRAM INTERFACES

1. User Language
2. Run Time Support Monitor: one for each programming

language (interprets system calls)
3. Data Manipulation Languages (DML) and sub-schema

Data Definition Language (DDL)

DBMS INTERFACES

4. Self contained language queries of data base
5. DBMS/Host interface: designed for each host system

ICAM system interfaces (supplied by vendor)
6. User/System commands (machine independent)
7. ICAM System/Host System interface: designed for

each host system
8. ICAM System/Host interface: run time support monitor

for higher level language used to implement ICAM system

HOST SYSTEM INTERFACES

9. Host System/Host interface implemented by vendor
10. Operating System Command Language (to be avoided

if possible)

HARDWARE AND COMMUNICATIONS INTERFACES

11. Interfaces to Networks and Local peripherals

ICAM APPLICATIONS PROGRAMS

Tool Selection
Process Planning
Inventory Control
Etc.

DBMS

Management of all data (distributed)
Query response/report generation

ICAM SYSTEM SOFTWARE

Text Editing
Debugging and Test Software
Math Libraries
Etc

.

HOST SYSTEM SOFTWARE

Assembler
Compilers
Linkers
File Management Commands
Etc.

Figure 6 - Systems Interfaces

32

INTEGRATABLE MODULES

The development of a true general Integrated Computer Aided Manufac-
turing System using software developed by several different contractors
requires a partitioning of the system into logically separable modules
with well defined interfaces.

Figure 6 schematically shows the location of the major interfaces of
a large integrated system such as ICAM. A few of these interfaces will
be explicitly considered:

0 Interfaces between ICAM applications programs and the host system

° Interfaces between ICAM applications programs through the DBMS

0 System software interfaces

Applications Program Interfaces

The first of these interfaces is the key to software portability: with
adequately standardized and validated programming languages, the applications
programs will be essentially independent of the host system. System calls
are intepreted by the run time support monitor (RTSM) which is supplied by
the host system vendor for each supported programming language. If the
language is standardized, the RTSM is also thus allowing portability. The
user interface (1) is a real time interactive user language, if any, allowing
the user to interact with the system in real time. The location shown for
interface (1) is the logical interface; the physical interface is, of course,
through a terminal with its hardware interface (11) and the operating system.
Note that there are no interfaces between applications programs and the system
software

.

The language standards relevant to interface (2) are discussed in Port-
ability of Software.

Data Base Interfaces

From the point of view of integration of application modules, the most
critical element is the data base. A single (but, perhaps, distributed)
data base, to be accessed by all programs through a well defined interface,
is the key to the integration of a manufacturing operation into a complete
computer-aided system. This data base becomes the source of all information
for, and hence the interface between, all applications programs. This
critical module - the data base - must be carefully structured and managed.
This is the job of the data base management system (DBMS)

.

Over 200 different DBMS packages are presently available although there
exist significant variations in the capabilities and features provided by
these systems, certain common functions and interfaces are noted. Applications
programs communicate with the data base through interface (3) often with a form
of data manipulation language. Interface (5), of course, is essential for
interacting with the operation system to store and retrieve the data on
the various physical storage devices. This interface sometimes uses a device
media control language which is specific to each host computer. Often query
packages are provided to users to allow for non-procedural type requests
on the data in a self contained query language through interface (4)

.

No standards exist as yet in the area of data base management systems.
The CODASYL specifications have gone the farthest to define and structure
an approach which has modular architecture and well defined interfaces.
But while there are several CODASYL- type systems available, they are by
no means identical and the specifications themselves are still in a state of
change. Consequently, there can be no one DBMS identified as being "best"

33

for ICAM use. As a single DBMS will be critical to achieving integration
of ICAM software modules, a competitive procurement of a commercial data base
software package is recommended to support all near term projects. Emphasis
should be placed on obtaining modular architecture, well defined interfaces,
portability of applications programs, integratability of ICAM modules,
and future adaptability to a computer network system with distributed data
bases. The evaluation for selection should include a benchmark demonstration
of performance on a typical CAM application.

The key to successful operation of a large DBMS is the Data Base
Administrator who is recommended as a key person in the Air Force ICAM
Standards Office. The Data Base Administrator:

a. creates and maintains the data definitions for existing application
system, and establishes the data definitions for new systems;

b. maintains a library of the data available on the data base;

c. provides data base documentation to the analysts and programmers,
such as cross reference listings between data and programs;

d. controls the schema and subschema, thereby controlling access to
the data base;

e. is responsible for improving the efficiency of data base operations,
including performance monitoring activities, keeping statistics on
the use of different data, and monitoring the use of physical file
spaces; and

f. in general, maintains integrity and security of the data, including
definition of backup requirements and recovery procedures.

System Interfaces

Certain system software will, by necessity, be specific to the host
computer system and hence will be supplied by the host vendor. In particular,
compilers, linkers, accounting programs, and the system executive will all
be host specific.

The interface between a user and the host system software is shown as
interface (10). Communication across this interface must be expressed in
the language of the host system software and hence will vary from system to
system. Extensive use of host specific software will endanger system port-
ability and hence use of this interface should be discouraged. A better way
of talking with the host system software while preserving portability is
through interfaces (6) and (7) and the use of specially developed ICAM system
software

.

ICAM systems software should contain all of the software tools needed
for the development, maintenance and operation of the applications modules
on the host computer with the exception of the usual vendor supplied system
software mentioned above. This ICAM systems software, written in a high
level language so as to relatively transportable itself, will contain such
programs as:

Text Editor - For entering, correcting and modifying applications and
general text such as program specifications and design
documentation

.

Program Librarian - For storing all program texts, associated job control
statements, common data definitions, test data, and for
maintaining a chronological record of modifications
between distinct versions. Includes appropriate access
controls for members of the project group. This may require
a DML interface to the DBMS.

34

Test and Debug Programs - For analyzing program behavior during
preparation and execution on test data input, and deriving
execution statistics and traces to help correlate program
output with the results of individual high-level language
statements. These programs will be specific to a particular
high-level language such as FORTRAN.

User Interface - Programs which present a standard interface to the
user and translate system commands into host specific
commands at interface (7) . This is essentially a trans-
parent "shell" that provides a machine independent system
executive

.

Documentation Aids - Programs to assist in documenting applications
programs as they are developed.

Project Manager - For recording chronologically the activity of the
individual project members on defined application
program modules and deliverables of the project.

Each item of ICAM systems software being written in the high level
language interacts with the host operating system through interface (8)

in exactly the same manner as an application program does through interface
(2).

Peripheral Interfaces

Near the bottom of Figure 6 the interaction of the operating system
with the various hardware peripherals is shown by interface (11). Local
peripheral equipment interface standards should follow the ANSI standards
on the channel level and on the minicomputer device level when they are
adopted. Communications interface standards are discussed below under
distributed data processing.

Recommendations on Systems Integration

(Policy)

1. The DBMS is the key to integration of applications modules. Functional
specifications should be prepared for the competitive procurement of a
commercially available data base software package to support all near-
term ICAM projects. The specification should require the package to
be available on all hardware systems that would be considered for CAM
applications in the first few years of the program.

2. A Data Base Administrator should be appointed to the staff of the Air
Force ICAM Standards Office. This person should remain fully informed
of the state-of-the-art in data base software, and evaluate available
packages for future ICAM application and standardization. This person
should participate in on-going Federal and national standards efforts,
including the NBS FIPS Task Group 24.

3. The Air Force should provide staff to support the CODASYL Task Group
in future developments.

4. Dependence on host system software should be minimized, with interfaces
provided through machine independent ICAM system software written in a
high level language.

35

(Guidelines)
«

1 . The following user guidelines will be required for effective use of the
DBMS. If they are not supplied by the vendor, they should be created by

the ICAM Data Base Administrator.

Data Dictionary
Device Media Control Language Guide
Data Manipulation Language Guide
Guide to the user of query package/report generator

2. A Guide to ICAM systems software should be developed and distributed to
all ICAM contractors and users.

(Standards)

1. There are no standards on DBMS or operation systems.

2. Local peripheral equipment interface standards should follow the ANSI
standards on the channel level interface and the minicomputer device
level interface when they are adopted.

36

DISTRIBUTED DATA PROCESSING

A stated objective of the Air Force ICAM program is compatability of
ICAM software with Fourth Generation distributed system concepts. The
trend toward linking central processing units together with either local
or commercial communications networks is clear, and the implications for
improved efficiency and lower costs is also clear.

The scenario for CAM applications for the 1980 's is, then, a series of
mini and microcomputers, each running dedicated applications programs,
networked together in a total CAM system. One computer may be running
the warehouse and providing inventory control, another running CAD
programs and supporting interactive graphics, another supporting process
planning programs, while an entire hierarchy of computers operates the
machine tools and materials handling systems in actual manufacturing
tasks. Each computer will keep its own local data base, or possibly have
a local "back end" processor running a DBMS, and will be able to access
relevant data throughout the distributed system through the communications
system by using appropriate access protocols.

The potential power of such an array of processors all working in
parallel and yet all acting coherently and with distributed data access
is tremendous. Even more importantly, the cost reductions of such a system
may be remarkable as mini and microcomputers and mass storage devices
continue to drop in cost. Furthermore, the architecture of this systems
design ideally satisfies the ICAM objective for having individual modules
developed and implemented separately to perform useful work in a stand alone
mode while allowing for eventual systems integration.

Subcontractors may be able to make use of CAM capability bv directly
receiving manufacturing data packages through a network in a form that will
directly run their machine tools and inspection machines. Procurement
costs will drop significantly if procurement practices are changed to
reflect the opportunities of this new technology.

Standards for Distributed Systems

The layers of protocol for one application program in one computer
to talk to another application program in another computer are diagrammed
in Figure 7. The lower three levels are the subject of formal standards,
and the combination of EAI RS232, RS XYZ, CCITT X.21, ANSI ADCCP , and
CCITT X.25 offer a comprehensive definition of protocols to access
commercial packet communications and switched networks. These standards
provide a sound basis for a distributed processing system using commercial
communications systems.

The higher level protocols are as yet unstandardized. Host to host
protocols are defined by each vendor, for example, in IBM's SNA or DEC'S
DECNET, but these are specific to each vendor. Potentially a project
standard could be implemented for each allowed host system. Process level
protocols should be the subject of project standards.

The National Bureau of Standards is initiating (1977) a new project in
support of the Air Force Rome Air Development Center to define these higher
level protocols. This work will provide a basis for developing ICAM
project standards.

37

COMPUTER # 1 COMPUTER t 2

PROCESS LEVEL APPLICATIONS PROGRAMS +

HOST LEVEL <- OPERATING SYSTEMS -»

LOGICAL
NETWORK/LEVEL + NETWORK INTERFACE ->

LINK LEVEL

HARDWARE LEVEL «-

HARDWARE CONTROL

HARDWARE

COMMUNICATIONS NETWORK -

Figure 7

PROCESS LEVEL

HOST LEVEL

I

NETWORK/LEVEL

I

LINK LEVEL

HARDWARE LEVEL

38

RECOMMENDATIONS

(Policy)

1. The ICAM system should be designed and implemented in such a way that
it could be run on a highly distributed fourth generation computer
system in the 1980's. The development and use of communications
software and protocols, programming language subsets for minicomputers
and microcomputers, and a network model DBMS follow from this approach.

2. The ICAM Standards Office should task NBS to specify host level and
process level protocols for use as ICAM project standards, working
from the Rome Air Development Center project as a base.

3. The ICAM Program Manager, with advice from the Industry Review Panel
should set security requirements for distributed systems.

4. The ICAM Industry Review Panel should be tasked with considerinq
the impact of this technology on procurement practices in contracts
between the Government and a prime contractor and between a prime and
various subcontractors.

(G uidelines)

1. A guide to the use of DTE/DCE (Data Terminal Equipment/Data Communication
Equipment) interface standards, link level protocol standards and network
level protocol standards should be developed and distributed to all
contractors and users of ICAM software.

2. A guide to security in a distributed system should be written and
distributed to all contractors and systems users.

3. A guide to implementing host level and process level protocols should
be developed by NBS and distributed to all contractors and systems
users

.

(Standards)

1. The following standards are recommended for ICAM use:

DTE/DCE Interface: RS 232C, RS XYZ, CCITT Recommendation X. 21
Link level protocol: ANSI ADCCP
Network level protocol: CCITT Recommendation X.25
Communication Codes: ANSI X3 .

4

(ASCII)

2. The Air Force should task NBS with maintaining cognizance of developments
in the recommended standards, representing Air Force interests in standard
committee meetings and providing regular reports to the Air Force
for distribution to ICAM contractors and users.

39

EXCHANGEABLE MANUFACTURING DATA

Too often we view the output of the manufacturing process as simply the
delivery of finished goods. However, in government procurement of weapons
systems the output of the manufacturing process is seen to also encompass the
data which defines and controls the manufacturing of the end products. The
difference is significant and reflects the concern of the Department of
Defense (DoD) with the life cycle cost of the system. Data must be available
which completely defines the manufacturing process of each component part
of the end product. More importantly, this data must be presented in
such a form as to be meaningful and useful to the different manufacturing
systems that may be involved in the production of parts for the system over
its entire life span. The importance of this exchange of data is illustrated
by the following evolutionary phases of a typical system:

Developmental
Phase

Part manufacturing data flows
to and from Primes and Subs

System Delivery
Phase

Manufacturing data on each piece
part is supplied to government

Competitive Remanufacture Government furnishes complete
Phase manufacturing data to bidders.

Primes may pass data to subs.

Maintenance and Repair
Phase

Manufacturing data flows
among various government repair
facilities and logistics

Engineering Drawings

Presently the bulk of this manufacturing data is exchanged through the
use of engineering drawings. Much time and effort at specifying and standard-
izing this form of data presentation have made it a useful and universal
method. Although time consuming and expensive to create, engineering
drawings fulfill their purpose well in being easily exchangeable and readily
understandable

.

However useful engineering drawings may be, they have been a creation
of a manual system. Drawings are developed by hand and are meant to be
interpreted by hand. Even though computers are assisting in the preparation
of some drafting work, the method of data presentation is still pointed
toward the exchange of manufacturing data in a conventional environment.

Digital Data Package

The increasing use of computer technology in manufacturing is creating
some interesting problems in the exchange of discrete part data. For one
thing part data is taking on more forms than just the traditional dimension-
ed engineering drawing. Digital data descriptions are now being used by
numerically controlled machine tools to manufacture parts directly. These
digital part descriptions are exchanged in various codes and formats
on paper tape, punched cards or disk files. The most prominent standard
in this area which pertains to manufacturing data is for the APT programming
language; however, a competing language, COMPACT II, is in the early stages
of standardization. COMPACT appears to be more efficient than APT for
simple parts but is not as capable as APT when used for very complex parts.
It should be mentioned that neither language is sufficient as a manufacturing
data package. Nor is the APT language in a sufficiently standardized form
to serve Air Force needs. While the new standard on APT to be released
in 1977 will do much to alleviate this problem, guidelines are needed
on the interpretation and use of the APT language to make it a more flexible

40

and versatile tool for exchanging NC manufacturing data among functionally
equivalent machines.

Promising work is being done for the manufacturing interface in the
CAM- I Geometric Modeling Project, by the ANSI subcommittee on Computer Aided
Preparation of Product Definition Data, and by NASA's IPAD Program. The
Air Force is advised to continue to maintain close liasion with these three
projects as a useful and meaningful manufacturing data specification is
surely to evolve from the healthful interaction of these efforts.

Whether one talks of integrated CAM systems or simple numerical control
machines, much less reliance is placed upon formal dimensioned drawings.
Where drawings are used at all, their format is often simplified to convey
general ideas rather than specific detail. Exact dimensions are transmitted
digitally.

The trend is clear. As the Air Force and industry progress toward
complete computer integrated manufacturing, the dimensioned engineering
drawing will cease to be an essential component of manufacturing data.
It will be supplanted by a digital part data description that will completely
describe the manufacturing process to be used. It will also define digitally
any computer generated drawings that are needed for informational purposes.
The evolution of this digital part data package is inevitable. While it
will eventually affect all components of the Department of Defense, its
impact will be felt first in the ICAM Program. Techniques must be
developed to allow digital data to be exchanged in as versatile, efficient
and flexible a manner as engineering drawings are done now. Technical
barriers must be overcome to enable this data to be exchanged among various
combinations of government agencies, prime contractors and subcontractors.
Means must also be found for the data packages to be exchanged between
computer based manufacturing systems and the conventional types. Unless
these capabilities are developed, the Department of Defense will incur
many unnecessary costs in the evolution of the computer integrated
manufacturing systems envisioned by the ICAM Program. The groundwork
must be developed now for firm policy, effective guidelines and explicit
data standards that will collectively enable the needed exchange of digital
manufacturing data.

RECOMMENDATIONS

(Policy)

1. Task the ICAM Industry Advisory Group to develop recommendations for
policy regarding the specification, purchase, data rights, and exchange
of digital data for discrete part manufacturing.

2. Through the ICAM Standards Office maintain close liasion with the
NASA IPAD Program, the ANSI Y14.26.1 subcommittee on Computer Aided
Preparation of Product Definition Data, and the CAM- I Geometric
Modeling Project to avoid potential problems in compatability

.

(Guidelines

)

1. Support the development of guidelines on the interpretation, processing
and use of the APT language for numerical control manufacturing,
such that an APT part program can be quickly and easily exchanged
among different machine tools, different shops and different contractors.
Inconsistencies in the present use of the language inhibit this
ability.

41

(S tandards)

1. Where the Air Force specifies a single part programming system for
numerical controlled machine tools, it should conform to ANSI 3.37-1977
APT. If two part programming languages can be acceptable COMPACT II
is recommended for efficiency at programming less complex parts
provided the CLDATA file can be produced to be compatible with APT
output

.

2. Through the ICAM Standards Office task the National Bureau of Standards
to maintain close liasion with the ANSI subcommittee X3J7 on APT
Language Standards.

3. Insist on the use of the IPC-D-350A Standard on "End Product Description
in Numeric Form for Printed Wiring Products" for future wedges relating
to electronic systems.

42

SUMMARY OF TECHNICAL RECOMMENDATIONS

EVALUATION AND RECOMMENDATIONS ON CAM STANDARDS

EVALUATION AND RECOMMENDATION ON COMPUTER STANDARDS

Communications

Codes

Software

Documentation

Media

SUMMARY MATRIX

\

43

This report recommends optimal standards for the Air Force ICAM
program. Many formal standards that now exist are recommended as relevant
to the ICAM program and these are expected to remain so in the future.
Furthermore, trends and developments in standardization process are enumerated
with key areas identified for monitoring or development. Finally, several
areas are cited where formal standards do not exist but where project standards
will be necessary.

This report and the recommendations of this report should be considered
as a first step in an interactive effort to define the nature, the detailed
structure, and the details of implementation of ICAM projects.

Evaluation and Recommendations on CAM Standards

There are few CAM standards that can be evaluated, a result partly of
the newness of the field and partly of the way in which CAM systems have
been developed primarily by large user industries for their own internal
(and hence proprietary) use. In the area of NC programming languages,
standards have developed because of the multi-industry development effort
and Air Force contractual requirements. The APT language standard is
recommended as a minimum, with extensions to cover adequately the post
processor area. If two languages can be allowed, the COMPACT II/ACTION/SPLIT
family should also be used since it is more efficient on simple parts and can
product compatible CL data as an option.

In the CAD/CAM interface area, the ANSI Y14.26.1 effort, NASA's IPAD,
and the CAM-I Geometric Modeling Project are considered in relation to the
digital representation of physical object shapes. The ANSI approach is
recommended, and the Air Force is advised to monitor the other efforts to
insure eventual compatibility with the ICAM system. In addition, the
Institute for Printed Circuits standard on printed circuit boards is
discussed as a tutorial example and recommended where appropriate.

Evaluation and Recommendations on Computer Standards

Communications

In order to construct distributed fourth generation computer systems
expected to be in wide use in the 1980's, adequate communications inter-
face standards are a necessity. A suprising amount has been dome on hardware
standards and comminucations protocols. A comprehensive set of standards,
some of which are only in the formation stages, is recommended on computer
peripherals (ANSI proposed channel level and minicomputer device level
interfaces), DTE/DCE interfaces (RS 232, RS XYZ , CCITT X.21), and bit
oriented link level and packet network protocols (ANSI ADCCP and CCITT
Recommendation X.25). Following these standards, a distributed computer
system can be developed, using commercial communication services, that will
remain relevant into the 1980 's.

Codes

The lowest level of information storage and transmission is the char-
acter code level. Serious problems may arise in code conversion and in
accessing or merging files with different coding schemes. These problems
are discussed and the American Standard Code for Information Interchange
(ASCII) code is recommended for data crossing any system interface.

44

Software: Languages, Data Base Management, and Operating Systems

The Air Force has stated that their objectives for the ICAM system in-
clude software portability, integration of software modules and, potentially,
distributed data processing. These requirements lead to a consistent set of
recommendations for programming languages, data base management, and operating
systems

.

Standardized programming languages offer the key to portable software.
Using adequate language standards and requiring validation of compilers against
those standards will be required for Air Force ICAM software to be portable.
FORTRAN and COBOL will have to be supported to the near term because of the
bulk of application programs written in those languages. Eventual conversion
to the use of a more modern programming language should be anticipated. Re-
presentative of the "modern" languages is PL/I which is the only one that has
been submitted for standardization. However, substantial effort remains
before PL/I can be termed suitable for ICAM needs.

From the point of view of integration of applications modules, the most
critical element is the data base management system (DBMS) . The recommendation
here is to prepare functional specifications for the competetive procurement
of a commercially available data base software package to support all near
term ICAM projects. Emphasis should be placed upon obtaining modular archi-
tecture, well defined interfaces, portability of applications programs,
integration of ICAM modules, and future adaptability to a computer network
system with distributed data bases.

In Operating Systems there are no standards. This is a major problem
area from the point of view of software portability, but a standard operating
system is not feasible for large scale computers because of the differences
in architectures. However, a standard operating system for 16 bit or 32
bit byte oriented machines seems at least technically feasible. It may be
necessary to implement project standards on file names and library names to
avoid problems in portability due to differences in file management conventions.

Documentation, Validation and Testing, and Software Tools

These are some of the most important tools to insure system integration
and software portability and maintainability. Detailed recommendations
are not possible until the maintenance of ICAM software is better defined,
but general requirements and various approaches are discussed and evaluated,
and general guidelines are provided. It is recommended that the Air Force
use validation and testing procedures, and that general software develop-
ment tools be developed, used in ICAM development, and then made a part
of the ICAM system.

Media

Magnetic Tape and discs and direct communication links are the primary
recommended standards for transmitting ICAM data and software within a
given installation and between installations. Where punched cards must be
used, standards are available. Paper tape, even for NC , is not recommended;
instead direct communications links (DNC) should be used.

Summary Matrix

There is no comprehensive set of present day standards that will solve
all of the Air Force's needs. However, where today's standards are
inadequate, major trends, developments and needs for project standards have
been identified that should provide the Air Force ICAM program with sound
initial guidance. A summary of recommendations is given in the matrix of
Figure 1

.

45

Anticipated

Further

Standard

Cases

Major

Standards

ICAM

Plan

Efforts

Required

I

\

CD
X CD
3 > 4->

CO 4-> 1— rd
X 3 O -X
O 4- to 4->

to CD
to X X to
OJ 0 CD
(D 4- C* •(

O H-« 4-5

x 1 *1—

CL r_D :e «—
4-> CO T-
CO X O JO
O •f—
CL ^ tO * 45

LO 4-> Q rd(DOC <C CL
N CO CD CL E
•«- X E 0
-O CL O CL
x x 0 X X O
fd O r— O T- r—
TD 4-5 CD 4-5 CD
X *r- > •«- >> >
<d c (U X X CD
4-5 0 XJ O 03 TO
00

X to
CD i

—

-X 1
— O 1

— ~a
<-> CD CD CD CD
x > O > 4-5

3 CD 4-> CD 3
4- 1
— O 1

— -Q
L •r—

CD O. 4-> X
4-5 X to 4-5

rd •r— 1
— O to

3 1
— CD _x •r—

1
— > 1 “O
03 4- CD 0
> O r— 4-> x
CD 1 0

4-5 4-> 4—
xj x X to
x CD O 0 to
fd E 2 -X r—

Cl 4-> O (O
x O CD CL O E
0 1
— X O O CD

4-5 CD 1
— 4~> 4->

•r— > XJ CD O to
x CD X > X >>
0 XJ 03 CD O- to
5: O

X to £Z
•
1
— s- a) 0

0 O -r-

“O to CD 4- rd 45 -aX E O 4- CL CD
rd CD rd to i-a 4-5 <4- CD S- -p-

CD x to X S- 45 0 3
X rd >•> CD 0 c c cr

•1— 4-5 tO 4-5 •r- CD CD
3 to x 4-> S-
c

r

X *r- CD E CD
CD O O C CD (O >>X CL 4- r— XJ 4-5 3 4->

CD 1—

t

03 CD 1— to CO •«—

* O r— X 4-> fd E >>•-$-
to fd " CD CXI QJ CL-r- CD to cn 3
CD 4— r— 4-5 • _x O CJ 4-5 c 0
cn x • fd X CL XJ S- to r— -r- CD
rd CD tO ”r— • 1

— fd CD >> 1— 4-> tO
3 4-5 C\J X S- S- E co rd fd
CD Z • CL 0 <D to E 1— 4-
X •#- 0 CL rd O X> 4-5 ,

— -r-

03 r— X CJ CD fd O
<— to >- CL >- aj tO 4-5 O E

fd CL X to XJ JZ 3 f-H _C
-X 1—

*

rd 3 S- 4-> JD M L 45
4-5 c Ul rd *r- •«— O O -r-

O h- 2; CD 00 to X3 ^ S- (0 4- L
-O <£ C X Cd O C 4-5 OO OJ CO rd CO xj cn
CD _J CD -X CD cn 45 S- *r CD C .

—

to CD CO ^ to 1
— <0 O XJ to rd fd

ZD ZD ID ZD

CO
x

4-5 to M 0 ,

—

CD CD E
O CXI 4-> >- •(

—

rd CD > -X
CD • •r— X 0 4-> 4-5 rd CD 4-5

•r~> *3" 3 45 03 •
1
— 4- _J 1

— ^—

.

•r—

JD r— CD CD rd cn X 4-5 0 1—

»

XO >- S- Ul 1
— •r— 4-> •1— -—

*

CD DZ CD CD K-H 0—

^

•r— Od rd c rd X c 45 X d*: O CD cn
1
— CD C 3 X 0 X •r— CD 45 OO r—
rd c •t— E >.— 0 •

1
— »—

t

—I rd O <c <
CD 0 XJ CXI E c 45 4-5 CL X

1—

1

•
1
—

•r

—

CD CO c. O 1
— rd 1

— to CL CL CD X
1—

1

CO 4-> O 4-5 XJ CXJ CD O CXI 1
— CD rd X CD 1

— LD 1—

1

0
>> CL C s- 4-5 rd •r— X X O O CXI O •

1
—

h- _c •
1
— CL •r— rd cnX X X CD rd Q CD X 00 O 45

CJ CL S- 1—

t

S- X Ul rd O •
1
— 3 -X X < O X 0 X CO CLc 0 b—4 CL c Cd 4-5

1
— h- E E CL X 4-5 «: LU >>

a_ »—

<

to <c 1 rd rd rd h- S- E •
1
— rd 1—

1

O 1—

<

4-5 1—

1

X
1
— Ul CD t/) O 4-> X c 1—

1

aj 0 X 4-5 Ul X Ul CD OO 0
Q_ O Q <c < CL Ul 1—

I

•V rd CD 45 CD CD Ul CL CQ X
<c CD < CD 1—

»

LU CD Q_ < c t—

t

LU

Ulo
CdcQ
c
I

—

CO

c
CD

O)
CD
rd
3
CT)

X
rd

<c
cd

Q
cd

<0
-o
x
rd
"O

to x
x rd
o 4->

“O -r- uo
X 4->

rd 03 CD
u o

•<— rd
X 4—
3 X
E CD

Q_ E 4->

E O X
O CD »-<

CD

X
CD
4->

3

tO
<D
“O
O
cd

x
o
4->

<d
o
x
3

O
cd

46

Programming

Languages

FORTRAN

Support

FORTRAN

and

COBOL

for

near

Investigate

PL/I

and

standard

COBOL

term

subsets

of

PL/I.

Investigate

PL/

1

DoD-1

.

Validate

compilers

BASIC

and

run

time

support

routines

to

insure

portability.

Operating

Systems

No

standards

Develop

project

standards

on

certain

Consider

development

of

aspects

of

operating

systems,

standard

operating

system

for

particularly

system

calls

and

file

16/32

bit

minicomputers

and

names.

cross

system

support

for

micro-computers

.

I

S- <D 03
o 1 o CD • S- to S- cz
4- 4-> 4- S- 4— S- CD 03 TD 4-> c o CD

4- ZJ O o CT> 3 i- to <J
T3 O CO •M 4- 03 4-> 03 •r— 03 •P5 TD 03
CD CO TD 13 >> 4- TD c 4-5 03 CD 4-
CL • s- 4- CJ co CJ O C • r

— C 4-5 4-5

O cn >> 03 CD 03 • 4-> 03 CO 03 E •r— C c <D *—

«

r

—

c fO -P T) co S- S~ CD CO CL 4-» td 03 CD CD 4-> LU
CL) •r— 4-> T- C ZD o 3 CD 4-5 to 03 £ E E C
> 4—

>

03 S- 03 4- CJ 03 4-5 CD C 3 3 •r- JZ
CD CO T3 Z3 4-> T3 cj 3: S- <D • 4-5 CO TD CJ CJ 4->

td •r- CJ CO c C 03 4-> CD 03 E to CJ C •4-> C O o E T-
X cn cd 03 o 4- CJ CD r— CD o CZ 03 T3 TD CD 2

CD CD C GO 4-5 •I— O c: 4-5 r— O • 1
— CD 4-> 1

•r- O CD 4-5 o CO 03 4- CL O O 4-5 E >, f, TD CO C CO
CQ C S- "D CD CJ 03 4- 4-> O E 4-5 03 3 4- c C >> o 1Q o CD Cn 03 TD 1

—

CL to •i

—

CL 4-5 CJ •i

—

cn 03 CO •!— LU
T3 03 o 4— r— 4-> 03 CD 4-> cz O CJ 4-5 »—

i

CD TD •r- S- S- i

—

CO <J o td c CD CD TD CD CO CJ 03
4-5 CD to >> Q_ CD 03 to CD •i— CJ o C CD 4-5 E CL CD CO 2: i- CD
03 CO c 4-5 4-5 > CD 4-> 4-5 03 *•3 *3 E 03 3 03 CO TD TJ CD Q CD CD
cn 03 O *r- CL C cn 03 03 CL C CJ i- CL 4-5

•i— JO CJ S- O •r— CL 03 CL E CL E CL O •r— O 4-5 O E 03 03 >> o 4->

4-> cn.

—

O 3 O CD o O r— E -O C 4-5 CD TD 4- O •i

—

CO :e: CD CD CD OO i

—

cn i

—

JZ 1
— JZ r— CD CD •(

—

4-5 e 4-5 •r~ (J E
(D S- 4-5 > e: CD cz CD 4-5 CD o CD > CO S- o S- to 03 4- S- E
> o 05 C CD CO > 03 > 03 > 03 > CD CO o CL O >.+-> o 03 C o
c i—

t

^ *r- Q o CD i
— CD E CD CD cu td ••

—

4- CL 4-5 CO CO to 1
*|— CJ

*—

<

O O Q Q Q <c C_J

03
•r—

CO TD
S- CD

03 CD E
4-> M
03 E >> O >>
-O CD r— 4-5 s-

4-5 03 • 03
i— CO CZ •—

1

to E
03 >> 03 i :e: cd
C CO c: Z< C S-
o o o <U'r CL
r- (O •

1
— »r— UMr-

4-5 O 4-5 4-5 CD to
03 CO 03 03 TD CJ “O 03
r— cn “O 4-> CZ -r- -r-

CD r— •1— CO 03 4- 3 CD
s- 1

—

•i- cn CL
c. 03 U CO CJ 03
o > c CD CD C 4-5

O 4- 03 CL O
C- CQ tO -r CJ

CO CD O ZD 4-5 •i—
CD i

— »f— Q_ CD 03 4-5

O C- •r- E 4-5 4-> CD
^ =3 CL 03 CO 03 C C
4-5 4-5 E C Q- i— CD cn
CD CJ o >, ' Z3 E 03
C 3 CJ “O LL E D E

S- S- CJ
CD 4-5 CD CD CD O O CD
CO CO CO CO to 4- TD CO
ID ZD ZD ZD ZD

O
oo cr>x c\j

CO v ,

2: TD —'CD
<c S- CD CXI X

to QC 03 Q_ CXI "

—

TD I— CO O CO TD 03 •

S- CC i- CD CD CZ 1— CD CD
03 O 0 03 X CL
TD U- 4-5 CO CO 4-5 CJ 03
C 03 ZD ZD CD • r— rs | ^ ^

03 * T3 CL CL 4-> ^3- CO
4-5 1 *r- 1—

1

(Dr- Lr-
CO O 1— CD CD 1 C • CD •

CO 03 CL CL 21 cn CD CL CD
O O > »—* 1—1 c£ 03 X 03 X
2: O LlLlU CL

to

E
CD cn
4-5 c
CO •r—

>> 4-5 C
CD CO O

CD •r-
4-> 1

—

4->

CD C CO 03
CO CD CD r— 4->

03 E s- 0 C
CO CD 03 O CD

cn 5 h- E 03
03 03 4-5 Z3 • r—
4-5 C 4- TD U TD
03 03 O c O CDO 21 CD 03 Q 21

LO LO CO

47

Punched

Cards

(X3.ll

,

X3.21

)

STANDARDS FOR COMPUTER AIDED MANUFACTURING

NC PART PROGRAMMING LANGUAGES

BACKGROUND

APT STANDARDIZATION

COMPACT II STANDARDIZATION

COMPARISON OF NC LANGUAGES

CRITERIA FOR NC LANGUAGE SELECTION

RECOMMENDATIONS

COMMENTS

REFERENCES

SUMMARY DATA SHEETS

49

A

BACKGROUND

An NC machine tool accepts commands from a punched paper tape or from
a computer to control the operations of that tool. These control signals
are strings of bit patterns that are decoded by the tool into the proper
locations, movements, and actions, to produce the desired part. Following
a standard code for the different control signals, an operator can punch
these values into a paper tape. Simply rerunning the paper tape into the
NC tool allows the tool to produce automatically as many parts as
desired while the operator is free to do other jobs.

For simple parts, and originally for all parts, the coding of the
control tape is carried out directly according to the EIA standard
tape formats. (RS-247C with RS-358 character code.)

As the parts to be made become more complicated, the programming
becomes much more involved. Higher level NC programming languages
have been developed for these more sophisticated cutting operations.
These languages are typically made up on a number of English-like
commands which are translated by a computer program (processor) into either
the proper bit pattern for a particular NC machine tool, or into an
intermediate machine-tool-independent data file (Cutter Location Data
(CLDATA) file) . This CLDATA file will then be fed into another computer
program called a postprocessor. It is xthe function of the postprocessor
to translate the cutter location data into the appropriate commands for
the selected machine tool necessary to machine the desired part. The
postprocessor also checks for various error conditions and produces
the printed listing to assist the machine operator.

Thus, the CLDATA file is a machine-independent data file that
describes in detail the path the cutting tool must follow to make the
part. This file is created by a single processor .

Since the postprocessor is dependent upon both the machine tool
and controller, there are as many postprocessors as there are different
models of machine tools and controls.

,

Although there exist over 40 NC programming languages, only two
are in widespread, productive use. These are APT (Automatically
Programmed Tools), the first of the higher level NC languages, and
COMPACT II (COMputer Program for Automatically Controlling Tools).
These two languages are representatives of two families of NC language
processors. The APT family includes the APT, UNIAPT, and ADAPT processors,
while COMPACT represents the COMPACT II, ACTION and SPLIT processors.
Both of these language families are proceeding toward formal standard-
ization. An example of each language family is given in the accompanying
figures. A simple test part is shown in Figure 1 while the respective
part programs are given in Figures 2 and 3

.

APT STANDARDIZATION

The revised APT standard (X3.37) (presently undergoing final
balloting) is expected in January of 1977. This standard is created
and maintained by the American National Standards Institute (ANSI) Committee
X3J7 under the Business Equipment Manufacturer's Association (BEMA)

.

The standard is written in a meta-language format which is computer
independent. This format gives a complete and vigorous definition of
all elements of the language, permissible combinations of these elements,
and the meaning of these combinations. While somewhat difficult to read
the meta-linguis tic format provides a concise and comprehensive technique
to itemize all of the combinations and their meanings in a reasonable
length document. The new standard will contain the original (X3. 37-1974)

50

-250

~\~T
.500

2000

T~
500
L_

1 /N/\ A J k- 1.000—

j

1

1 1

1
I
1

‘!j 1

l
1— 4.000 —j

Figure 1

51

DEMONSTRATION PARI’ PROGRAM APT (GE)

10 PART NO TEST1*
15 CLPRUT
20 CUTTER/. 25
30 SY N /? , P 0 1 NT , L , L I ME .. C I , C I RC LE , 3T , G OT 0 , G F , G OFVD, GD, G GELT Aj F , RAD IUSjS
AO XA,XAXI S , YA,YAXI 5

50 INTOL/.COl
60 OUTTGL/.0G1
70 SP=P/0 , 0 , .35
30 FEDRAT /5
90 L 1 =L/XA
100 L2 = L/PARLEL, L 1 , YLARGE , 2

110 L3 = L/Y

A

i 2 0 C 1 =CI /3, 1 , 1

130 P 1 =P/3 , .5

1 A 0 P2 =P/3 , 1 .5

150 P3=P/2 ,

1

160 CYCLE /III LL, 0 , 0

170 SS TARGET AT LEFT 30TTOM CORNER
180 FROM/S?
190 GD/-.5,-.5,0, 150
200 GD/0,Q,-.35, 150
210 GO/TO, LI, 150
22 0 TLRGT , 3 ORGT /L

1

230 GF/C1
2A0 GF/L2
250 GOLFT /L3 , PAST , L

1

260 SS CUTTER MOVES TO HOME POSITION AND STOPS. CHANGE TO 3/16 DRILL
270 FSDRAT/.0QA, I PR
230 CYCLE/DRI LL, 0 , .A5
290 G T /?

1

300 GT/P2
310 GT/P3
320 CYCLE /OFF, OMIT
330 END
3A C F I N I

Figure 2

DEMONSTRATION PART PROGRAM COMPACT II

MACH IN, KTGE7500
IDENT , HCL.E TEST # 1 COMPACT II

SETUP , EB, INDEX45 , - . 12 5LX, . 1 25 LY , 1 0 LZ , LI MI T (X - 1 0 / 1 0 , Y- 1 0 / 1 0 , Z- 1 0 / 1 0)

STAEGET AT LEFT BOTTOM CORNER
BA 5Ej XA jYAj ZA
ijPT 1 j 3XB, » 5 Y ij , . 3 5 ZB
DPT2.y 3XB, 1 . 5Y3, .35Z3
DPT 3 , 2XB, 1YB, .35ZB
DFT4, 3XB, 1 YB, ZB
DLL ! , Y3
DLN2,LN 1 /2YL
DLW 3 , XB
DCIR1 ,?T4, 1R
MTCH G , T 0 0L 1 , «25TD,5IPM,0GL
MOVE , - » 5X , - . 5Y
MOVE j - . 35 0 Z

MOVE ^ TOLL 1

OC OIM j C I R 1 j C CV , S C TANLN 1) jF(TANLN2)

CUT,PASTLN3
CUT , PASTLM

1

HOME, STOP
SCUTTER MOVES TO HOME POSITION AMD STOPS. CHANGE TO 3/1 & DRILL
HTCHG , T00L2 , (3/16)70, 180 OiRPM, OGL, .004IPR
DRL,PT1 , . 25THRU , . 1 CLEAR
DHL , PT2 , . 2 5THRU , . 1 C LEAR
DHL ^ PT3 , . 2 5 THRU , . 1 CLEAR
HOME, STOP
END

Figure 3

53

standard for the processor, plus updates and corrections in addition to
a standard for postprocessor language.

»

The new standard is unique in its consideration of the postprocessor
language. This is the language which enables the control of the non
motion functions of a machine tool such as choice of spindle speeds,
control of coolant, and selection of cutting tools. Prior to this
document guidelines for postprocessor language have been scanty with the
result that developers of software programs have had to sometimes
choose language syntax themsleves.

As various new hardware or electronic options were developed in the
marketplace so were new APT language commands to control them. While
the commands for a single function like a tool- change are similar among
all postprocessors, minor differences exist in each software implementation.
These differences have the effect of forcing a part programmer to choose
a specific NC machine tool before he starts to develop the APT language
to produce the desired item.

The lack of a fully specified APT language tends to defeat the
intended universality of the higher level language concept. The design
intent of APT was that a part program could be easily processed for any
appropriate machine tool through the use of different postprocessors.
Increasingly today one finds that not to be the case. Computer runs
are aborted for trivial problems such as a command to postprocessor "A"
calling for SPINDL/1000, CLW causing an error in postprocessor "B"
which requires SPINDL/CLW, RPM, 1000. The revised APT standard is aimed
at correcting this problem.

COMPACT II STANDARDIZATION

The COMPACT I I/ACTION/SPLIT Standard proposal is currently under
consideration by the X3J5 standards committee of CBEMA. SPLIT is the
parent language of a group of languages
in a father/son/grandson relationship,
but the processors are quite different,
the standard that a standard CL (Cutter
optional since this family of languages
intermediate data output medium.

comprising SPLIT, ACTION, COMPACT II
The languages are very similar,
It was decided in developing

Location) output would be
does not necessarily generate an

The SPLIT processor is machine dependent and does not create an
intermediate cutter location (CL) file. The ACTION and COMPACT II
processors, however, are machine independent; but they work in conjunction
with their respective postprocessors. In this integrated mode, each
statement is processed into a CL file statement and then postprocessed
by the selected postprocessor into a machine control format before the
program moves to the next statement.

ACTION can be run on a minicomputer and in that situation operates
in the re-entrant mode - i.e., all the statements in a program are pro-
cessed and a CL file is generated; then that file is postprocessed
to produce the machine control output.

The ANSI committee feels that to make intermediate output (CLDATA file)
the mandatory output of the standard would be to deprive the users of
many of the inherent economics of the languages. However, the committee
is recommending that the intermediate data output be a user or implementor
option, and where offered it should conform to the existing CLDATA Standard.
The University Computer Corporation (UCC) COMPACT II processor already
produces an intermediate data file in accord with the CLDATA requirement
of the APT standard.

54

The long term objectives of the COMPACT II Standards committee are
to provide most of the capabilities already present with APT or under
research effort. These include working standards for graphic output, for
incorporation of machining technology, for programming sculptured
surfaces, and for the interface of the NC language to total CAD/CAM
systems

.

There are presently 1400 installations using the COMPACT II family
of languages, representing 6000 NC machine tools. The five year pro-
jection (by 1981) estimates 3500 users (20,000 NC machine tools) in
the US and 6000 users (40,000 NC machine tools) worldwide.

At present, about 50% of all NC machine tools are being programmed
by computer assist. Of these, about 40% are being programmed by
COMPACT II family and about 40% by APT with the remainder using the other
40 languages. The five year prediction is for 75% of all NC tools to
use computer assisted programming with close to half in COMPACT II and
half in APT.

Thus, even though the COMPACT II family is a late entry, (circa 1967
vs. 1950's for APT) it has quickly found widespread acceptance. The
main reasons for this are several. The COMPACT II family is less
sophisticated than APT and for that reason many users feel that for their
more limited requirements that COMPACT is easier to learn. Lathe (2 axis)
programming is much more efficient in COMPACT II because of certain
language features not available in APT. Lathes represent 40% to 50%
of all of the NC tools being shipped. COMPACT II has also been well
provided on a time-shared remote service bureau basis by Manufacturing
Data Systems Inc. (MDSI) with excellent support.

COMPARISON OF NC LANGUAGES

In March 1974 the Numerical Control Society submitted a final report
on the US Army Electronics Command Numerical Control Language Evaluation.
This study analyzed seven general purpose NC programming languages and
presented data concerning their performance on ten test parts representative
of Department of Defense workload. The test parts all of the milling-
drilling-boring variety spanned the entire range from 2 axis to 5 axis
complexity

.

While no definite conclusions were reached in the study, sufficient
data is presented and analysis factors explained that a prospective
user can perform benefits analysis in the context of his own shop
environment

.

One fact is clear - that of the general purpose NC language processors
now in widespread productive use only two language families are prevalent,
APT and COMPACT. It is again only these two language forms that are
being considered in government and national standardization activities.
As such both merit the attention of the Air Force ICAM Program.

CRITERIA FOR NC LANGUAGE SELECTION

Several technical factors should be considered in choosing a pro-
gramming language for numerical control:

Language Programming Capability
Processor Availability
Language Documentation
Processor Maintenance
Programming Time
Processing Costs
Proprietary Nature of Language

55

Study of NC languages must be placed into the perspective of the final
goal of the Air Force program, an integrated computer base manufacturing
system. It is expected that when this goal is realized, a designer may
sit down at a computer terminal with a CRT, design some object, then
allow the computerized manufacturing system to manage the supply of raw
materials, schedule machines, decide on cutters, manage inventories and
produce a final product while providing management and designers with the
appropriate feedback information Critical interfaces in this final system
should be identified now and carefully standardized so that a workable
system can be developed. In the area of the actual machining and forming
of parts, the most important interface is between the CAM (computer aided
manufacturing) system and the actual production machines. This interface
is defined by the CLDATA file. This is the standardized part description
data that describes exactly how to make any part. A postprocessor of
any machine tool will convert this standardized data to the specific
command statements necessary for that particular tool to make the part.
The CLDATA file can also be used by graphics devices to display in visual
form information concerning the part.

At the present time this CLDATA file is generated by the NC programming
language APT, and is being considered as an optional requirement for COM-
PACT II. It is the standard for the International Standards Organization
(ISO). A designer now gives a part programmer either his own drawings
or design drawings made with varying degrees of computer assist. The
part programmer then generates the necessary code to make the part.
This is passed through a processor to create (in APT) a CLDATA file which
should be a totally machine-independent representation of the part.
This is customised to the requirements of the individual machine tool
by putting the CLDATA file through the postprocessor for that tool.
Eventually the part programmer should be eleminated with the CAM system
providing the CLDATA file from the designer's requirements. Thus, while
the NC programming language standard is important, indeed crucial during
the interim stage, its importance will decrease as the full CAM system
is realized. The CLDATA file, however, will become the link between
the CAM system and the real world of production. If this CLDATA file can
be properly standardized, it can be the common data base between any CAM
system and any set of machine tools or any programming language and any
CAM system or machine tool. It would make it easy for any machining
facility to produce any parts regardless of their own CAM capability,
merely by having access to the CLDATA file. It would allow government,
for instance, to make replacement parts or additional units from CLDATA
files without having to attempt to access contractor CAM systems that
might be proprietary. Again this interface, the CLDATA file, is considered
one of the most crucial for a truly flexible computer aided manufacturing
system.

RECOMMENDATIONS

With this in mind our recommendations considering NC part programming
languages follow.

(1) If a single part programming language is desired to cover all
applications then this language should be APT. APT produces
the CLDATA file standard. It is the most sophisticated including
such unique capabilities as producing part programs for milling a
non-formula or sculptured surface (a surface defined by a lattice
of coordinate points) such as found commonly on aerospace parts.
Thus far it is the only language for which there is a formal
draft standard. There are several areas of research and develop-
ment of advanced capabilities such as process planning, geometric
modeling, and sculptured surfaces that will be compatible
with existing APT processes.

56

(2) If more than one language can be considered, then it is recommended
that both APT and COMPACT II be used. APT provides the
sophistication for complex parts. COMPACT II, however, offers
significant advantages in speed and ease of programming of simpler
parts and expecially lathe work.

(3) If COMPACT II is included as a standard language then the
capability to produce a standard CLDATA file must be included.
This would allow part programming in either APT or COMPACT II
with their CLDATA files to be the common interface to the
production machines.

(4) While the current standardization activity with the APT
postprocessor language is encouraging, it falls short of the
capability truly needed by the Air Force in manufacturing.
Even the most recent proposed standard for APT allows too
much latitude in the choice of language syntax. Anything short
of a complete and comprehensive language specification obviates
the possibility of being able to rapidly and easily exchange
NC workload among functionally equivalent machines. This
capability is central to the concept of integrated and flexible
manufacturing. The Air Force can and should provide the
impetus to a widespread implementation of a complete government
standard on postprocessor language and philosophy of post-
processing which would bring about this flexibility. Only
with this technique can NC data be made transferable among
different machines, different shops and different contractors.

(5)

Further work on additional language capabilities for both APT
and COMPACT II is being carried out by the relevant ANSI committees
on NC part programming languages. It is recommended that the
Air Force monitor this work and help provide direction for the
implementation in CAM systems. Work is progressing in the
areas of a) sculptured surfaces, non-analytical sculptured
shapes (shapes arrived at by sculpturing processes), unconventional
analytical shapes (e.g. parametric surfaces), and any combination
of these two; b) bounded geometry, 3-dimensional modeling
capability within the computer. Objects would be represented
and manipulated as bounded, closed entities rather than as
bounded by a set of possibly infinite faces combined in specific
ways; c) lathe language - a study of the various capabilities
of several languages in their ability to efficiently program
lathes which account for close to half of all NC machine tools.

COMMENTS

The emphasis of the proceeding report on NC Programming Language
Standards is the important interface between future CAD/CAM systems and
the production tools. The CLDATA file appears to be a good starting
point for the development of this crucial interface standard. The
recommendations above suggest some important additions necessary if real
flexibility is to be obtained at this interface.

There are additional considerations which will be mentioned here.

The CLDATA file is not a totally independent description of the
necessary commands and cutter path. When the program is written, certain
data such as the diameter of the cutting tool, the length of the tool,
etc. are included in the program and these affect the cutting path
motions. The CLDATA file with postprocessor commands can be used as a
description of the machine tool operations only as long as these
additional parameters are kept constant. If a shop does not have the

57

correct size cutter it would be advantageous if the part program could
be modified to accomodate the cutter size availabe. For contouring
operations, this implies new geometric calculations and the need for source
code modifications. It would thus be advantageous to have the NC system
on-line in a DNC configuration. This is a reasonable plan for systems for
the 1980's. This would require better identification of relevant state-
ments in the CLDATA file, perhaps through flags, comment statements, etc.
to allow for possible editing.

REFERENCES

(1) American National Standard APT - Proposed Revision , March 1975,
American National Standards Institute, 1430 Broadway, New York
City, New York 10018

(2) Numerical Control Language Evaluation , Numerical Control Society,
March 1974, 1201 Waukengan Road, Glenview, Illinois 60025

(3) CAM-I Special Projects 1976, PR-75-ASPP-01 , Computer Aided Manu-
facturing-International, Inc., 6J1 Ryan Plaza Drive, Suite 1107,
Arlington, Texas 76012

(4) Proposal for the creation of an X3 Standards Committee covering the
COMPACT II, ACTION, and SPLIT family of Numerically Controlled
Machine Languages, 1975; Submitted to : American National Standards
Committee X3 , Secretary X3, CBEMA; By: Manufacturing Data Systems, Inc.,
320 North Main Street, Ann Arbor, Michigan 48104; Sundstrand
Machine Tool Compary, 3625 Newburg Road, Bervidere , Illinois 61008.

(5) The letter of August 27, 1975 by Elliot Brebner, Chairman of X3J7,
in response to the SPARC committee requesting that X3J7 comment on
the COMPACT II, ACTION, SPLIT proposal for the formation of a

standards committee.

(6) Computer Software for Numerically Controlled Manufacturing - 1973;
By: Bradford Smith, Report # NSRDC 4327, Computer Aided Design
Division, Naval Ship Research & Development Center, Bethesda,
Maryland 20084

SUMMARY DATA SHEETS

The following Data Sheets summarize these standards which apply to
NC Part Programming Languages.

58

1. Designation : ANSI X3 .37-1 974

2. Title : Automatically Programmed Tool (APT)

3. Maintenance Authority : ANSI X3J7 and IS0/TC97/SC9

4. Scope : Programming language used for Numerical Control (N/C) machine tools in

discrete part manufacturing and tooling manufacturing, for surface definition,
and as a subset of graphics and process planning programs for all of the above.

5. Relationship to Other Standards :

ARELEM - 1971 (subset)
ARLM1 - 1975 (subset)

SSX5 - 1975 (extension)
CASPA - 1975 (pre-subset)
ADAPT - (subset)
UNIAPT - (Comparable except for the size of computer and mode of operation)
ISO/DIS 3592 - 1975 (Pseudo-subset) the ISO CL DATA standard derived from APT.

6. Competitive Standards : SPLIT/ACTION/COMPACT II Languages

7. Standardization Status : In 1963, the Business Equipment Manufacturer's Association
(BEMA) sponsored the formation of the American National Standards Institute (ANSI)

subcommittee X3J7 to create a standard for the APT language. The standard was
submitted for approval in May, 1973. The first APT Language Standard was published
by ANSI in June 1974. It is designated ANSI X3.37. This standard was revised in

March 1975 and a draft (X3J7/55-80) has been approved with publishing expected

by January 1977. The revised standard will be designated ANSI X3. 37-1977.

The major revision is the addition of the APT N/C post processor language in the

standard.

FIPS Task Group 19 is studying the suitability of this revised form of the APT
Standard for use as a Federal Standard. A draft Federal Standard is expected by

September 1977.

8. Implementation Status : The APT Language is implemented on IBM 704, 709, 7090,

360, 370, UNIVAC 1108. General Electric's international computer service network.
APT is also fully or partially implemented on Fujitsu, Control Data Corporation,
Siemens, and English Electric Computers.

9. Known Manufacturing Uses : Approximately 20% of the parts made on N/C tools are

programmed in APT.

10.

Known Sources of Information :

Computer and Business Equipment Manufacturers Association (CBEMA)

Secretariat of ANSI X3

1828 L Street, NW

Washington, D.C. 20036

CAM-I, Inc. (Computer Aided Manufacturing-International , Inc.)

611 Ryan Plaza Drive, Suite 1107

Arlington, Texas 76012

59

11. Probable Sources of Information:

IBM (International Business Machines) Corp.

Data Processing Division
1133 Westchester Avenue
White Plains, New York 10604

12. Bib! iography :

ANSI X3.37 - 1974
IBM SYSTEM/370 APT-BP Numerical Control Processor General Information Manual
IBM SYSTEM/370 APT-IC & APT-AC Numerical Control Processor General Information Manual

13. Comments : APT is the first of the N/C Languages, provides the most sophisticated
capabilities, and is presently the most widely used, with about 20% of all N/C
machined parts being programmed in APT. Development work includes a geometric
modeling project for processing a wide variety of engineering shapes, an improved
Arithmetic Element, and a sculptured surfaces project to extend the geometric
capability of APT to unconventional analytical as well as non-analytical shapes.

Developmental work is primarily carried out by CAM-I, Inc., which has taken over
the work of the APT Long Range Program (ALRP) formerly at the Illinois Institute
of Technology Research Institute (IITRI).

Major problems still remain with post processor and controller source code
incompatibilities that make it impossible to transfer either Cutter Location (CL) file

tapes or machine tapes from one machine tool or facility to another without at least

some modifications.

60

1 . Designation : N.A.

2. Title : COMPACT I I/ACTION/SPLIT
(COMputer Program for Automatical ly Control! ing

Tools II/ACTION/Sundstrand Processing Language internally Translated)

3. Maintenance Authority : ANSI X3J5, Manufacturing Data Systems Inc. (MDSI)

4. Scope : Programming Language for describing operations for numerically controlled
machines.

5. Relationship to Other Standards : N.A.

6. Competitive Standards : APT is the main competitive language; there are approximately
40 other NC programming languages.

7. Standardization Status : Initial proposal for a standard was reviewed by CBEMA
SPARC committee June 17, 1975. This committee recommended that a study group be

formed and the X3/SPARC Study Group held its first meeting September 30, 1975.

As a result the COMPACT I I /ACTI ON/SPL IT Standard proposal was modified and for-
warded to X3 with the recommendation that an X3J* standards committee be formed
in order to produce a standard within 12 to 24 months. X3J5 held its first meeting
in March, 1976.

8. Implementation Status :

SPLIT has be implemented on the DEC PDP 11/20 and the IBM 360/30.
ACTION has been implemented on the DEC PDP 11, DEC PDP 10, IBM 360, IBM 370.

COMPACT II is available only in the remote time-sharing mode on two world-wide
networks maintained by Manufacturing Data Systems Inc. (MDSI)

9. Known Manufacturing Uses : A language used in programming of Numerical Control

(N/C) machine tools. At present there are 1400 users of the COMPACT I I /ACTI ON/SPL IT

family of languages representing over 6000 N/C machine tools. This results in

about 20% of the machine parts made on all N/C tools are programmed in this

family of languages.

10. Known Sources of Information :

Robert F. Guise, Jr.

Director - New Product Planning
Manufacturing Data Systems Inc. (MDSI)

320 N. Main St.

Ann Arbor, Michigan 48104

11. Probable Sources of Information:

Mr. Harold Baeverstad
Vice President Manufacturing
Sundstrand Machine Tool Division of the Sundstrand Corp.

Newburg Road
Belvidere, Illinois 61108

Mr. Richard A. Stitt
President
NCCS-W0RD, Inc.

23500 Merchantile Blvd.

Cleveland, Ohio 44122

61

12. Bib! iography : '

MDSI COMPACT II Programming Manual, March, 1973

Sundstrand Machine Tool OM 3 Omnimill SPLIT Programmers Manual

TS 60030 SPLIT Vocabulary Manual

ACTION Programming Manual for Mill and Drill

ACTION Central, Description of the System
ACTION N/C Time Sharing
5-Axis Action 5A : 001

13. Comments : SPLIT is the parent language of a group of languages comprising SPLIT,
ACTION, and COMPACT II in a father/son/grandson relationship. The languages are
very similar, but the processors are quite different.

It was decided in developing the standard that a standard CL (Cutter Location)
Data output would be optional since this family of languages does not necessarily
generate an intermediate data output medium.

Approximately 30% to 50% of all N/C machine tools are programmed by computer
assist. Of this number approximately 30% to 40% are programmed by COMPACT I I/ACTION/
SPLIT family of languages. This high use is mainly a result of the efficiency
of programming 2 axis machines (lathes, which account for 40% of the N/C tools)
and the ease of programming simple parts as compared to the greater programming
effort required with the more sophisticated APT language.

C0NAPT is a member of this family, not the APT family.

62

STANDARDS FOR COMPUTER AIDED MANUFACTURING

CAD/CAM INTERFACE STANDARDS

INTRODUCTION

APT AS A DE FACTO CAD/CAM INTERFACE

DIGITAL REPRESENTATION OF PHYSICAL OBJECT SHAPES

CAM- I GEOMETRIC MODELING PROJECT

CAD/CAM INTERFACE IN PRINTED CIRCUIT BOARD MANUFACTURE

POTENTIAL IMPACT OF NASA IPAD PROJECT

SUMMARY

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

63

Figure 1

SCHEMATIC LOCATIONS OF THE CAD/CAM INTERFACE

64

INTRODUCTION

The CAD/CAM interface is a boundary, as yet ill defined, across which
information must be communicated. The flow of information is primarily
in the CAD+CAM direction, although ideally there is a reverse flow giving
the design or process engineer information concerning tool availability,
material inventory, etc. The simplest, historical design/manufacturing
interface was the set of engineering drawings describing the part to be
manufactured. In a CAM system, the interface is the appropriate data base
representing the same data as the part drawings.

APT AS A DE FACTO CAD/CAM INTERFACE

There presently exists no consensus as to what the CAD/CAM interface
is or precisely when it should be drawn. For example, are Automatically
Programmed Tool (APT) programs part of the design process or the manufactur-
ing process? Many small stand-alone interactive CAD systems produce APT
source code, APT CL file data or machine tapes as direct output. This
data is then carried to a manufacturing installation where it is put through
a processor and/or post processor (if necessary) and used to control NC
machine tools. The APT part description is thus a direct CAD/CAM interface
for small systems.

In larger installations, where CAD/CAM is more integrated, the data
base which describes the physical parameters of the parts to be manufactured
is usually considered to be the CAD system output. APT tool programming
is treated as one part of Process Planning (part of CAM, not CAD) . The
CAD/CAM interface is thus considered the drawing or data base describing
the part. In Figure 1, if APT programming is considered to be a part of
manufacturing, the CAD/CAM interface can be drawn as the dashed line.
If, however, APT is included in design, then the interface can be drawn
as the dotted line in Figure 1. In either case, it is possible, given
the structure shown in Figure 1, to draw the CAD/CAM interface such that
it cuts only the outputs of data bases. This would appear to be a useful
concept in that it makes for clearly defined interfaces both physically
and logically.

STANDARDS ACTIVITY IN DIGITAL REPRESENTATION OF PHYSICAL OBJECT SHAPES

Whether any particular CAD/CAM system adopts the configuration of
Figure 1 or some other, it is clear that the data base consisting of a
numeric description of physical objects is central to the entire CAD/CAM
processes. This data base provides the working input to CAD displays
and to CAD analysis programs. Indeed, the entire CAD process does nothing
more than generate, analyse, and manipulate this data base. Once finalized,
the part descriptor data base provides the primary input to APT tool programs,
planning and scheduling programs, and eventually to inspection and quality
assurance programs.

Thus, the part description data base is central to the entire CAD/CAM
concept and, in large measure, will define the CAD/CAM interface. This
implies that efforts to develop standard methods for representing part
shapes, dimensions, tolerances, materials surface finishes, etc. are pre-
requisites to developing standards for CAD/CAM interface. The American
National Standards Institute (ANSI) Y14.26 subcommittee on Computer Aided
Preparation of Product Definition Data is presently working on a Y14.26.1
standard for the Digital Representation of Physical Object Shapes.

The stated aim of this standard is to facilitate the communication
of physical object shape descriptions among CAD/CAM programs and data bases
of organizations engaged in interfacing activities such as contracting and
subcontracting. The approach is to abstract the spatial property of shape

by representing physical objects as geometric solids. The problem then
reduces to describing solids.

A solid may be considered to be a geometric structure constructed
out of building blocks of simpler geometric entities. The description
of that solid is then an information structure constructed out of building
blocks of digital data. This leads to a hierarchy of building blocks.

At the lowest level in the geometrical hierarchy is the point. A
point moving along a trajectory generates a line, a line moving along a
trajectory generates a surface. A surface moving from a start to an end
surface generates a solid element. A succession of solid elements can be
joined to form a complex solid. An example of this method of generating
and describing physical object shapes is shown in Figure 2.

Generating a trajectory requires a rule (or set of rules, procedures,
or equations) which describes the motion of the generatrix (point, line,
surface, solid element). Each element in the hierarchy depends on the
available set of subelements and generating procedures in the lower levels
of the hierarchy. A judicious choice of lower level subelements can produce
a very broad variety of complex shapes.

This work is proceeding steadily, although rather slowly. But even
when this standard is formalized, it will represent only a first step toward
solving the larger problem of completely describing physical objects.

A related effort is currently being funded by Computer Aided Manufac-
turing-International, Inc. (CAM-I). The CAM-I Geometric Modeling Project
is attempting to develop 3-dimensional modeling tools based on digital
descriptions of geometric shapes. On August 25, 1976, CAM-I acccepted a bid
from Sof-Tech, Inc to develop a Geometric Modeling System (GMS) . This will
be a generic system capable of incorporating software modules for part
description languages, geometric modeling mathematics, display and communica-
tion technology, and end use applications. GMS is to "conform to ANSI
standards and be as computer-independent as possible."

THE CAD/CAM INTERFACE IN PRINTED CIRCUIT BOARD MANUFACTURING

The Institute of Printed Circuits has published a standard entitled
"End Product Description in Numeric Form for Printed Wiring Products."

This standard not only defines methods for describing geometric shapes
of printed wiring boards but prescribes record formats for describing the

end-product in digital form. An example of four records describing four
segments of a printed wiring circuit is shown in Figure 3. This digital data,
when recorded on punched cards or magnetic tape, contains sufficient informa-
tion for tooling, manufacturing and continuity testing of printed wiring
products. These formats thus may be used for transmitting information
between the designer and the manufacturing facility after the design has
been completed by a computer-aided process. Such data format standards
are particularly useful when the manufacturing process includes numerically
controlled machines.

The data records specified in this standard are general, not in any
particular machine language, and can be used for both manual and machine
interpretation. Thus each facility can produce an end-product from the data
by the most efficient method available.

Unfortunately, this standard addresses only a tiny fraction of the set
of manufactured products, namely two dimensional printed circuit boards.
Nevertheless, it is complete, is presently in use, and does deal with the
problem of describing a physical object with sufficient completness to define
not only the manufacturing process, but the inspection and acceptance testing
process as well.

66

SI

Cl = G06 (PI, P2 , P3 , P4)

The curve Cl is generated by the parametric cubic operator G06 operating
on the points Pi, P2, P3, P4.

SI = G05 (Cl, C2 , C3)

The surface SI is generated by the operator G05 operating on the curves
Cl, C2 , C3.

VI - G04 (SI, S2

)

The solid VI is generated by the operator G04 operating on surfaces SI, S2.

Figure 2

ANSI Y14.26 METHOD OF DESCRIBING PHYSICAL OBJECT SHAPES

67

.

Op. Code Data Field Recor

Start Point End Point

111 X+00 Y+03 X+02 Y+03 (1)

Circle Center
Start
Angle

Finish
Angle Radius

Direc-
tion

021 X+02 Y+02 X+9 0 Y+0 0 X+01 Y+01 (2)

021 X+04 Y+02 X+180 Y+270 X+01 Y-01 (3)

Oil X+04 Y+01 X+06 Y+01 (4)

L Set size of XY fields
— 1 = linear 2 = circular interpolation

1 = begin line 0 = continue line

Figure 3

EXAMPLE OF IPC STANDARD REPRESENTATION OF PRINTED WIRING CIRCUIT

68

POTENTIAL IMPACT OF NASA'S IPAD PROJECT

The work on an Integrated Program for Aerospace-Vehicle Design (IPAD)
being funded by NASA Langley Research Center is not a standard by the common
definition. It is merely one more integrated software system which attempts
to computerize, in so far as possible, company-wide design information pro-
cessing. IPAD will be composed of 1) executive software that will control
user-directed processes through interactive interfaces with a large number
of terminals in simultaneous use by engineering and management personnel,
2) a large number of utility software packages for information manipulation
and display functions, and 3) data management software to store, track,
and retrieve large quantities of data in multiple storage devices.

However, IPAD is different from other integrated software design systems
in that it is scheduled to be released by NASA to become public domain
under NASA's FEDD (For Early Domestic Dissemination) policy. If IPAD
is a successful system it will undoubtedly be widely used by many industries,
especially those which are too small to afford to develop their own internal
CAD systems. The formats used by IPAD for digital description of physical
objects shapes, and even for describing end-products, will thus become
common usage in many CAD/CAM systems in the future.

The result will be that even though IPAD does not pretend to be a
standards setting project, it nevertheless will set precedents which are
almost certain to become de facto standards for data base formats, man-
machine interfaces, and eventually CAD/CAM interfaces.

There will probably arise many situations where IPAD data bases will
not conveniently conform to standards being developed under ANSI Y14.26.1.
The temptationwill be to ignore the ANSI standards since they have not yet
been formally adopted. Every effort should be made to resolve such conflicts
whenever they arise for otherwise the general applicability and usefulness
of both IPAD and Y14.26.1 will be reduced. The result will be that future
CAD/CAM systems such as the ICAM system of the US Air Force will be
adversely impacted.

The Air Force should take every effort to avoid such conflicts,
working closely with NASA in the manner outlined in the existing Memorandum
of Agreement between NASA and the Air Force.

SUMMARY

To date, all operational CAD/CAM systems have adopted ad hoc techniques
custom tailored to specific applications. To some extent this is acceptable
as long as a CAD/CAM installation is confined to a single plant or a single
company where local custom can serve as an ad hoc standard. It is, however,
completely unacceptable in a wider context where many different contractors
and subcontractors will be required to use the same numeric descriptors
for competitive bidding and for manufacturing operations. For a project
such as the Air Force is presently contemplating, it is critical that
efforts to achieve systematic set of numerical product descriptors be given
top priority. Full cooperation and support should be given to the ANSI
Y14.26 subcommittee as well as to the CAM-I Geometric Modeling Project.
Close liaison should be maintained with the NASA's IPAD and every effort
made to see that conflicting and competing standards do not proliferate.

RECOMMENDATIONS

It is recommended that the Air Force:

1. Maintain close liaison with the ANSI Y14.26 subcommittee.

69

2. Insist that all of its contractors adhere to the ANSI proposed
standards whenever possible.

3. Maintain its close liaison with the IPAD project as outlined in
its present Memorandum of Agreement with NASA.

4. Be aware of potential conflicts with IPAD and take whatever steps
possible to prevent serious incompatabilities from developing.

5. Monitor the CAM-I Geometric Modeling Project to identify any
compatability problems that may develop.

6. Insist on the use of the IPC-D-350A standard in future wedges
relating to electronics or systems including printed wiring products.

REFERENCES

(1) Statement of Work - Development of Integrated Program for Aerospace
Vehicle Design (IPAD), Ap 15, 1976, Langley Research Center, Langley,
VA

.

(2) Product Manufacturing Interface , ^October 1976 D6-IPAD-70011-D, NASA
Langley Research Center

(3) End Product Description in Numeric Form for Printed Wiring Products ,

IPC-D-350A, September 1974, Institute for Printed Circuits

(4) Digital Representation of Physical Object Shapes , ANSI Y14.26.1 Draft
Report, June 1976, American National Standards Institute, New York
City, 10018

(5) CAM-I Special Projects, 1977 , PR-76-ASPP-01 , Computer Aided Manufactur-
ing-International, Inc., Arlington Texas, 76012

(6) Minutes of Geometric Modeling Project Meeting , M-76-GM-01 held August
24-26, Rochester, N.Y., CAM-I, Arlington, Texas 76012

STANDARDS DATA SHEETS

The following Data Sheets summarize the standards which apply to the

CAD-CAM Interface.

70

1 . Designation : IPAD

2. Title : Integrated Program for Aerospace-Vehicle Design

3. Maintenance Authority :

Boeing Commercial Aircraft Co.

P.0. Box 3707
Seattle, Washington 98124

NASA Langley Research Center
Hampton, Virginia

4. Scope : IPAD is not a standard by the common definition. It is an integrated
software system to computerize, insofar as possible, company-wide design-information
processing. IPAD will be composed of 1) executive software that will control
user-directed processes through interactive interfaces with a large number of

terminals in simultaneous use by engineering and management personnel, 2) a large

number of utility software packages for information manipulation and display
functions, and 3) data management software to store, track, and retrieve large
quantities of data in multiple storage devices.

IPAD is scheduled to be released by NASA to become public domain under NASA's
For Early Domestic Dissemination (FEDD) policy. If it is widely used by industry
IPAD may set de facto standards for data base formats and for the man/machine interfaces.

5.

Relationship to Other Standards : N/A

6. Competitive Standards : N/A

7. Standardization Status : N/A

8. Implementation Status : IPAD is now being implemented. It will be released in three

stages on two different host computer systems.

Release 1 Host
II

1
II

it

2
n

n
2

M

" 3
" 3

1 June 1978

2 Dec 1978

1 May 1979
2 Nov 1979

1 June 1980
2 Dec 1980

9.

Known Manufacturing Uses : IPAD will be used in aerospace design to provide

executive control, data management, and display utilities for engineering and

management programs.

10.

Known Sources of Information:

Robert Fulton, or Susan Voigt
NASA Langley Research Center
Hampton, Virginia 23665

804/827-2887, x3401

R. E. Miller, Jr.

IPAD Program Manager
Boeing Commercial Airplane Co.
P.0. Box 3707
Seattle, Washington 98124

206/237-8223

11.

Probable Sources of Information: N/A

71

12. Bibl iography :

Feasibility Study on an Integrated Program for Aerospace-Vehicle Design (IPAD),

The Boeing Company, Contract NASI -11 441, 1973

Feasibility Study on an I_n te 9 ra tecl Program for Aerosapce-Vehicle Design (IPAD),
General Dynamics/Convair , Contract NASI -11 431, 1973, NASA CR 132401-06.

IPAD Prospectus, NASA Langley Research Center, February 10, 1975.

NASA Request for Proposal 1-15-4934 Development of Integrated Programs for Aerospace-
Vehicle Design (IPAD) May 16, 1975.

Boeing Technical Plan-Review D6-IPAD 70002-PS, May 24, 1976.

13. Comments : The Air Force has an memorandum of agreement with NASA to insure the
compatabil ity of the IPAD and CAM systems.

72

1 . Designation : Institute for Printed Circuits Standard IPC-D-350A

2. Title : End Product Description in Numeric Form for Printed Wiring Products

3. Maintenance Authority :

Institute for Printed Circuits
1717 Howard St.

Evanston, Illinois 60202

4. Scope : Describes record formats for defining end-product description data in

digital form. This digital data, when recorded on punched cards or magnetic tape,

contains sufficient information for tooling, manufacturing, and continuity testing
of printed wiring products. These formats may be used for transmitting information
between the designer and the manufacturing facility when the design has been formed by

a computer-aided processes. These formats are also useful when the manufacturing
process includes numerically-controlled machines. The data record is not in any parti-
cular machine language and can be used for both manual and computer interpretation.

5. Relationship to Other Standards : IPC-D-350A contains the following standards:

Institute of Printed Circuits:
IPC-T-50 Terms and Definitions
I PC- D- 310 Suggested Guidelines for Artwork Generation and Measurement Techniques

for Printed Circuits
I PC- D- 390 Guidelines for Design Layout and Artwork Generation on Computer
Automated Equipment for Printed Wiring

Department of Defense
MIL-STD-429 Printed-Wiring and Printed-Circuit Terms and Definitions

American National Standards Institute
ANSI X3.22 Recorded Magnetic Tape for Information Interchange
ANSI X3.26 Hollerith Punched Card Code

American Society for Testing and Materials
E380-74 Metric Practice Guide

6. Competitive Standards : None

7. Standardization Status : IPC-D-350 released August, 1972; IPC-D-350A revised and

enhanced, released September, 1975.

The ANSI Y14.26.2 Subcommittee is presently considering revising IPC-D-350A and

reissuing it as a joint ANSI / 1 PC standard under the designation, ANSI Y14.26.2/
IPC-D-350B. This revision will not make any change in the data formats; the only
changes will be in the text of the descriptive narrative. Expected release data
of this new standard is September, 1976.

8. Implementation Status : Computer-Vision, Inc. has implemented a translator for the
standard to sell with their printed wiring manufacturing equipment.

Bendix and Sandia are negotiating with Applicon for a similar translator.

9. Known Manufacturing Uses : The National Security Agency (NSA) has made IPC-D-350A
a requirement for all suppliers of printed circuits and printed circuit equipment.

73

10 . Known Sources of Information:

Timothy Ristine, Chairman of ANSI Y14.26.2/IPC-D-350B
Mul tiwire-New England
491 Amherst St.

Nashua, N.H. 03060
603/889-0083

11. Probable Sources of Information : N/A

12. Bibl iography : N/A

13. Comments:

74

1 . Designation : ANSI Y14.26.1

2. Title : Digital representation of Physical Object Shapes

3. Maintenance Authority :

American National Standards
Y14 Committee on Engineering Drawing and Related Documentation

Subcommittee Y26 on Computer Aided Preparation of Product Definition Data

4. Scope : To establish a standard method of describing physical object shapes
to facilitate communication of physical descriptions among computer users.

5. Relationship to Other Standards : Not yet defined. However, the proposed Y14.26.1
standard for a computer-readable format undoubtedly must subsume such currently
used standards as MIL-D-1000, Military Specification for Engineering Drawings, and
MIL-D-100A, Military Specifications for Engineering Drawing Practices.

In addition, Y14.26.1 must be compatible with other ANSI Y14, Y10, Y32, and Z32
standards on drafting practices, graphical symbols and letter symbols.

6. Competitive Standards : None

7. Standardization Status : A technical report defining the geometrical foundations
of Y14.26.1 was released in June, 1976. A draft of the Y14.26.1 standard will be

submitted to the committee for a vote by Spring 1977 and will be released some

months thereafter.

8. Implementation Status : N/A

9. Known Manufacturing Uses : Computer aided preparation of engineering drawings.

10. Known Sources of Information :

S. Hori

Leader of Y14.26.1 and 2

McDonnell Douglas Corp.

Dept. H213, Bldg. 107, Rm. 227

P.0. Box 516
St. Louis, MO 63166
314/232-7286

11. Probable Sources of Information : N/A

12. Bib! iography :

Informational Report on Digital Representation of Physical Object Shapes, American
National Technical Report ANSI Y14.26, 1 June, 1976

Design/Manufacturing Interface, Aerospace Industries Association Report on

Project MC 75.4, October, 1975.

13. Comments : This work does not yet represent a formal standard and has had only
limited testing. The concepts promise to be extremely useful in constructing and

transferring data on geometric objects.

75

t,

4

STANDARDS FOR COMPUTER SYSTEMS

COMPUTER AND COMMUNICATIONS INTERFACE STANDARDS

INTRODUCTION

COMPUTER PERIPHERAL DEVICE INTERFACES

Large Scale Computer System Peripheral Interfaces
Minicomputer System Peripheral Interfaces
Recommendation for Computer Peripheral Device Interfaces

INSTRUMENTATION INTERFACES

Recommendation for Instrumentation Interfaces

COMMUNICATION INTERFACES

Hardware Interconnection Level Interfaces
Data Link Control Level Interfaces
Network Level Interfaces
Recommendations for Computer Communications Interfaces

SUMMARY OF INTERFACE STANDARDS

SUMMARY OF RECOMMENDATIONS

STANDARDS DATA SHEETS

77

INTRODUCTION

For purposes of the following discussion, an interface is defined to
be the point of interconnection between two logically and physically
separate components to enable the interchange of information. Depending
upon the operational capabilities and functional complexities of the
components, specification of an interface may require the definition of
parameters and performance characteristics at several levels.

At the most basic level, for example, the physical interconnection of
two components requires that they be electrically and mechanically
compatible at the interface point, i.e., the signalling voltages and
currents presented at the interface by each component must be compatible
with the impedances and receiving circuit sensitivities of the other and
the two interconnection plugs must mate. In addition, also at the basic
level of interface definition, it is essential for information interchange
that the components be functionally compatible, i.e., every function
required by one component must be generated and presented at the interface
in proper sequence by the other.

For some kinds of relatively unsophisticated equipment, conformance
to the basic electrical, mechanical, and functional interface character-
istics is sufficient to ensure operation. Complex systems also require that
higher level operational and procedural definitions be provided. At
the highest level where the components being interconnected have a range
of operating capabilities, the formats and information transfer sequences
must be also defined to ensure component interoperability.

There are generally three different kinds of interfaces that have
been established for ADP systems that govern the interconnection of these
systems with external devices and facilities and which enable the input/
output interchange of internally stored information with the data collection,
storage, or distribution environment external to the ADP system. The
three kinds of interfaces are for:

(1) Computer peripheral devices, such as magnetic tape or disk that
may serve both as intermediate or long term storage as well as
a means for the direct input and output of data.

(2) Instrumentation and control devices that may be employed in
a laboratory experiment or process control environment where
the ADP system collects data produced by environmental or
positional sensors and as a result of processing this data
generates correctional control sequences to operate other
machinery or equipment involved with the performance of the process

(3) Communications, where the ADP system is to be interconnected
with analog or digital telecommunication facilities in a

teleprocessing environment.

For each of these three different kinds of interfaces, industry or
national standards are being developed, or in some cases have already
been approved, that specify the interfaces sufficient to ensure that
components furnished by different suppliers can be interconnected.

COMPUTER PERIPHERAL DEVICE INTERFACES

Standards for this ADP system interface have proved to be the most
difficult to accomplish, not because of their technical complexity but
rather due to competitive pressures and fundamental differences in the
architectural structure employed by different ADP system manufacturers.
However, several draft proposed American National Standards are presently
close to completion.

78

Large Scale Computer System Peripheral Interfaces

The first set of these computer peripheral device interface standards
deal with the large scale ADP system and is based upon the IBM 370 type
I/O channel- to-peripheral controller interface; the set consists of three
kinds of specifications: (1) a document that prescribes the interface
electrical, mechanical, and functional characteristics, (2) an interface
power control specification, and (3) a series of device-specific (e.g.,
tape, disk, etc.) operational specifications.

Figure 1 illustrates the architectural structure for a large scale
computer system that contains an I/O channel and shows the point in this
structure that is defined as the I/O channel-to-controller interface.

Figure 2 provides a listing of functions presented on the two sides
of the I/O channel-to-controller interface and indicates the direction of
signalling. In general, a command initiating an action (e.g.. Select Out)
is issued by the channel, while the response, indicating the action has
been completed is issued by the controller.

It is anticipated that an I/O channel- to-peripheral interface standard
including operational specifications for both magnetic disk and tape
devices will be completed and approved by the American National Standards
Institute by late 1977.

Minicomputer System Peripheral Interfaces

A different kind of device level, but device-specific computer
peripheral interface standard is being developed for minicomputer systems.
Figure 3 indicates the arrangement of processing logic, control, storage,
and I/O components in a typical minicomputer system employing a common
bus structure. It also shows the interface point for connecting
peripheral devices. In the minicomputer case, a general purpose standard
peripheral device interface is being perscribed that contains a total
of some 40 functions--all of which would be presented on the CPU side
of the interface; devices conforming to this interface, however, will
only employ the functions they actually require, elg., a printer cannot
perform the function "read media" and thus would not implement this
function

.

Figure 4 lists the kinds of functions and indicates the signalling
directions for this general purpose interface as it would be implemented
between a magnetic tape transport and a controller.

It is anticipated that this general purpose device-level minicomputer
interface standard will be completed and approved by the American National
Standards Institute by the End of 1977. Furthermore, it is planned that
in conjunction with the final stages of processing by ANSI these computer
peripheral interface standards will also be processed for adoption and
implementation as Federal Information Processing Standards.

Recommendation for Computer Peripheral Device Interfaces

The General Services Administration has established a number of
Mandatory Requirement Contracts dealing with the procurement of "plug
compatible replacement" peripheral devices for the product lines furnished
by several of the major manufacturers. These contracts cover magnetic
tape and magnetic disk subsystems (including the respective controllers),
add-on memory, and input/output punched card facilities. All agencies
are obligated to use these GSA Mandatory Requirement Contracts whenever
practical to do so. It is recommended, however, that the Air Force

79

X - I/O Channel to Controller

Interface Points

FIGURE 1: LARGE SCALE COMPUTER SYSTEM ARCHITECTURE

80

I/O

CHANNEL

INTERFACE POINT

/K

Address Out

Command Out

Service Out

Data Out

< Address In

^ Status In

<

Service In

^ Data In

BUS OUT BUS IN

Operational Out

Hold Out

Select Out

Suppress Out

-S.
c

in
CD
c ^ Di sr.nnnpct. In

-s' o
s, ^

Tj

^ Oppratinnal In^ o
cu

^ T! ^ . ^plprt In^ CD

% ^ Rpqtiest. In

Metering At

Clock Out

cn

co
QJ
C

Metering In

/K

Y

FIGURE 2: I/O CHANNEL TO CONTROLLER INTERFACE

81

I/O

CONTROLLER

X - Device Level Interface

Point

FIGURE 3: MINICOMPUTER SYSTEM ARCHITECTURE

82

CONTROLLER

INTERFACE POINT

Load On-Line >

A

Y

>
>

Select >
>

Sync Forward

Sync Reverse >
Density Select >
Rewind >
Off-Line >
Set Write Status >
Overwrite ^
Write Data Strobe >
Write LRCC >

>

>
>
^
>
>
>
>

Read Threshold >

<= — Ready

< — On-Line

< Rewi nding

< EOT

< BOT

< File Protect

< Data Density Ind.

< Read Data Strobe

Read Data

S'

FIGURE A: I/O CONTROLLER TO MAGNETIC TAPE DEVICE INTERFACE

83

DEVICE

carefully follow the standards being developed for the computer peripheral
device interface and be prepared to implement these 'in CAM applications
as soon as these standards are proposed for Federal adoption.

INSTRUMENTATION INTERFACES

The IEEE has developed and approved (as of July 1974) an industry
standard for instrumentation applications entitled "IEEE Standard 488--
Digital Interface for Programmable Instrumentation." This standard has
also been approved by the American National Standards Institute as ANSI
MC 1.1-1975. Although this standard is not limited by its scope, it
appears that its principal application is concerned with minicomputers
instrumented in close proximity for limited process control functions
such as in a laboratory type environment. This standard deals with
systems and components that employ byte-serial, bit-parallel data
transfer. Figure 5 illustrates the 1/6 wire bus structure of the IEEE
488 programmable instrumentation interface and indicates some of its
characteristics as well as the functional properties (talker, listener,
etc.) of some of the components that may be interconnected by it.

Recommendation for Instrumentation Interfaces

It is anticipated that implementation of the IEEE Standard 488 will
probably be contrained to minicomputers interconnected in close proximity
with digital instruments and devices normally employed in laboratory type
experimental situations, e.g., temperature, signals various form sensors, or
positional measurements with the processing of these measured data being
employed to correct and control their future values. While this interface
is not considered to be of general purpose utility for data processing,
some of the instruments and devices that are available as "off-the-shelf"
items for use in CAM applications are designed to the IEEE Standard 488
interface. For this reason, it is recommended that the Air Force be
aware of the existence of IEEE Standard 488.

COMMUNICATIONS INTERFACES

Perhaps the most dynamic areas of computer utilization are currently
those concerned with teleprocessing and computer networking that are
dependent upon advances in data communication technology. Within the
past few years, there have been a number of significant developments in
establishing standards for data communications and computer networking.
New standards that are in various stages of development include replace-
ments for such widely accepted and implemented standards as RS-232 at the
physical interconnection level and binary synchronous (bisync) link control
at the link protocol level as well as for higher levels not previously
covered, such as for packet switching. These standards are being developed
both on a national and international scale by such groups as the American
National Standards Institute (ANSI), the International Standards
Organization (ISO), and the Consultative Committee on International
Telegraph and Telephone (CCITT) . Most of these standards eventually
will be adopted for mandatory use within the Federal Government by either
or both the National Bureau of Standards (NBS) and the National Communi-
cations System (NCS) . Because most of these standards pertain to the
interconnection of computers or data terminal equipment with data
communication or telecommunication facilities, they all may be char-
acterized as interface standards dealing with the computer communications
interface

.

84

FIGURE 5: THE BUS STRUCTURE FOR THE IEEE STANDARD ^88

—

DIGITAL INTERFACE FOR PROGRAMMABLE INSTRUMENTATION

85

Hardware Interconnection Level Interfaces
I

With the data networks of the future expected to be digital from
end to end, standards are being developed to interface terminals to such
networks. This includes replacement for RS-232, presently being developed
by EIA and known as RS-XYZ, as well as the addition of a signalling scheme
to initiate and terminate calls (replacing manual dialing) . Inter-
nationally, CCITT Recommendation X.21 is being proposed for synchronous
terminals and provides a means to initiate calls, exchange call progress
signals, transmit data, and finally terminate calls on new public data
networks. This CCITT Recommendation is also under consideration for
adoption as American National and Federal standards.

Figure 6 and 7 show the respective functional properties of the
RS-XYZ and X.21 interfaces. Note that while the RS-XYZ interface provides
a separate interchange circuit for each function, the X.21 interface
accomplishes essentially the same functional interchanges by combinations
of signals presented on the circuit pairs TRANSMIT (data) with CONTROL and
RECEIVE (data) with INDICATION, i.e., when CONTROL is "on" the information
on the TRANSMIT circuit is interpreted as control—otherwise it is data.

Data Link Level Interfaces

At the data link level, ISO has been working for the past few years
to complete the details of a new, bit-oriented High Level Data Link
Control Procedure (HDLC) . The American National Standard version of this
procedure is called the Advanced Data Communications Control Procedure
(ADCCP) . The concept of a data link to which these control procedural
standards apply is defined as an assembly of two or more data terminals
and the interconnecting line operated according to a particular method or
protocol that permits information to be exchanged.

So far, international agreement has been achieved for both the HDLC
frame structure and the elements of procedure (definition of the command
and response repertoire) . International arguments are still going on
regarding the way in which these commands and responses are to be used
for various applications involving different terminal and link configurations.
Consensus is slow to achieve because of the many different interests that
must all be satisfied with the proposed standard.

IBM, because of its ability to act unilaterally in product announcements,
has announced a product implementing its own Synchronous Data Link Control
(SDLC) procedure which is quite similar to HDLC. Some other vendors
such as Burroughs have announced products that they claim will be fully
compatible with SDLC, ADCCP, and HDLC.

DEC, on the other hand, has continued to pursue its own link control
procedure (DDCMP) which is quite different from any of the proposed
standards. As strong vendor participation continues in the final
development of both HDLC and ADCCP, it seems likely that both an inter-
national and compatible national standard will eventually emerge that
will be implemented by most of the major vendors.

Network Level Interfaces

One of the most dramatic standards developments in the last few
years has been the adoption of Recommendation X.25 by the CCITT at its
quadrennial plenary assembly this past September. Recommendation X.25
is a standard for interfacing host computers to public packet switching
networks. It includes both X.21 and HDLC in the appropriate portion of the
standard, and adds a set of packet formats and commands and responses for
setting up "virtual calls" and transferring data through the network.

86

CIRCUIT

MNEMONIC
CIRCUIT

NAME
CIRCUIT

DIRECTION

CIRCUIT

TYPE

se

sc

RC

SIGNAL GROUND
SEND COMMON
RECEIVE COMMON

TO DCE
FROM DCE

COMMON

IS

1C

TR

DM

TERMINAL IN SERVICE

INCOMING CALL

TERMINAL READY
DATA MODE

TO DCE

FROM DCE
TO DCE

FROM DCE

CONTROL

SO

RD

SEND DATA
RECEIVE DATA

TO DCE

FROM OCE
DATA

—1
UJZZ<
O
O'-
er:

2E
ce
cu

TT

ST

RT

TERMINAL TIMING

SEND TIMING

RECEIVE TIMING

TO OCE

FROM DCE

FROM DCE

TIMING

RS

CS

RR

SQ

NS

SR

REQUEST TO SEND

CLEAR TO SEND

RECEIVER READY

SIGNAL QUALITY

NEW SIGNAL

SIGNALING RATE

TO DCE
FROM DCE
FROM DCE
FROM DCE

TO DCE

TO DCE

CONTROL

SSD
SRD

SECONDARY SEND DATA

SECONDARY RECEIVE DATA
TO DCE

FROM DCE
DATA

o-
cc —

J

uj
a z
z zo <o z
LU o
CO

SRS

SCS

SRR

SECONDARY REQUEST TO SEND

SECONDARY CLEAR TO SEND
SECONDARY RECEIVER READY

TO DCE
FROM DCE

FROM DCE

CONTROL

LL

RL

TM

LOCAL LOOPBACK

REMOTE LOOPBACX
TEST MODE

TO DCE

TO DCE
FROM DCE

CONTROL

SS

SB

SELECT STANDBY
STANDBY INDICATOR

TO OCE

FROM DCE
CONTROL

FIGURE 6: INTERCHANGE CIRCUITS DEFINED FOR RS-XYZ

THE DTE/DCE INTERFACE FOR ANALOG NETWORKS

87

s
— • 8— l

—

1

! • 1 1 i

D g Transnit 9 (T) 1
S { i D

t —1- >1 I i

| Control •
• (C) I \——

—

>i
f— > 1 1 i

T 5
Receive X (B) ! c ! i S

l< —V- 1 ! i

| Indication x (I) I I i

\< 1 I i

E | Sig.Ele.Tis •

:

<S) I E \< 1 I

\< — 1

1

1 i

•

a

0

—

J

• 1

1
8 1

u. 1

LIRE : OP DTE - Lata Terainal Eguipceot
DEMARCATION DCE - Da ta Circuit-Ter ni na t-

•
• ing Egu ipaent
o DSE - Data Switching Exchange

FIGURE 7: INTERCHANGE CIRCUITS DEFINED FOR CCITT

RECOMMENDATION X.21 THE DTE/DCE INTERFACE FOR DIGITAL NETWORKS

88

Figure 8 shows the enveloping format prescribed by X.25 for the inter-
change of information between a host computer and a packet switched network
A packet consists of data to be transferred between two users. This data
is preceded by a packet header that identifies the sender and intended
recipient; the network uses information contained in the header for routing
billing, and network control purposes. The packet is then enveloped by an
HDLC frame for transmission between the host computer and the network.
The HDLC frame provides for link level control and consists of bracketing
opening and closing flag octets, a link address octet and a control octet
identifying the type of command or response frame; the frame is ended
with the two octet Frame Check Sequence provided for error detection
just prior to the closing flag octet.

Agreement on such a worldwide standard seemed quite remote only a few
years ago, and it was not until the major packet switching carriers around
the world got together privately that a consensus emerged. The standard
has been criticized by some as lacking in certain features--notably the
standard does not presently provide for the "datagram" type of service—
but this particular deficiency is already being addressed by proposals
to add to the standard.

The key point to note about X.25 is that a workable solution has
been adopted which averts the situation of multiple incompatible inter-
faces being implemented by carriers in each country. Thus, it will be
possible for computer manufacturers and software houses to build and
support only one interface for packet switching.

Recommendations for Computer Communications Interfaces

The data communications area is a very dynamic one at present, and
standards will continue to evolve to keep pace with the state of the art.
Significant developments to look for over the next few years are the
completion and large scale implementation of work already begun, such
as HDLC, additions and modification to recently adopted standards, such
as X.25, and the initiation of new work in areas not currently addressed,
such as end-to-end protocols between host computers.

Designers of networks within the Department of Defense, such as
AUTODIN-II and SATIN-IV are generally cognizant of these standards
developments and insofar as practical most of these new standards are
being implemented as the network design specifications are finalized.

For this reason, it is recommended that the Air Force advise ICAM
contractors to confer with commercial data communication carriers
concerning alternative network design characteristics and particularly
with regard to specific user- to-network interfacing requirements rather
than unilaterally prescribing communication interface standards that
might subsequently prove incompatible with existing or planned networks.

SUMMARY OF INTERFACE STANDARDS

Figure 9 provides a system level overview of the typical locations
of the several standard interfaces that have been described for a system
that consists of one large scale computer connected to two remotely located
minicomputers via a packet switched public data network. While the inter-
faces described are not the only interface points in a processing system
such as this standardization of these particular interfaces provides the
consumer of ADP products and services with a large degree of freedom
in the acquisition and interconnection of components furnished by
competitive sources. It should be noted, however, that although the
various interface standards that have been described do make possible the
physical interconnection of independently supplied components as well as

89

HDLC FRAME

F A C

I 1_Ink

Address
Octet

G
(Packet Header) (Data)

>i

Packet

Opening Control
Flag Field

Octet Octet

FCS F

Closing
Flag

Frame Octet
Check
Sequence

-Two Octets

FIGURE 8: THE TRANSMISSION FORMAT PRESCRIBED BY

CCITT RECOMMENDATION X.25

90

NOTE: X.25 prescribes three interface levels: (1) the

PHYSICAL CIRCUIT LEVEL EMPLOYING X.21, (2) THE

LINK CONTROL LEVEL EMPLOYING THE HDLC PROTOCOL/

AND (3) THE PACKET LEVEL PROTOCOL INCLUDING SOME

PACKET FORMATS.

FIGURE 9: SYSTEM LEVEL PERSPECTIVE OF INTERFACES DESCRIBED

91

enable the interchange of data among these components it must be emphasized
that these standards are not sufficient to ensure tha>t meaningful
end-to-end information interchange can occur. End-to-end communication
between users in a system such as this also requires that both ends employ
a common protocol involving a standard language that is represented
with an agreed upon alphabet with characters encoded in a standard manner.

While a number of different multi-computer networking systems have
been designed and successfully implemented that are incompatible among
themeselves with regard to user protocols, languages, and codes,
development of standards for many of these higher level problems has not
yet been satisfactorily addressed. Partly, this is because some of these
higher level problems are not yet sufficiently .well defined that a
standard solution can be prescribed--even though the need for standard-
ization is generally recognized; partly, it is because in other cases a
number of alternative competing solutions have been proposed, none of
which appear optimal.

An an interim alternative to standardization for some of these
higher level problems, NBS has designed and implemented a Network Access
Machine (see NBS Technical Note 917) that employs a minicomputer to
translate from a common user protocol to that required for accessing a
variety of services provided by different remote host computer systems.

It is anticipated that these higher level areas of standardization
will receive increasingly urgent attention in the near future and it is
recommended that the Air Force monitor these activities closely.

SUMMARY OF RECOMMENDATIONS

a) It is recommended that the Air Force carefully follow the
standards being developed for the computer peripheral device
interface and be prepared to implement these in CAM applications
as soon as these standards are proposed for Federal adoption.

b) It is recommended that the Air Force be aware of the existence
of the IEEE Standard 488 that prescribes a Digital Interface
for Programmable Instrumentation.

c) It is recommended that the Air Force advise ICAM contractors
to confer with commercial data communication carriers concerning
alternative network design characteristics and particularly with
regard to specific user-to-network interfacing requirements
rather than unilaterally prescribing communication interface
standards that might subsequently prove incompatible with
existing or planned networks.

d) It is recommended that the Air Force closely monitor standardiza-
tion activities in the area of establishing common user, network
access, and other higher level standards that will help ensure
end-to-end communications in a heterogeneous computer networking
environment

.

92

REFERENCES

(1) ANSI X3S34/589 (Fifth Draft), 4/9/76, Advanced Data Communications
Control Procedures, American National Standards Institute.

(2) Donnan, R. A., and J. Ray Kersey, "Synchronous Data Link Control: A
Perspective", IBM Systems J. , 13 , 2, 1974.

(3) IBM Corp., "Binary Synchronous Communications", Order No. GA27-3004,
IBM Corp., White Plains, N.Y. 10604.

(4) ANSI X3. 28-1971, "Procedures for the use of the Communication Control
Characters of American National Standard Code for Information Inter-
change in Specified Data Communication Links", American National
Standards Institute, Inc., New York, N.Y., 10018

(5) Metcalf, R. M. and D. R. Boggs, "Ethernet: Distributed Packet
Switching for local computer networks", CACM, 19, 9, 7/76, pp. 395-403.

(6) Farber, D. J., & K. C. Larson, "The System Architecture of the
Distributed Computer System - The Communications System" , Presented
at the Symposium on Computer Networks, Polytechnic Institute of
Brooklyn, 4/72.

(7) C.C.I.T.T., "Recommendation X.25 - Interface between Data Terminal
Equipment and Data Circuit-Termination Equipment for Terminals
Operating in the Packet Mode on Public Data Networks". See also
ANSI documents X3S37-76-]4 and X3S33-76-6.

(8) Pouzin, L. , "Virtual Circuits vs. Datagrams - Technical and Political
Problems", Proc . NCC , 1976 (V. 45), pp. 483-495.

(9) ANSI X3S37-75-54/4 (Fourth Draft - "ANSI X.21") Proposed American
National Standard--"General Purpose Interface Between Data Terminal
Equipment and Data Circuit Terminating Equipment for Synchronous
Operation on Public Data Networks.

(10) Electronic Industries Association Draft Standard— "Functional and
Mechanical Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data Interchange"

—

(Temporarily Labeled RS-XYZ), Twelfth Draft—May 7, 1976, Amended--
July 30, 1096, Prepared by EIA Subcommittee RS 30.2.

STANDARDS DATA SHEETS

The following Data Sheets summarize those standards which apply to the
Computer and Communications Interface.

93

1 . Designation : EIA RS-232-C, August 1969

2. Title : Interface Between Data Terminal Equipment and Data Communication Equipment
Employing Serial Binary Data Interchange, August 1969

3. Maintenance Authority : Electronic Industries Association, Subcommittee TR-30.2

4. Scope : Hardware Standard. "This standard is applicable to the interconnection of
data terminal equipment (DTE) and data communication equipment (DCE) employing serial
binary data interchange." It defines: (1) electrical signal characteristics

,

(2) interface mechanical characteristics, (3) functional description of interchange
circuits, (4) standard interfaces for selected communication system configurations.

5. Relationship to Other Standards :

EIA RS-334 (ANSI X3. 24-1968) Signal quality for EIA 232-C interface
EIA RS-422 and EIA RS-423, April 1975 (revised electrical signal characteristics)
EIA SP-1194, October 1975 (revised functional description)

6. Competitive Standards : CCITT V.24 (functional) and V. 28 or V.31 for electrical
characteristics. CCITT X . 21 corresponding interface for public data (in contrast
to public telephone) networks.

7. Standardization Status : RS-232, May 1960; RS-232-A, October 1963; RS-232-B,
October 1965. RS-232-C is expected to be gradually (ten years) replaced by EIA
SP-1194A (see writeup immediately below).

8. Implementation Status : Commerically, RS-232-C has enjoyed universal acceptance as

the data terminal -to-modem de facto interface. Although MIL STD 188C prescribes
232-C functions, it employs different (lower voltage and lower impedance) electrical
characteristics

,
primarily for security and privacy purposes.

9. Known Manufacturing Uses . RS-232-C is primarily a communcations (serial) interface
specification.

10. Known Sources of Information: Mr. A. M. Wilson, Electronic Industries Association,
2001 Eye Street, N.W., Washington, D.C. 20006, (202) 659-2200.

11. Probable Sources of Information : Mr. George E. Clark, National Bureau of Standards,
Building 225, Room B210, Washington, D.C. 20234, (301) 921-3723.

12. Bib! iography : EIA RS-232-C, August 1969

13. Comments : Equipment conforming to RS-232-C will gradually be replaced with that
conforming to RS-422 and 423 (employing integrated circuit components) that will

also operate over much greater distances (up to 400 ft.) and at much higher
speeds (up to 10 mega bits/sec.). (Note that 232-C is constrained to 20 kilobits/sec
and 50 ft.

)

94

1. Designation : EIA SP-11 94A/Proposed Federal Standard 1031/Proposed FIPS PUB

2. Title : Functional and Mechanical Interface Between Data Terminal Equipment and

Data Communication Equipment

3. Maintenance Authority : Electronic Industries Association Subcommittee TR-30.2.^

4. Scope: SP-11 94A , together with EIA RS-422 and RS-423, is intended to supersede
EIA RS-232-C.

5. Relationship to Other Standards : SP-1194 is presently being revised and may result
in two or more standards specifying different interface functional and mechanical
characteristics.

6. Competitive Standards :

7. Standardization Status : EIA SP-1194A is presently (September 1976) under EIA ballot.

This Standard, together with EIA Standard RS-423, is intended to gradually replace
EIA Standard RS-232-C as the specification for the nonengineered interface between
data terminal equipment (DTE) and data communication equipment (DCE) employing
serial binary data interchange at data signaling rates up to 60,000 bits per second.
With a few additional provisions for interoperability, equipment conforming to this
standard can interoperate with equipment designed to RS-232-C. This standard is

intended primarily for data applications using analog telecommunications networks.

8. Implementation Status : None

9. Known Manufacturing Uses :

10. Known Sources of Information: Mr. A. M. Wilson, Electronic Industries Association,
(202) 659-2200

11. Probable Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723

12. Bibl iography : EIA SP-1194A

13. Comments : A notice of an earlier version (EIA SP-1194) of this standard as a proposed
Federal Standard (1031) and a proposed FIPS PUB appeared in the Federal Register on

December 5, 1975, page 56938.

^As a Federal Standard, it would be maintained by the National Communications System
(NCS-TS), Washington, D.C. 20305.

95

1. Designation : ANSI X3. 24-1968 (EIA RS-334, March 1967)

2. Title : Signal Quality at Interface Between Data Processing Terminal Equipment
and Synchronous Data Communication Equipment for Serial Data Transmission

3. Maintenance Authority : Electronic Industries Association Subcommittee TR-30.1

4. Scope : "This standard is applicable to the exchange of serial binary data signals
and timing signals across the interface between data processing terminal equipment
and synchronous data communication equipment, as defined in EIA Standard RS-232-C.
The data communication equipment is considered to be synchronous if the timing signal
circuits are at the transmitting terminal or the receiving terminal, or both . . .

This standard does not describe any requirements for error performance, either for a

complete system or any system components."

5. Relationship to Other Standards : EIA RS-232-C (the interface)

6. Competitive Standards : None

7. Standardization Status : First approved by EIA in March 1967. Approved as

an ANSI Standard on September 27, 1968. Revision of this standard according
to the newly approved electrical characteristics is awaiting final EIA actions
on recent (July 1976) revisions of EIA Standards RS-422 and 423.

8. Implementation Status: Most equipment conforming to RS-232-C exceeds the provisons
of X3.24.

9. Known Manufacturing Uses : Used in conjunction with RS-232-C for specifying the

DTE/DCE communications interface.

10. Known Sources of Information : Mr. A. M. Wilson, Electronic Industries Association,
2001 Eye Street, N.W., Washington, D.C. 20006, (202) 659-2200

11. Probable Sources of Information : Mr. George E. Clark, National Bureau of Standards,
Building, 225, Room B210, Washington, D.C. 20234, (301) 921-3723

12. Bibliography : ANSI X3. 24-1968 (EIA RS-334, March 1967)

13. Comments : Conformance to X3.24 assures that the signal amplitude and timing
relationships will be compatible for equipment furnished by different suppliers --

and providing that the RS-232-C functions are consistently implemented, this
conformance insures that equipment will interoperate.

96

1 . Designation : EIA RS-408

2. Title : Interface Between Numerical Control Equipment and Data Terminal Equipment
Employing Parallel Binary Data Interchange

3. Maintenance Authority : EIA E I -31

4. Scope : Hardware Standard. This standard applies to the interconnection of data
terminal equipment and numerical control equipment at the tape reader interface.
It provides electrical signal characteristics, interface mechanical characteristics,
and a functional description of the interface.

5. Relationship to Other Standards : This standard is for parallel -by-bit, serial -by-byte
data, such as that generated by a perforated tape reader.

6. Competitive Standards : IEEE Standard 488-1975

7. Standardization Status : Approved by EIA in March 1973

8. Implementation Status : Widely implemented in numerical control equipment.

9. Known Manufacturing Uses : Used in machines employing numerical control.

10. Known Sources of Information : Mr. A. M. Wilson, EIA, (202) 659-2200; Dr. John Evans,
NBS, (301) 921-2381.

11. Probable Sources of Information : NMTBA

12. Bibliography : EIA RS-408, March 1973

13. Comments : The data terminal equipment (DTE) typically includes a serial -to-parallel
converter. This standard is employed on the parallel -by-bit side of the DTE.
Other standards, such as EIA RS-232-C, apply at the serial-by-bit side of the DTE.

97

1 . Designation : IEEE Standard 488-1975

2. Title : IEEE Standard Digital Interface for Programmable Instrumentation

3. Maintenance Authority : IEEE Instrumentation and Measurement Group

4. Scope : Hardware Standard. This standard applies to interface systems used to

interconnect both programmable and non-programmable (digital) electronic measuring
apparatus with other apparatus and accessories necessary to assemble instrumentation
systems. It is a parallel-by-bit, serial -by-byte standard.

5. Relationship to Other Standards: The character coding is based upon ISO 646-1973,
similar to ASCII, FIPS PUB 1, ANSI X3. 4-1968.

6. Competitive Standards : EIA RS-408, IEEE Standard 583-1975 (CAMAC)

7. Standardization Status : Approved by the IEEE Standards Board on December 19, 1974.

Development of this standard was coordinated with I EC/TC66/WG3 . It may become an

IEC standard.

8. Implementation Status : Implemented in electronic instruments, such as those made
by the Hewlett-Packard Co.

9. Known Manufacturing Uses :

10. Known Sources of Information : Mr. Robert A. Soderman, General Radio Co., (617) 396-4400
x608; Mr. Donald C. Loughry, Hewlett-Packard Co., (408) 735-1550; Mr. Robert G. Fulks,
Omnicomp, 71 N. 12th Place, Phoenix, (602) 997-5456.

11. Probable Sources of Information : IEEE

12. Bib! iography : IEEE Standard 488-1975

13. Comments : Up to 15 devices may be interconnected on one "party-line" configuration.
Cable length is up to 20 meters. Maximum data rate on any signal line is one megabit
per second. This standard is optimized for devices in close proximity (up to 20

meters)

.

98

1 . Designation : IEEE Standard 583-1975

2. Title : IEEE Standard Modular Instrumentation and Digital Interface Systems (CAMAC)^

3. Maintenance Authority : IEEE Nuclear Instruments and Detectors Committee

4. Scope : Hardware Standard. "This standard is intended to serve as a basis for

a range of modular instrumentation capable of interfacing transducers and other
devices to digital controllers for data and control. The standard fully specifies
a data bus by means of which instruments and other functional modules can communicate
with each other, with peripherals, with computers, and with other external controllers.
Data may be transferred either bit-serial or byte-serial."

5. Relationship to Other Standards : Identical in many respects to IEC 482 and IEC 516.

6. Competitive Standards : EIA RS-408, IEEE Standard 488, EIA RS-232-C

7. Standardization Status : Approved by the IEEE Standards Board on February 27, 1975.

8. Implementation Status : Increasingly implemented in laboratory digital instrumentation
equipment, especially that related to nuclear physics and testing.

9. Known Manufacturing Uses : Aluminum Furnace Control (ALCOA), Steel Process Control

(Inland Steel Co.), Diesel Locomotive Testing (GM), Large Power Semiconductor Testing
(GE), Telescope Control and Data Gathering (Kitt Peak)

10. Known Sources of Information : Mr. Dale W. Zobrist, Eldec Corporation, (206) 743-1313;

Mr. Louis Costrell, NBS, (301) 921-2518; Mr. Lowell A. Klaisner, Kinetic Systems
Corporation, (815) 838-0005

11. Probable Sources of Information : IEEE, ERDA, Stanford Linear Accelerator Center,
Lawrence Radiation Lab, Berkeley, California.

12. Bibl iography : IEEE Standard 583-1975; "CAMAC, A Modular Standard," IEEE Spectrum ,

April 1976, pp. 50-55.

13. Comments : This standard was developed by the ES0NE Committee of European Laboratories
and the NIM Committee of ERDA. Data may be transferred byte-serial for high speeds
and bit-serial for long distances.

1
Computer Automated Measurement and Control

1 . Designation : FIPS PUB 22-1 (1976)/ANSI X3. 1-1976

%

2. Title : Synchronous Signaling Rates Between Data Terminal and Data Communication
Equipment

3. Maintenance Authority : ANSI X3S36

4. Scope : This standard provides a group of specific signaling rates for synchronous
serial or parallel binary data transmission. These rates exist on the received
data and transmitted data circuits of the interface between data terminal equipment
and data communications equipment which operate over nominal 4kHz voice bandwidth
channels

.

5. Relationship to Other Standards : FIPS PUB 37/ANSI X3. 36-1975 (wide band synchronous
signaling rates); EIA RS-334 is referenced by ANSI X3.1 for tolerances on the
prescribed rates.

6. Competitive Standards : None

7. Standardization Status : First approved by ANSI in 1962 and revised slightly in

1966, 1969, and 1976. The most recent revision (1976) eliminated the "interim-speed
of 2000 bits/second."

8. Implementation Status : FIPS PUB 22-1 differs from X3.1 only in that it specifies
the tolerance as follows: "The deviation from any specified rate shall not exceed
0.01 percent."

9. Known Manufacturing Uses : Applicable to data terminal and data processing equipment
employed with synchronous data communication designed to operate on binary encoded
information over voice grade lines.

10. Known Sources of Information: Mr. William F. Hanrahan, Secretary, ANSI X3,

(202) 466-2288; H. J. Crowley, Chairman X3S36, (315) 330-2355

11. Probable Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723

12. Bibliography : FIPS PUB 22-1 (1976)/ANSI X3. 1-1976

13. Comments: None

100

1 . Designation : FIPS PUB 16-1971/ANSI X3. 15-1966

2. Title : Bit Sequencing of ASCII in Serial -by-Bit Data Transmission

3. Maintenance Authority : NBS/ANSI X3S33

4. Scope : This standard specifies the bit sequencing of ASCII (ANSI X3. 4-1968)
for serial-by-bit, serial -by-character data transmission. It applies at the
interface between data processing terminal equipment and data communications
equipment.

5. Relationship to Other Standards : This is an implementation standard for CCITT
Recommendation V. 4-1972 and for ASCII (FIPS PUB 1, ANSI X3. 4-1968) and the character
structure standards for serial-by-bit data (FIPS PUB 17, ANSI X3. 16-1966). EIA
RS-232-C uses this standard.

6. Competitive Standards : All bit-oriented, code-independent data transmission
standards, such as HDLC, SDLC, ADCCP, BDLC, etc; parallel-by-bit standards, such as

FIPS PUB 18, ANSI X3. 25-1968.

7. Standardization Status: Approved as an ANSI standard on August 19, 1966. FIPS

PUB 16 adopted RS-232-C and ASCII (FIPS PUB 1, ANSI X3. 4-1968).

8. Implementation Status : Widely implemented in terminal equipment conforming to

EIA standard RS-232-C and ASCII (FIPS PUB 1, ANSI X3. 4-1968).

9. Known Manufacturing Uses : Virtually all ASCII data transmitted in serial-by-bit,
serial -by-character form, conforms to the conventions of this standard.

10. Known Sources of Information : Mr. John L. Little, NBS, (301) 921-3723;
Mr. William F. Hanrahan, Secretary of ANSI X3, (202) 466-2288.

11. Probable Sources of Information : Teletype Corporation

12. Bibliography : FIPS PUB 16-1971, ANSI X3. 15-1966. CCITT "Green Book," Vol . VIII,
Recommendation V.4 on pp. 61-62, 1973.

13. Comments : This standard specifies that the ASCII bits for each character be transmitted
low-order bit (bl) first. Character-oriented data, such as decimal digits, are

usually transmitted high-order character first, and are stored in computer memories
with the high-order characters at the high order end of words or blocks. Hence,
each character transmitted according to this standard may be subjected to bit inversion
for transmission and further bit inversion for re-assembly of a computer-oriented
character stream or data structure. For this reason, IBM and others opposed this

standard, which was a highly controversial proposal until it was approved in 1966.

101

1

1 . Designation : FIPS PUB 17-1971/ANSI X3. 16-1966

2. Title : Character Structure and Character Parity Sense for Serial -by-Bit Data
Communication in ASCII (FIPS PUB 1/ANSI X3. 4-1968)

3. Maintenance Authority : NBS/ANSI X3S33

4. Scope : Hardware Standard. This standard specifies the character structure and

sense of character parity for serial-by-bit, serial -by-character synchronous and
asynchronous data communication in ASCII (FIPS PUB 1, ANSI X3. 4-1968). This standard
applies to general information interchange at the interface between data processing
terminal equipment and the data communication equipment.

5. Relationship to Other Standards : This standard is an implementation of the 7-bit
code of ASCII (FIPS PUB 1/ANSI X3. 4-1968). It is used at interfaces such as EIA
RS-232-C. The companion standard FIPS PUB 18/ANSI X3. 25-1968 is for character
structures using parallel-by-bit data communication. Subsets, such as EIA RS-358,
can use the structure of this standard.

6. Competitive Standards : Proprietary structures for communicating non-ASCII codes,
such as 6-bit Teletypesetter or 8-bit EBCDIC

7. Standardization Status : The ANSI standard X3.16 was approved on August 19, 1966;
FIPS PUB 17, adopting in its entirety that ANSI standard, was approved on

October 1, 1971.

8. Implementation Status : Widely implemented in communication systems and ADP terminal

devices.

9. Known Manufacturing Uses :

10. Known Sources of Information: Mr. John L. Little, NBS, (301) 921-3723;
Mr. George E. Clark, NBS

, (301) 921-3723.

11. Probable Sources of Information : Teletype Corporation

12. Bibliography : FIPS PUB 17-1971/ANSI X3. 16-1966

13. Comments : This standard specifies odd parity for synchronous data communication
and even parity for asynchronous data communication. It does not specify the bit

sequence, which is given in FIPS PUB 16/ANSI X3. 15-1966.

102

1. Designation : FIPS PUB 18-1971/ANSI X3. 25-1968

2. Title : Character Structure and Character Parity Sense for Parallel -by-Bit Data
Communication in ASCII (FIPS PUB 1/ANSI X3. 4-1968)

3. Maintenance Authority : NBS/ANSI X3S33

4. Scope : Hardware Standard. This standard specifies the character structure and

sense of character parity for parallel-by-bit, serial -by-character , data communication
in ASCII (FIPS PUB 1/ANSI X3. 4-1968). This standard applies to general information
interchange at the interface between data processing terminal equipment and data
communication equipment.

5. Relationship to Other Standards : This standard is an implementation of the 7-bit
code for ASCII (FIPS PUB 1/ANSI X3. 4-1968). It is used at paral lei -by-bi t interfaces,
such as EIA RS-408. The companion standard FIPS PUB 17/ANSI X3. 16-1966 is for
character structures using serial-by-bit data communication. Subsets, such as

EIA RS-358 can use the structure of this standard.

6. Competitive Standards : Proprietary incompatible structures for communicating non-
ASCII codes, such as 8-bit EBCDIC.

7. Standardization Status : The ANSI standard X3.25 was approved on September 27, 1968;
FIPS PUB 18, adopting in its entirety that ANSI standard, was approved on

October 1 , 1971

.

8. Implementation Status : Implemented in most parallel-by-bit data communication devices.

9. Known Manufacturing Uses :

10. Known Sources of Information: Mr. George E. Clark, NBS, (301) 921-3723;
Mr. John L. Little, NBS , (301) 921-3723.

11. Probable Sources of Information:

12. Bibliography : FIPS PUB 18-1971, ANSI X3 . 25-1968

13. Comments : This standard specifies an 8-bit character structure including the 7 bits

of ASCII and an odd parity bit where the character timing is not separately
signaled. Where the character timing is on a separate timing channel, the parity
sense is even.

103

1 . Designation : FIPS PUB 37 (I 975)/FED-STD-l 001 /ANSI X3. 36-1975

2. Title : Synchronous High Speed Data Signaling Rates Between Data Terminal Equipment
and Data Communication Equipment

3. Maintenance Authority : ANSI X3S36

4. Scope : "This standard provides a group of specific signaling rates for synchronous
high speed serial data transfer. These rates exist on the received data and the

transmitted data circuits of the interface between data terminal equipment and data
communication equipment that operate over high speed channels."

5. Relationship to Other Standards : FIPS PUB 22-1 (1 976) /ANS I X3 .1-1 976

6. Competitive Standards : None

7. Standardization Status : The Federal standard (FED-STD-1001) adopts the ANSI standard
(X3.36) with two exceptions, as follows: "a. The note alluding to certain unspecified
coding restrictions on the data stream of users operating at 1544 kbits/sec is not
applicable," and "b. A signaling rate of 64 kbit/sec may also be utilized by Federal
agencies having requirements to interface directly with point-to-point transmission
facilities of foreign communication carriers."

8. Implementation Status : s

9. Known Manufacturing Uses : None

10. Known Sources of Information : Mr. William F. Hanrahan, Secretary, ANSI X3,

(202) 466-2288; H. J. Crowley, Chairman X3S36, (315) 330-2355

11. Probable Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723

12. Bibliography : FIPS PUB 37 (1 97 5)/ FED- STD- 1 001 /ANSI X3. 36-1975

13. Comments : ATT has only recently applied for a tariff (#269) proposing to offer
the rates prescribed by this standard as part of the Dataphone Switched Digital
Service (DSDS). This tariff is based on 56 kbit/sec subscriber services. This

and other speeds prescribed by X3.36 are not presently in wide usage.

104

1.

Designation : FED-STD-1020/EIA RS-422 (1975)

2. Title : Electrical Characteri sties of Balanced Voltage Digital Interface Circuits

3. Maintenance Authority : Electronic Industries Association Committee TR-30.1

4. Scope : This standard specifies the electrical characteristics of the balanced
voltage digital interface circuit, normally implemented in integrated circuit
technology, that may be employed for the interchange of serial binary signals
between data terminal and data communication equipment.

5. Relationship to Other Standards : FED-STD-1 030/EIA RS-423 (Unbalanced Voltage
Digital Interface Circuits); EIA RS-232-C (only the electrical characteristics).

6. Competitive Standards : None

7. Standardization Status : RS-422 (and also RS-423) may be employed as an evolutiontary
replacement for the electrical characteristics of RS-232-C.

8. Implementation Status : Not widely implemented at present.

9. Known Manufacturing Uses : Although primarily designed for communication interface
applications, the integrated circuit components implementing RS-422 can be employed
in many other data interchange environments.

10. Known Sources of Information: Mr. A. M. Wilson, Electronic Industries Association,

(202) 659-2200

11. Probable Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723

12. Bibliography : FED-STD-1 020/EIA RS-422 (1975)

13. Comments: None

105

1 . Designation : FED-STD-1030/EIA RS-423 (1975)

2. Title : Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits

3. Maintenance Authority : Electronic Industries Association Committee TR-30.1

4. Scope : This standard specifies the electrical characteristics of the unbalanced
voltage digital interface circuit, normally implemented in integrated circuit
technology, that may be employed for the interchange of serial binary signals between
Data Terminal Equipment (DTE) and Data Communications Equipment (DCE).

5. Relationship to Other Standards : FED-STD-1020/EIA RS-422 (Balanced Voltage Digital
Interface Circuits); EIA RS-232-C (only the electrical characteristics)

6. Competitive Standards : None

7. Standardization Status : RS-423 (and also RS-422) may be employed as an evolutionary
replacement for the electrical characteristics of RS-232-C.

8. Implementation Status : Not widely implemented at present.

9. Known Manufacturing Uses : Although primarily designed for communication interface
applications, the integrated circuit components implementing RS-423 can be employed
in many other data interchange environments.

10. Known Sources of Information: Mr. A. M. Wilson, Electronic Industries Association,

(202) 659-2200

11. Probable Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723

12. Bibliography : FED-STD-1 030/EIA RS-423 (1975)

13. Comments: None

106

1 . Designation : C.C.I.T.T. Recommendation V. 28

2. Title : Electrical Characteristics for Unbalanced Double-Current Interchange
Circuits

3. Maintenance Authority : C.C.I.T.T.

4. Scope : Hardware Standard. "The electrical characteristics specified in this
Recommendation apply generally to interchange circuits operating with data signalling
rates below the limit of 20,000 bits per second."

5. Relationship to Other Standards : C.C.I.T.T. Recommendation V.31 is for the lower
speed circuits up to 75 bits per second.

6. Competitive Standards : C.C.I.T.T. V. 28 is an alternative to the electrical
characteristics of EIA RS-232-C.

7. Standardization Status : Approved by the C.C.I.T.T. plenary session at Geneva,
Switzerland in 1972.

8. Implementation Status : Implemented primarily in Europe.

9. Known Manufacturing Uses :

10. Known Sources of Information : Mr. Ira W. Cotton, NBS, (301) 921-2601;
Mr. George E. Clark, NBS, (301) 921-3723; Mr. Arthur Freeman, U.S. Dept, of State,

(202) 632-1007

11. Probable Sources of Information : Teletype Corporation

12. Bib! iography : C.C.I.T.T. Recommendation V. 28, "Green Book," Vol . VIII, Data
Transmission, pp. 132-135.

13. Comments : C.C.I.T.T. is the French abbreviation for International Consultative
Committee on Telegraph and Telephone. In most nations of the world (but not in the

U.S.), its recommendations are given the force of law. The U.S. is represented
on the CCITT by the U.S. Department of State. By way of contrast, the U.S. is

represented on ISO and IEC by ANSI. The CCITT is an organ of the International
Telecommunications Union (ITU) which is reported to be the oldest international
standardizing body in the world. The ITU is now an organ of the United Nations.

107

\

1 . Designation : C.C.I.T.T. Recommendation V . 31

2. Title : Electrical Characteristics for Single-Current Interchange Circuits
Controlled by Contact Closure

3. Maintenance Authority : C.C.I.T.T.

4. Scope : Hardware Standard. "In general, the electrical characteristics specified
in this Recommendation apply to interchange circuits operating at data signalling
rates up to 75 bits per second."

5. Relationship to Other Standards : C.C.I.T.T. Recommendation V.28 is for higher speed
circuits up to 20,000 bits per second.

6. Competitive Standards :

7. Standardization Status : Approved by the CCITT plenary session at Geneva, Switzerland,
in 1972.

8. Implementation Status : Implemented primarily in Europe.

9. Known Manufacturing Uses :

10. Known Sources of Information : Mr. Ira W. Cotton, NBS, (301) 921-2601; Mr. George E. Clark,
NBS, (301) 921-3723; Mr. Arthur Freeman, IT.S. Department of State, (202) 632-1007

11. Probable Sources of Information : Teletype Corporation

12. Bibl iography : C.C.I.T.T. Recommendation V.31, "Green Book," Vol . VIII, Data
Transmission, pp. 140-142

13. Comments : C.C.I.T.T. is the French abbreviation for International Consultative
Committee on Telegraph and Telephone. In most nations of the world (but not in

the U.S.), its recommendations are given the force of law. The U.S. is represented
on the CCITT by the U.S. Department of State. By way of contrast, the U.S. is

represented on ISO and IEC by ANSI. The CCITT is an organ of the International
Telecommunications Union (ITU) which is reported to be the oldest international
standardizing body in the world. The ITU is now an organ of the United Nations.

108

1 . Designation : ANSI X3. 42-1 975

2. Title : American National Standard for the Representation of Numeric Values in

Character Strings for Information Interchange

3. Maintenance Authority : ANSI X3L5

4. Scope : This standard specifies the syntax of the elements of three sets of

character strings which are decimal positional representations of numeric values
for use in the interchange of numeric values between independent data processing
systems and products. This standard also provides guidance for developers of

programming standards and implementors of programming products.

5. Relationship to Other Standards : When used to represent all numeric values recorded
on storage media or transmitted on data channels conforming to the appropriate
American National Standards, would ensure that any recipient of a representation of

a number attributes the same value to it as the originator, whether or not they are
operating in the same system, programming language, or architecture.

6. Competitive Standards : None

7. Standardization Status : Standard published Aug. 4, 1975, by ANSI. This standard
is in the process of international standardization by ISO.

8. Implementation Status : All standard programming languages (PL/ I, FORTRAN, COBOL,
BASIC, MUMPS) either conform to this standard or are being revised during their current
revision cycle to conform to it.

9. Known Manufacturing Uses : All data files that are used by a different programming
language than produced them and all data files that are applied on a different
computer system or computer architecture.

10. Known Sources of Information : Mrs. Frances E. Holberton, NBS, (301) 921-3491;
Mr. William F. Hanrahan, X3 Secretary.

11 . Probable Sources of Information :

12. Bib! iography : ANSI X3. 42-1975

13. Comments:

109

1. Designation : ANSI X3. 28-1976 Communication Protocol (Link Level) Standards -

Character Oriented

2. Title : Procedures for the Use of the Communication Control Characters of ASCII
in Specified Data Communication Links

3. Maintenance Authority : ANSI X3S3, Task Group 3

4. Scope : Protocols for Link Level Data Communication

5. Relationship to Other Standards :

ANSI X3.4 (ASCII Character Set, Control Characters Used to Format Transmission)
ISO R1 745-1 971 (Dialect}
ECMA-16, 1973 (Dialect)'
ISO R2111-1972 (Extension to Base Mode for Code-Independent Information Transfer)
ISO R2629-1973 (Extension to Basic Mode for Conversational Information Transfer)
ECMA-24, 1969 (Extension to Basic Mode for Code-Independent Information Transfer)
ECMA-26, 1971 (Extension to Basic Mode for Recovery Procedures)
ECMA-27, 1971 (Extension to Basic Mode for Abort and Interrupt Procedures)
ECMA-28, 1971 (Extension to Basic Mode for Multiple Station Selection)
ECMA-29, 1971 (Extension to Basic Mode for Conversational Information Transfer)
ECMA-37, 1972 (Extension to Basic Mode for Supplementary Transmission Functions)

6. Competitive Standards : IBM's Binary Synchronous Communications, BISYNC/IBM Order
No. GA27-3004- 2/10/70 (more extensive than X3.28, and utilizing EBCDIC Character
Set)

.

7. Standardization Status : Revised Standard Issued in 1976.

8.

Implementation Status : No known implementations adhering strictly to the standard
classes of procedures. Each computer manufacturer has implemented a different part
of X3.28. The standard specifies approximately 140 different system configurations
that can be implemented conforming to the standard.

9.

Known Manufacturing Uses :

10. Known Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723.

1 1 . Probable Sources of Information :

12. Bibl iography : ANSI X3. 28-1971, "Procedures for the Use of the Communication Control
Characters of American National Standard Code for Information Interchange in

Specified Data Communication Links", American National Standards Institute, Inc.,

New York, NY, 10018.

13. Comments : Not a FIPS standard because does not provide for compatibility and data

interchange among different systems.

1

ECMA is European Computer Manufacturers Association

110

1. Designation : ANSI X3S34/589 (Draft 5) Communication Protocol (Link Level)
Standards - Bit Oriented

2. Title: Proposed ANS for Advanced Data Communication Control Procedures

JASCCP) (Draft 5, 4/9/76)

3. Maintenance Authority : ANSI X3S3, Task Group 4

4. Scope : Hardware/Software. The (proposed) standard establishes procedures to be

used on synchronous communications links.

5. Relationship to Other Standards : IBM Synchronous Data j_ink Control (SDLC) is a subset
of ADCCP. IBM Document GA27-3093-1

6. Competitive Standards : ANSI X3.28 (character oriented), IBM BISYNC (Character
oriented), DEC DDCMP

7. Standardization Status : Draft 5 being circulated for letter ballot.

8. Implementation Status : No known implementation operational. IBM's SDLC may be

functional at this time. A number of microprocessor chips are being developed to

be used as ADCCP link controllers; one known effort is Motorola.

9. Known Manufacturing Uses :

10. Known Sources of Information: ANSI Committee X3, Tech. Committee X3S3, Task
Group 4; Mr. George E. Clark, NBS, (301) 921-3723.

11. Probable Sources of Information : IBM, Honeywell

12. Bib! iography :

ANSI X3S34/589 (Fifth Draft) 4/9/76, Advanced Data Communication Control Procedures,
American National Standards Institute.

Donnan, R. A., and J. Ray Kersey, "Synchronous Data Link Control: A Perspective",
IBM Systems J . , 13 , 2, 197.

Sanders, R. W. , and V. G. Cerf, "Compatibility or Chaos in Communications",
Datamation , 3/76, pp. 50-55.

13. Comments : IBM is known to be basing most of its networking efforts on the use

of SDLC as a link-level protocol.

Ill

1 . Designation : DDCMP Communication Protocol (Link Level) - Bit Oriented

2. Title : DDCMP - Digital Data Communications Message Protocol, Ed. 3, 12/10/74

3. Maintenance Authority : Digital Equipment Corp., Maynard, Mass., 01754

4. Scope : Hardware/Software protocol to support message communication between
(processes running on) computers.

5. Relationship to Other Standards :

6. Competitive Standards :

Bit-oriented: ADCCP (ANSI X3S34/589, Draft 5); SDLC (IBM Document GA27-3093-1)
Character-oriented: ANSI X3. 28-1971; IBM Binary Synchronous Communications Protocol

(IBM Document GA27-3004-2)

7. Standardization Status : Apparently an internal corporate standard for network
implementations utilizing DEC computer equipment.

8. Implementation Status : In limited use in-house at DEC/Maynard.

9. Known Manufacturing Uses : None

10. Known Sources of Information : Mr. Stu Wecker, DEC, Maynard, Mass., 01754

1 1 . Probable Sources of Information :

12. Bib! iography : DDCMP: [Digital Data Communications Message Protocol, Specification
Document, Ed. 3, 12/10/74.

13. Comments : DDCMP is the (physical) link-level protocol supporting DNA, the Digital
Network Archi tecture. The latter is the philosophical basis for the DECNET
network systems yet to appear.

112

1 . Designation : SNA - Systems Network Architecture

2. Title : Systems Network Architecture

3. Maintenance Authority : International Business Machines Corp., White Plains, N.Y. 10604

4. Scope : System (hardware and software) architecture for data communications and
teleprocessing applications development and implementation. Includes the specification
of link and higher levels of protocol.

5. Relationship to Other Standards : Similar in intent to CCITT X.25 and DEC'S DNA.

Specifics of various levels differ.

6. Competitive Standards : CCITT Recommendation X.25; Digital Equipment Corp.

Digital Network Architecture (DNA) ARPANET Imp/Host protocol

7. Standardization Status : Not intended as a standard. SNA is being used in the

development of several IBM product lines.

8. Implementation Status : Several IBM product lines, including point-of-sale terminal
systems, are in various stages of implementation.

9. Known Manufacturing Uses : None

10. Known Sources of Information : IBM Systems Development Division, Advanced Systems
Architecture, Dept. E97, P.0. Box 12195, Research Triangle Park, North Carolina, 27709

1 1 . Probable Sources of Information :

12. Bibl iography :

"Systems Network Architecture - General Information", IBM Doc. GA27-3102-0.
McFadyen, J. H. "Systems Network Architecture: An Overview", IBM Systems J .

,

15, 1, 1976, pp. 4-23.

Cullen, P. G. "The Transmission Subsystem in Systems Network Architecture",
IBM Systems J., 15, 1, 1976, pp. 24-38.

Hobgood, W. S., "The Role of the Network Control Program in Systems Network
Architecture" , IBM Systems J. , 15 . 1, 1976, pp. 39-52.

13. Comments:

113

1 . Designation : Digital Network Architecture

2. Title : Digital Network Architecture

3. Maintenance Authority : Digital Equipment Corp., Maynard, Mass. 01754

4. Scope : DNA is an architecture designed to permit the implementation of networks
for data communication. It encompasses link (DDCMP), host/host (NSP), and process/
process (DAP) level protocols for data and control communication.

5. Relationship to Other Standards : Similar in concept to IBM's SNA, CCITT Recommendati
X.25, ARPANET Imp/Host Protocol

6. Competitive Standards: IBM's SNA, CCITT X.25, ARPANET Imp/Host Protocol

7. Standardization Status: Unknown

8. Implementation Status: Partial

,

primarily in-house.

9. Known Manufacturing Uses : Unknown

10. Known Sources of Information: Stu Wecker, Digital Equipment Corp., Maynard, Mass

11. Probable Sources of Information:

12. Bib! iography :

Wecker, S. "The Design of DECNET - A General Purpose Network Base" Presented at
ELECTRO/76, Boston Mass., 5/76.

Digital Equipment Corp., "Digital Network Architecture - Design Specification for
Network Services Protocol (NSP)", 7/10/75.

Digital Equipment Corp., "Digital Network Architecture - Design Specification for
Digital Data Communications Message Protocol (DDCMP)", 12/10/75.

13. Comments:

114

1. Designation : CCITT Recommendation X.25 Communication Protocol (Network Level)
Standards - Packet Oriented

2. Title : CCITT Recommendation X.25 - Interface Between Data Terminal Equipment and

Data Circuit-Termination Equipment for Terminals Operating in the Packet Mode
on Public Data Networks

3. Maintenance Authority : CCITT

4. Scope : Hardware/Software standard covering protocols relating to packet-
switched computer networks. Covers three levels: Physical (Level 1) - X21

(or RS-232); Link Access (Level 2) - HDLC Procedures; Packet format and control
(Level 3) - Virtual Calls, Circuits.

5. Relationship to Other Standards :

CCITT Recommendation X.l - Classes of service for DTE in packet mode.

CCITT Recommendation X.2 - User facilities in packet mode.
CCITT Recommendation X.21, X . 21 bi s - DTE/DEC Interface Characteristics.
CCITT Recommendation X.92 - Logical control links.
CCITT Recommendation X.95 - Network parameters
CCITT Recommendation X.96 - Call progress signals.

6. Competitive Standards : IBM's System Network Architecture (SNA), IBM Document
GA27-3102-0; DEC'S Digital Network Architecture (DNA).

7. Standardization Status : Draft standard. Not yet official.

8. Implementation Status : Unknown

9. Known Manufacturing Uses : None

10. Known Sources of Information : Mr. George E. Clark, NBS, (301) 921-3723.

11 . Probable Sources of Information :

12. Bib! iography : Sanders, Ray W. , Vincton G. Cerf, "Compatibility or Chaos in

Communications", Datamation, 3/76, pp. 50-55; CCITT Recommendation X.25 (Doc.

X3S37-76-14 and ANSI X3S33-76-6)

13. Comments : This recommendation provides the electrical, link, and packet level

procedures to implement a data network. The first two are based on existing
standards or draft standards, and the third level is defined in the X.25 document.

115

1 . Designation : ARPANET Imp/Host Protocol

2. Title : ARPANET Imp/Host Protocol

3. Maintenance Authority : Bolt, Beranek and Newman, Inc., 50 Moulton St.

Cambridge, Mass. 02138

4. Scope : Software/Hardware specification of protocol governing the interface
between a DTE (Host) and the ARPANET (i.e.. Imp).

5. Relationship to Other Standards : Similar to CCITT X.25, DEC'S DNA and IBM's SNA.

6. Competitive Standards :

7. Standardization Status : None

8. Implementation Status : Operational

9. Known Manufacturing Uses : None

10. Known Sources of Information : Network Control Center, BBN, Cambridge, Mass.

1 1 . Probable Sources of Information :

v

12. Bib! iography :

Bolt Beranek and Newman, "Specifications for the Interconnection of a Host and
an Imp", BBN Report 1822, Rev. 4/73.

Heart, F. E., et al .

,

"The Interface Message Processor for the ARPA Computer
Network", Proc. SJCC, 5/7/70, pp. 551-567.

13. Comments:

116

1. Designation : Fourth Draft Proposed Standard "ANSI X.21" (Document No.

X3S37-75-54/4)

2. Title : General Purpose Interface Between Data Terminal Equipment and Data Circuit
Terminating Equipment for Synchronous Operation on Public Data Networks

3. Maintenance Authority : ANSI Task Group X3S37

4. Scope : This standard defines the interface characteristics, interface procedures
and timing of events, signal formats, and failure detection and isolation for a

general purpose interface between data terminal equipment (DTE) and data circuit
terminating equipment (DCE) for synchronous operation on public data networks.

5. Relationship to Other Standards : (1) Essentially the same as CCITT Recommendation
X.21 . (2) An alternative to EIA Standards RS-232-C and RS-XYZ that are both intend-
ed for DTE interconnections to analog network facilities. (3) A portion of CCITT
Recommendation X.25 on packet switching.

6. Competitive Standards : See 5. (2) above.

7. Standardization Status : Fourth draft completed by X3S37 as a result of a letter
ballot. This draft will probably be forwarded to X3.

8. Implementation Status : None

9. Known Manufacturing Uses : None

10. Known Sources of Information: Mr. George E. Clark, Jr., NBS (301) 921-3723 and
Mr. J. G. Griffis, DCA (703) 437-2247.

11. Probable Sources of Information : Mr. S. M. Harris, Mitre Corporation (617) 271-3587;
Mr. B. D. Wessler, Telenet Communications Corporation (202) 637-7925; and

Mr. Vincent Dovydaitis, AFCS/LO (617) 861-4801.

12. Bibl iography : None

13. Comments : Telephone systems in the future will be based on digital transmission
systems. A/D and D/A converters will be placed in the hardset. A 4000HZ
audio bandwidth will be achieved by digitizing at an 8KHZ sampling rate with 7

bits resolution. This means that each phone will use a 56 Kbit digital line.

X.21 is the appropriate DTE/DCE protocol for such a transmission system. Limited
implementation now; widespread implementation in the 1980's.

117

1.

Designation : CCITT Recommendation X.21

2. Title : Interface Between Data Terminal Equipment and Data Circuit Terminating Equip-
ment for Synchronous Operation on Public Data Networks

3. Maintenance Authority : CCITT

4. Scope : This standard defines the interface characteristics, interface procedures and
timing of events, signal formats, and failure detection and isolation for a general
purpose interface between data terminal equipment (DTE) and data circuit terminating
equipment (DCE) for synchronous operation on public data networks.

5. Relationship to Other Standards :

XT) Essentially the same as a fourth draft ANSI proposal (Document No. X3S37-75-54/4)
(2) An alternative to EIA standards RS-232-C and RS-XYZ that are both intended for DTE

interconnections to analog network facilities.

(3) A portion of CCITT Recommendation X.25 on packet switching.

6. Competitive Standards : See 5. (2) above.

7. Standardization Status:

8. Implementation Status : None.

9. Known Manufacturing Uses : None.

10. Known Sources of Information: Mr. George E. Clark, Jr., NBS (301) 921-3723 and
Mr. J. G. Griffis, DCA (703) 437-2247.

11. Probable Sources of Information : Mr. S. M. Harris, Mitre Corporation (617) 271-3587;
Mr. B. D. Wessler, Telenet Communications Corporation (202) 637-7925; and
Mr. Vincent Dovydaitis, AFCS/LO (617) 861-4801.

12. Bibl iography : None.

13. Comments : Telephone systems in the future will be based on digital transmission
systems. A/D and D/A converters will be placed in the hardset. A 4000HZ
audio bandwidth will be achieved by digitizing at an 8KHZ sampling rate with 7

bits resolution. This means that each phone will use a 56 bit digital line.

X.21 is the appropriate DTE/DCE protocol for such a transmission system. Limited
implementation now; widespread implementation in the 1980's.

118

1. Designation : Draft Proposed Standard ANSI X3T92/064

2. Title : Class B Device Level Interface (for minicomputer systems)

3. Maintenance Authority : ANSI X3T92

4. Scope : These specifications define an interconnection between a peripheral device
and a controller in which:

The data exchanged between interconnected defices is digital.
The number of devices interconnected via the interface is limited to four.

° The total transmission path length of the interconnecting cables does not
exceed 100 feet (30 meters).

° The data rate across the interface does not exceed the maximum rate
designated for each device class.

5.

6 .

7.

8 .

9.

10 .

11 .

Relationship to Other Standards : None

Competitive Standards : None

Standardization Status : Draft proposed standard has not

the Task Group to include electrical characteristics and

Implementation Status : Similar to PERTEC magnetic tape

Known Manufacturing Uses : None

Known Sources of Information: Mr. George E. Clark, Jr.,

Mr. J. M. Bakshi, NBS (301) 921-3723.

Probable Sources of Information : Mr. Delbert Showmaker,
Mr. G. S. Robinson, Inforex, Inc. (617) 272-6470.

yet been completed by

device specifications.

drive interface.

NBS (301) 921-3723 and

GSA (202) 566-1180 and

12. Bib! iography :

13. Comments:

119

1 . Designation : Draft Proposed Standard ANSI X3T9/600, Revision 2

2. Title : Working Paper for a Draft Proposed American National Standard for I/O
Channel Interface

3. Maintenance Authority : ANSI X3T9

4. Scope : This American National Standard specifies functional, electrical, and
mechanical characteristics of the interface between I/O control units and channels
in general purpose computer systems.

5. Relationship to Other Standards : None

6. Competitive Standards : None

7. Standardization Status : Draft proposed standard (revision 2) has been revised to

reflect results of X3T9 letter ballot and has been forwarded to X3.

8. Implementation Status : Implemented by Amdahl , Itel , and IBM central processors
and in the I/O controllers built by STC, Telex, and other independent peripheral
suppl iers.

9. Known Manufacturing Uses : None

10. Known Sources of Information: Mr. George E. Clark, Jr., NBS (301) 921-3723 and
Mr. J. M. Bakshi, NBS (301) 921-3723.

11. Probable Sources of Information : Mr. Delbert Showmaker, GSA (202) 566-1180 and
Mr. Richard Guyette, IBM (914) 463-8153.

12. Bib! iography : None

13. Comments: None

120

STANDARDS FOR COMPUTER SYSTEMS

COMMUNICATION CODE STANDARDS

CHARACTER CODE SETS

ASCII
Hollerith
EBCDIC
Numerical Control

CODE CONVERSION PROBLEMS

COLLATING SEQUENCE PROBLEMS

Relevance to CAM Systems
Relevance to Software Portability

RECOMMENDATIONS ON CODING

PROTECTION OF CAM DATA BY ENCRYPTION

RECOMMENDATION ON ENCRYPTION

REFERENCES

SUMMARY DATA SHEETS

121

CHARACTER CODE SETS

Successful implementation of modular computer/communications equipment
requires well-defined interface specifications to accomplish the successful
interchange of control signals and data between the various modules.

For adjacent equipment, the interface may signal each control function
on a separate wire, and the data may appear as parallel signalling of bits
on many wires. Thus, the interface may contain many wires. Some micro-
computer bus-type interfaces employ 100 wires.

Where great distances are involved, the entire interface is reduced to
two or four wires or a single microwave beam, and the control and data are
accomplished by a stream of bits. Groups of successive bits may represent
characters, so that the bit stream groups (usually 5 to 11 bits) represent
a character stream. It has been shown that a stream of characters coded
according to a recognized standard is the most certain of achieving success-
ful interchange among dissimilar computers .(1

)

ASCII Standard Code

In the United States, the standard coded character set is the American
Standard Code for Information Interchange (ASCII), ANSI Standard X3. 4-1968,
also adopted as FIPS PUB 1. Internationally the standard is similar to
ASCII and is ISO-646 or CCITT V.3, International Alphabet No. 5. ASCII and
its international counterparts are defined as 7-bit codes, having 128
characters. An 8-bit version, having 256 characters, is being developed
along the lines described in code extension standards, such as ANSI X3.14-
1974, FIPS PUB 35, and ISO 2022 as well as ECMA-35. All of these code
extension standards are similar, having been coordinated internationally.

In the numerical control (NC) or computer-aided manufacturing (CAM)
areas, the 128 characters of ASCII appear to be adequate. The EIA standard
RS-358 is a subset of ASCII for numerical control employing less than half
of the ASCII characters. However, many computers represent characters as
8-bit "bytes." In 8-bit environments, ASCII characters should be represented
in a standard manner, according to FIPS PUB 35 (ANSI X3. 41-1974).

Well-defined ANSI standard interfaces exist for the reading, writing,
or representation of ASCII characters on paper tapes, magnetic tapes on
reels, cassettes or cartridges, and Hollerith punched cards. In all of these
media, the ASCII code should be used as prescribed in these various ANSI
standards or pending ANSI standards.

Hollerith Standard Code

The Hollerith Punched Card Code Standard, ANSI X3.26 (FIPS PUB 14) was
adopted in 1970 and specifies 256 different hole patterns for twelve row
punched cards. Hole patterns include the 128 characters of the ASCII Code,
ANSI X3. 4-1968 (FIPS PUB 1) plus 128 additional patterns.

EBCDIC Standard Code

ECBDIC is the Extended Binary Coded Decimal Interchange Code defined in
IBM Corporate Systems Standard 3-3320-022. The standard specifies the BCD
coded representation of up to 256 characters used on IBM 360, 370, System 3

and System 32 computers.

122

Numerical Control Codes

In the area of character codes for numerical control of machine tools
two coding conventions are in popular and widespread use. The older "EIA"
code defined by EIA RS-244A of January 1967 is an odd parity code of 52
identifiable characters. This code was that used by Flexowriters in common
use in the early days of NC for the preparation of NC control tapes. The
newer "ASCII" code is defined by EIA RS-358 of July 1968. It specifies an
even parity code for the same character set which is a subset of the full
ASCII code.

Originally, both of these standards were recognized and in conflict.
More recently the older "EIA" code has been rescinded. Still there exist
many numerically controlled machine tools capable of interpreting only the
"EIA" code. Newer control units are generally supplied with the ability
to read either input coding option.

One slight variation of the "ASCII" coding scheme rapidly gaining
acceptance is described in EIA Standards Proposal 1177-A. Recognizing that
there is a need for two distinct types of data at the machine tool site, the
standards proposal defines a Type 1 and Type 2 data on the input media.
Type 1 is the traditional machine program data codes in accordance with EIA
RS-358 as above. Type 2 data contains machine set-up instructions,
initialization and operational parameter data coded in the full ASCII code.
Thus there are three coding schemes prevalent on the input media for
numerical machine controllers.

It is expected that future systems operating in a CNC or DNC environment
will implement whatever final version of EIA SP1177A is adopted. The Air
Force should use this standard for command of any NC tools involved in the
ICAM program.

CODE CONVERSION PROBLEMS

Conversion of non-standard codes to and from ASCII is not always a

trivial matter. There is supposedly a defined correspondence between the
256 character positions of 8-bit EBCDIC and the 128 character positions of
7-bit ASCII or the 256 character positions in 8-bit ASCII.

The entire basis for correspondence is made possible by the Hollerith
Code. That is, both ASCII and EBCDIC representations on a punched card are
well defined.

The Hollerith Punched Card Code Standard, ANSI X3. 26-1970 (FIPS PUB 14)
provides 256 hole patterns mapped into 8-bit ASCII in Table 1 of the
Hollerith Standard. These same 256 hole patterns are shown mapped into
EBCDIC in Appendix B, which is not part of the Hollerith Standards, but is
included there for information. There is thus established a 1 to 1 to 1

correspondence between 256 card hole patterns, 256 ASCII bit patterns, and
256 EBCDIC bit patterns. However, IBM practice does not adhere fully to this
correspondence somewhat spoiling the 1 to 1 mapping between EBCDIC and
ASCII.

Some EBCDIC control and graphic characters are not contained in ASCII.
However, IBM chooses to map these, via the Hollerith Punched Card Code, into
ASCII character positions, rather than into the 128 available non-ASCII
character positions. EBCDIC equivalent characters to those displaced are
mapped elsewhere, and the correspondence is thus spoiled. Selected examples
are shown in Figure 1

„

123

There are four interchange separators in EBCDIC which correspond to thefour information separators of ASCII. Only IFS and IRS are shown because
of the possible confusion of EBCDIC FS (Field Separator) with ASCII FS (FileSeparator)

, and of EBCDIC RS (Reader Stop) with ASCII RS (Record Separator)

.

The EBCDIC square brackets are not shown in the principal defining
table (Table IV of the CSS) but are shown as publishing and printing graphicoptions (m Table VII). There is no Cent Sign in ASCII. IBM has chosen todisplace the ASCII Opening Bracket by the EBCDIC Cent Sign. However, in
representing the ISO 7-Bit Code of ISO 646-1973, IBM drops the Cent Sign
and uses the Hollerith hole pattern 12-8-2 to represent the ISO Left Square
Bracket, as shown in Table X of the IBM CSS, as a displacement of a national
use symbol.

The substitutions in ASCII of the symbols for Logical Or and Logical Not
are permitted in the ASCII standard (FIPS 1/ANSI X3. 4-1968). This was done
by IBM in order to get all 60 of the PL/I language symbols into the 64
character subset of FIPS PUB 15. The ASCII Exclamation Point is displaced.
The EBCDIC Exclamation Point then displaces an ASCII Bracket, and a ripple*
of confusion follows, as was shown in Figure 1.

it is important to note that these problems in code conversion only
occur whenever characters are required to cross an interface. In these
cases the coding of characters should adhere strictly to the ASCII Standard.
This is true regardless of when characters are enveloped in a "code
independent frame" or are represented in serial-by-bit form or in parallel-
by-bit form. Internal computer codes, if different than ASCII, such as
EBCDIC, should not be allowed to cross such interfaces. In this way the
Air Force should not encounter problems with character coding in the multi
vender, distributed, integrated computer system that is envisioned for the
1980's.

COLLATING SEQUENCE PROBLEMS

An even more serious problem than code conversion arises from differences
in the collating sequence embedded in various coded character sets. The
collating sequence in a computer determines

(1) the order of the records in a data file according to the relative
binary values of the entries in a "sort key" (does W32 come before
or after 37N?)

(2) the results of inequality comparison operations (is ZaQ3 smaller or
larger than Z24J?)

As long as one keeps to a single computer system or a network of similar
equipment no problems are caused by collating sequence. However, the advent
of distributed manufacturing systems opens the prospects of a variety of
computer hardware being linked together, of data files on one system being
queried by another, and of data files and programs being freely transported
between different sites. In this type of environment collating sequence
can lead to differing results obtained from identical programs operating on
identical data files.

The ASCII standard, ANSI X3. 4-1968 (FIPS 1) section 6.3 states; "The
relative sequence of any two characters, when used as a basis for collation,
is defined by their binary values." The IBM Corporate Systems Standard
3-3220-002 for EBCDIC states in Section 1.1 that it defines a collating
sequence. ANSI Standard X3. 27-1969, Magnetic Tape Labels for Information
Interchange also provides guidance on structuring data files.

124

CONTROL AND GRAPHIC CHARACTERS OF IBM EBCDIC WHICH MAP VIA
HOLLERITH HOLE PATTERNS INTO 8-BIT ASCII IN POSSIBLY CONFUSING WAYS

IBM Name
of

Character

IBM
EBCDIC

Character

IBM
EBCDIC

Position
Hex. Col. Row

Interchange File
Separator

IFS 1C

Field Separator FS 22

Interchange
Record
Separator

IRS IE

Reader Stop RS 35

Tape Mark TM 13

Cent Sign t 4A

Open Square
Bracket

E AD

Close Square
Bracket

] BD

Exclamation
Point

i 5A

Logical Or
i

4F

Logical Not
1

5F

Standard
Hoi lerith

Hole
Pattern

Corresponding
ASCII

Position
Column/Row

ASCII
Symbol

ASCII
Name

11 -9-8-4 01/12 FS File
Separator

0-9-2 08/2 None None

11-9-8-6 01/14 RS Record
Separator

9-5 09/5 None None

11-9-3 01/3 DC3 Device
Control 3

12-8-2 05/11 [Opening
Bracket

11-0-8-5 13/5 None None

12-11-0-8- 5 14/5 None None

12-8-2 05/13 3 Closing
Bracket

12-8-7 02/1 i Exclamation
Point

11-8-7 05/14 Circumfl ex

Figure 1

125

ASCII and EBCDIC define different collating sequences. The ASCII
collating sequence, in general terms is "Space," Special Symbols, Numbers,
Capital Letters, Small Letters. The EBCDIC collating sequence in general
terms is "Space," Special Symbols, Small Letters, Capital Letters, Numbers.

ASCII collating sequence is defined in FIPS PUB 1 and 7, according
to the ASCII standard, ANSI X3. 4-1968. EBCDIC is defined only in IBM
Corporate Systems Standard 3-3220-002. A draft revision to FIPS PUB 1

and 7, published in the Federal Register on December 29, 1975, pages
59607-08, "Revised Instructions for Implementing Standard Character Codes
and Collating Sequence," strengthens the requirements for the use of
ASCII collating sequence.

ASCII is the standard collating sequence in most minicomputers and
microprocessors. EBCDIC is the de facto collating sequence in IBM 360, 370,
System 3, System 32, and directly compatible computers. ASCII is the de
facto collating sequence in all DEC computers, most NCR computers and some
UNIVAC and Honeywell computers.

A data file in a computer system usually encompasses a well-defined
area of interest, such as a "Payroll File," an "Inventory File," and the
like. A "file" contains many " records .

" In a payroll file, there is a
record for each item kept in inventory. The records in a file are kept in a
specified sequence, usually determined by a "sort key." The various
records are arranged according to thq sort key, usually in ascending
numerical order or in 26-letter alphabetical order. For simple sort keys,
the order is the same no matter what kind of computer is used. Some sort
keys may be pure binary numbers having any number of bits. Other sort keys
can contain more complex arrays of characters, such as mixed upper and lower
case letters, punctuation marks, special symbols as well as decimal digits.
For complex sort keys, the order of the records is usually a "default"
sequence determined by the native character code of the computer.

Two principal character codes are presently used in computers. One is
ASCII (American Standard Code for Information Interchange) as specified by
FIPS PUB 1, ANSI X3. 4-1968, or ISO 646-1973. The other code is EBCDIC
(Extended Binary Coded Decimal Interchange Code) as specified in IBM
Corporate Systems Standard 3-3220-002 or variations by other mainframe
vendors. The collating sequences of ASCII and EBCDIC are the same for simple
sort keys, such as numerics or the 26 capital letters. But for more complex
sort keys, the collating sequences are radically different. Computer control
function characters are, of course, not used in sort keys. For the graphic
characters, the collating sequence of ASCII is from low to high value as
follows: "Space," punctuation and special symbols, numbers, capital letters,
lower case letters, with some special symbols between these major groups.
In EBCDIC, the collating sequence of the graphic characters is: "Space,"
punctuation and special symbols, lower case letters, capital letters, and
numbers, with some special symbols between these major groups.

For the same data file, a sort key using most of the graphic characters
of ASCII or EBCDIC would produce a record sequ ce based upon the collating
sequence of ASCII or EBCDIC, unless otherwise specified. These two record
sequences would be considerably different. A clerk could learn to use
either record sequence as an index, but would have great difficulty trans-
ferring from one sequence to the other. This has occurred, for example,
in the case of large catalogs arranged by Federal Stock Number (FSN,
alphanumeric) ordered according to two different collating sequences.
Introducing new Federal Stock Number items into the two "master" files
would require that the new records be sorted by FSN according to the
collating sequence of each file, and then merged into the master file.
Data transferred from one "master" file to the other would require a
re-sort of the selected records into the sort sequence of the other before
the data merge could occur efficiently.

126

Relevance to CAM Systems

In the CAM arena, it is not apparent whether there are any difficulties
that might result from the use of computers having two different collating
sequences. It is possible to postulate some. For example, suppose it were
desired to generate an index list of all APT part programs. Should "CAPA37"
come before or after "CAPAFORACOVER" where "A" represents the character
"Space"? Since "CAPA" is the same for both titles, the sequence would be
resolved by whether "3" is smaller (lower in the collating sequence) or
larger (higher in the collating sequence) than "F". In ASCII collating
sequence, numbers are lower than letters, so that "CAPA37" would precede
"CAPAFORACOVER." In EBCDIC collating sequence, numbers are higher than
letters and hence "CAPA37" would follow "CAPAFORACOVER." The point is that,
in a large index, a programmer might miss the existence of a desired program
if the index had been collated on one machine and was being searched on
another

.

A standard collating sequence in the CAM area would be preferable to
a mixture, sometimes ASCII and sometimes EBCDIC.

The following simple example illustrates the differences between ASCII
and EBCDIC collating sequence. A sort key contains only two character
positions and the complete character set is comparised of the four characters
1, 9, A, Z. The complete collating sequences are:

Sequence ASCII EBCDIC
Number

1 11 AA
2 19 AZ
3 1A Al
4 1Z A9
5 91 ZA
6 99 ZZ
7 9A Z1
8 9Z Z 9

9 Al 1A
10 A9 1Z
11 AA 11
12 AZ 19
13 Z1 9A
14 Z 9 9Z
15 ZA 91
16 ZZ 99

It can be seen that in a large file index. a clerk would have difficulty
locating a particular item without knowledge of the collating sequence.

If both capital letters and small letters are allowed in a sort key.
then the confusion would be even greater, since in ASCII capital "Z" collates
ahead of small "a," while in EBCDIC small "z" collates ahead of capital "A".

In an alphanumeric sort key, if certain positions are always numeric
and other positions are always alphabetic (capital letters or small letters
but not both) , then the collating sequence will be the same in ASCII or
EBCDIC. Thus in the example above. if the first position is always numeric
and the second position always alphabetic, the complete sequence will be:

Sequence ASCII or
Number EBCDIC

1 1A
2 1Z
3 9A
4 9 Z

127

It can be seen from the 16-sequence table that the sequence of four does
appear in the same sequence in the ASCII or the EBCD'IC column. This
uniformity in collating sequence is achieved by a constraint on the sort key
which greatly reduces the number of keys (records) that can be represented
by a given number of positions in the sort key. Consistent use of the ASCII
collating sequence will remove the need for such simplifying constraints on
sort keys, and will eliminate variations in the sequencing of complex sort
keys, and will also give consistent results for computer program comparison
operations

.

Revelance to Software Portability

Comparison operations in computer programs generally compare one group
of characters with another group of characters. If the groups of characters
are "simple," such as numerics or 26 letters, then the results of the
comparisons will be the same whether the character coding is in ASCII or in
EBCDIC. However, if the character groups to be compared are more complex,
then the inequality of the two groups can indicate that the former is
"larger" in ASCII but "smaller" in EBCDIC. Computer programs in high-
level languages, employing such comparisons, can thus give different
results in ASCII or EBCDIC, because of the difference in the collating
sequences of ASCII or EBCDIC. A standard collating sequence would
eliminate this complication along with the sort key sequencing
inconsistencies

.

In the original COBOL programming language standard, the collating
sequence was indicated to be whatever the computer vendor specified. As
a consequence, some COBOL programs could, and did, give different results
on different computer systems. This had the effect of spoiling the
transferability of COBOL programs among various computers, although such
transferability was claimed to be one of the advantages of using high-level
programming languages. To overcome this disadvantage, the COBOL standard
(FIPS PUB 21-1, ANSI X3. 23-1974) has been modified to allow the programmer
to specify the collating sequence.

SUMMARY OF RECOMMENDATIONS ON CODING

a) It is recommended that the USAF use the FIPS 1 ASCII coding of character
set data wherever information crosses an interface between a CAM module
and any other CAM, computer or communications module or device.

.

b) It is recommended that the USAF use the ASCII subset of EIA Standard
RS-358 for Numerical Control applications and adopt the "type l"/"type"2
data conventions of SP177A before it becomes a standard.

c) It is recommended that the USAF use the recognized FIPS/ANSI standard
representations of ASCII in media, such as paper tapes, magnetic tapes,
punched cards, cassettes, and cartridges.

d) It is recommended that the USAF represent 7-bit ASCII in a standard
manner in 8-bit environments, according to FIPS PUB 35/ANSI X3. 41-1974.

e) It is recommended that the USAF represent any extensions of ASCII in a

standard manner in accordance with FIPS PUB 35/ANSI X3. 41-1974.

f) It is recommended that the USAF use the ASCII collating sequence for
sequencing file records according to sort keys.

g) It is recommended that the USAF use the ASCII collating sequence for
determining the results of comparison operations in computer programs.

128

PROTECTION OF CAM DATA BY ENCRYPTION

In most CAM applications, no special protection of the data will be
required and none should be used. In some cases, protection may be deemed
important. If CAM data is to be transmitted by military communications, then
military data encryption techniques should suffice. If CAM data protection
is desired but military communications are not involved, then such protection
can, and should be, accomplished by means of the NBS Data Encryption Standard.

The NBS Data Encryption Standards (DES) algorithm specifies the
encryption of 64 bits of data into a 64 bit cipher based on a 64 bit
key and the decryption of a 64 bit cipher block into a 64 bit data
block based on a 64 bit key. The steps and the tables of the algorithm
are completely specified and no options are left in the algorithm itself.
Variations in implementing and using the algorithm provide flexibility
as to the application of the algorithm in various places in a computer
system or network, how the input if formatted, whether the data itself
or some other source of input is used for the algorithm, how the key
is generated and distributed, how often the key is changed, etc. These issues
are covered in a separate NBS guideline.

Basic implementation of the algorithm is most easily done in special
purpose electronic devices. Overall security is based on two primary
requirements when using the DES algorithm: secrecy of the encryption
key and reliable functioning of the algorithm. Implementation of the
algorithm in dedicated electronic devices provides the following economic
and security benefits:

1) Efficiency of algorithm operation is much higher in specialized
electronic devices.

2) Basic implementation of the algorithm in specialized LSI electronic
devices which can be used in many applications and environments will
result in cost savings through high volume production.

3) Functional operation of the device may be tested and validated
independent of the environment.

4) The encryption key may be entered (or entered and decrypted) into the
device and stored there and hence never need appear elsewhere in the
computer system.

5) The paths of data to and from the device may be controlled and monitored.

6) Unauthorized modification of the algorithm is very difficult in such
a device.

7) Redundant devices may simultaneously perform the algorithm independ-
ently and the output may be tested before cipher is transmitted.

8) The- device can be controlled externally in accordance with the
requirements and environment of the application.

9) Implementation in special purpose devices (electronic devices or
dedicated micro processing computers) will satisfy Government
requirements for compliance with the standard.

RECOMMENDATION ON ENCRYPTION

Wherever security is needed in interchange of CAM information, the NBS
Data Encryption Standard algorithm should be applied, unless its use is
superseded by military communications requirements.

129

REFERENCES

(1) "Information Interchange Between Dissimilar Systems" by H.S. Meltzer
and H.F. Ickes, Modern Data , Vol. 4, No. 4, April 1971, pp. 56-67.

(2) Hollerith Punched Card Code Federal Informat Processing Standards
FIPS PUB 14 1970 U.S. Department of Commerce, National Bureau of
Standards

.

(3) Extended Binary Coded Decimal Interchange Code IBM Corporate Systems
Standard CSS 3-3220-002, November 1970, IBM Systems Standards
Department, Poughkeepsie, New York.

(4) Proposed Federal Information Processing Data Encryption Standard
1 Aug. 1975 Federal Register.

(5) Guidelines for Implementing and Using the NBS Data Encryption Standard,
Draft Document, 10 Nov. 1975 Institute for Computer Sciences and
Technology, National Bureau of Standards.

SUMMARY DATA SHEETS

The following Data Sheets summarize those interface standards which
apply to Communications Codes.

130

1. Designation : FIPS PUB 1-1968/ANSI X3. 4-1968 (ASCII)
1

2. Title : American National Standard Code for Information Interchange

3. Maintenance Authority : ANSI X3L2

4. Scope : Hardware Standard. "This coded character set is to be used for the general
interchange of information among information processing systems, communication
systems, and associated equipment."

5. Relationship to Other Standards :

ISO 646-1973, (dialect)
CCITT V. 3-1972 (dialect)
FIPS PUB 2-1 968/ANSI X3. 6-1965 (implementation, perforated tape)
FIPS PUB 3-1, 1973/ANSI X3. 22-1973 (implementation, magnetic tape, 800 cpi

)

FIPS PUB 7-1969 (implementation instructions, Presidential memo)
FIPS PUB 14-1971/ANSI X3. 26-1970 (implementation, Hollerith punched card)
FIPS PUB 15-1971 (subsets: 95, 64, 16 graphic characters)
FIPS PUB 16-1971/ANSI X3 .15-1 966 (implementation, bit sequencing)
FIPS PUB 17-1971/ANSI X3. 16-1966 (implementation, character structure, serial)
FIPS PUB 18-1971/ANSI X3. 25-1968 (implementation, character structure, parallel)
FIPS PUB 25-1973/ANSI X3 .39-1 973 (implementation, magnetic tape, 1600 cpi)
FIPS PUB 35-1975/ANSI X3 .41-1 974 (code extension, 7 or 8 bits)
FIPS PUB 36-1975/ANSI X3. 32-1973 (graphical representation of controls)
ANSI X3. 14-1 973 (implementation, magnetic tape, 200 cpi)

ANSI X3. 28-1971 (implementation, communication control characters)
ANSI Z39. 2-1971 (superset, magnetic tape, bibliographic interchange)
EIA RS-358 (1968) (subset, numerical machine control)
ECMA-6 (dialect)

6. Competitive Standards : EBCDIC, FIELDATA, TELETYPESETTER, CORRESPONDENCE Code
(Some IBM Selectric Typewriter Terminals), EIA RS-RS-244A, and all other coded character
sets in use prior to 1963.

7. Standardization Status : First approved in 1963. Revised in a major sense in

1967, with a further minor revision in 1968 into the standard now in effect. Another
minor revision is expected in 1977.

8. Implementation Status : ASCII is the most widely implemented code in ADP terminals
and in communication systems. It is implemented as the internal code of most mini-
computers and microprocessors , all DEC computers, NCR Century and Criterion computers,
and the newer large UNIVAC computers and many European computers. It would be more
widely implemented in American computers except for the severe competition from
EBCDIC in IBM 360, 370, and other computers compatible therewith.

9. Known Manufacturing Uses : Data and message communications; direct numerical control
(EIA RS-358 subset); code used in minicomputers and microprocessors.

10. Known Sources of Information: Mr. Charles D. Card, UNIVAC, Chairman of ANSI X3L2,

(215) 542-3675; Mr. John L. Little, NBS , member of ANSI X3L2, (301) 921-3723;
Mr. William F. Hanrahan, Secretary of ANSI X3, (202) 466-2288

11. Probable Sources of Information : DEC, NCR, Honeywell, Teletype Corporation

12. Bibliography : FIPS PUB 1-1968/ANSI X3. 4-1968 (base standard); FIPS PUB 7-1969
(implementation instructions); FIPS PUB 35-1975/ANSI X3 .41-1 974 (extension in

7 or 8 bits); Western Union Technical Bulletin 71-1, "The ASCII Codes (1963,

1967, and 1968 Versions)."

131

13. Comments : ASCII is a fundamental standard upon which many other hardware and software
standards are based. It has counterparts in international' and Federal standards,
as well as in many foreign national standards.

'

'

^The standard also allows the abbreviation "USASCII but ASCII is much m

1 . Designation : EIA RS-244A

2. Title : Character Code for Numerical Machine Control Perforated Tape

3. Maintenance Authority : None

4. Scope : Hardware Standards. This standard specifies the representation of the

EIA Paper Tape Code used for the numerical control of machine tools.

5. Relationship to Other Standards : Extension of original RS-244 standard.

6. Competitive Standards : EIA RS-358 is a subset of FIPS PUB 2/ANSI X3. 6-1965 used for

numerical machine control perforated tape.

7. Standardization Status : EIA RS-244A approved in January 1967 but has been rescinded

in favor of EIA RS-358.

8. Implementation Status : Widely used in perforated tape equipment used in the numerical
control of machine tools.

9. Known Manufacturing Uses : Code is still being supplied on new equipment at users
request to maintain compatibility with older equipment. On new equipment older
EIA RS-244A and newer EIA RS-358 are often switch selectable.

10. Known Sources of Information : Mr. John L. Little, NBS (301) 921-3723.

11. Probable Sources of Information : Bendix Industrial Controls, General Electric Control
Systems Division.

12. Bibl iography : EIA RS-244A

13. Comments : Some users note that the odd parity of EIA RS-244A results in fewer holes
per character and therefore a stronger paper tape when compared with the even parity
EIA RS-358.

133

Designation : ISO 646-1973

2. Title : Seven-Bit Coded Character for Information Processing Interchange

3. Maintenance Authority : IS0/TC97/SC2

4. Scope : Hardware Standard. "This character set (of 128 characters) is primarily
intended for the interchange of information among data processing systems and
associated equipment, and within message transmission systems. This character
set is applicable to all Latin alphabets."

5. Relationship to Other Standards : CCITT Recommendation V. 3-1 972 is essentially
identical to this standard. Similar to ASCII (ANSI X3. 4-1968) and the national
standards of many other countries, e.g., GOST 13052-1967 (USSR). Similar to ECMA-6,
ISO 2022-1973 (extension in 7 or 8 bits).

6. Competitive Standards : EBCDIC in IBM 360, 370 computers, and all coded character
sets that were in use prior to 1963.

7. Standardization Status : First approved in December 1967 as 6 and 7-bit coded
character sets. The 6-bit set was derived from an ECMA 6-bit code and the 7-bit
one was derived from ASCII (X3. 4-1967), each of which influenced the other. The
current 1973 version relegates the 6-bit set to an appendix which is no longer
part of the standard. The 1973 standard contains a "Basic Code Table" and an "Inter-
national Reference Version" (IRV). The basic code table allows national options
while the IRV does not.

8. Implementation Status : CCITT Recommendation V. 3-1 968 is identical to this
standard except for a few restrictions governing international communication.
National implementations, such as ASCII (ANSI X3. 4-1968) can be considered
implementations of this standard.

9. Known Manufacturing Uses : A subset of this standard, in EIA RS-358 (1968), is used
as a perforated tape code for numerical control of machine tools.

10. Known Sources of Information: Mr. John L. Little, NBS, (301) 921-3723;
Mr. Robert M. Brown, CBEMA, (202) 466-2288.

11. Probable Sources of Information : IBM, Sperry UNI VAC, Honeywell, DEC, NCR, Teletype
Corporation

12. Bibl iography : ISO 646-1973, available from ANSI.

13. Comments : Extension techniques for this basic code are given in ISO 2022-1973.
A draft "ISO International Register of Character Sets to be used with Escape Sequences
for Information Interchange in Data Processing" is published in document IS0/TC97/SC2
N1000, maintained by AFN0R in Paris, France.

134

1 . Designation : CCITT V. 3-1972

2. Title : International Alphabet No. 5

3. Maintenance Authority : CCITT

4. Scope : Hardware Standard. "This character set (of 128 characters) is primarily
intended for the interchange of information among data processing systems and
associated equipment, and within message transmission systems. This character
set is applicable to all Latin alphabets."

5. Relationship to Other Standards : ISO 646-1973 is essentially identical to this

standard. This standard is similar to ASCII (ANSI X3. 4-1968) and to the national
standards of many other countries, as well as to ECMA-6. See FIPS PUB1

.

6. Competitive Standards : EBCDIC in IBM 360, 370 computers, and all coded character
sets in use prior to 1963.

7. Standardization Status : First approved in 1968 at the CCITT plenary session at

Mar del Plata, Argentina, and amended in 1972 at Geneva.

8. Implementation Status : National implementations, such as ASCII (ANSI X3. 4-1968)
can be considered implementations of this standard. It is implemented in many
international communication networks.

9. Known Manufacturing Uses : A subset of this standard, in EIA RS-358 (1968), is

used as a perforated tape code for numerical control of machine tools.

10. Known Sources of Information : Mr. Ira W. Cotton, NBS, (301) 921-2601;
Mr. Arthur Freeman, U.S. Department of State, (202) 632-1007.

11. Probable Sources of Information : Teletype Corporation, ITT, RCA, Western Union

12. Bib! iographv : The International Telegraph and Telephone Consultative Committee
(C.C. I .T.T.)

Fifth Plenary Assembly, Geneva, 4-15 December 1972, "Green Book"
Vol . VIII, Data Transmission, published by the International Telecommunications
Union, 1973.

13. Comments : This standard was developed jointly with ISO 646-1973 and is virtually
identical to that standard. C.C. I. T.T. is the French abbreviation for International
Consultative Committee on Telegraph and Telephone. In most nations of the world
(but not the U.S.A.), its recommendations are given the force of law. The U.S.

is represented on the CCITT by the U.S. Department of State. By way of contrast,
the U.S. is represented on ISO and IEC by ANSI. The CCITT is an organ of the

International Telecommunications Union (ITU) which is reported to be the oldest
international standardizing body in the world. The ITU is now an organ of the

United Nations.

135

1 . Designation : IBM CSS 3-3220-002, EBCDIC
1

2. Title : Extended Binary Coded Decimal Interchange Code (LATIN ALPHABETS)

3. Maintenance Authority : IBM Systems Standards Department, Poughkeepsie, New York

4. Scope : "This standard defines for the IBM Corporation the BCD coded representation
for up to 256 graphics and controls in punched cards, in magnetic tape, on data
transmission lines, and in 8-bit BCD CPU's. It also defines a collating sequence."

5. Relationship to Other Standards : This is a commercial standard. In 1970 IBM

distributed copies through the European Computer Manufacturers Association (ECMA)

and encouraged its adoption as a standard. No formal recognition has been granted
to EBCDIC as a national or international standard. It is used in various forms
by some other computer vendors who wish to provide easy transition from IBM products
to competitive ones.

6. Competitive Standards: ISO 646-1973, CCITT V. 3-1972, ANSI X3. 4-1968 (ASCII),
FIELDATA, TELETYPESETTER.

7. Standardization Status : None, except as an IBM corporate systems standard.

8. Implementation Status : Implemented in IBM 360 and 370, System 3, System 32

computers, Amdahl computers and with variations in certain Burroughs, Honeywell
and Univac (RCA) computers. Used in the RYAD series of computers built in the

Soviet bloc countries in order to provide compatibility with IBM.

9. Known Manufacturing Uses : Used in IBM computer-aided design systems.

10. Known Sources of Information: Mr. Hubert F. Ickes, IBM, (914) 463-9779;
Mr. Robert H. Follett, IBM, (301) 897-3471; Mr. John L. Little, NBS , (301) 921-3723.

11. Probable Sources of Information: Mr. Robert M. Brown, Vice Chairman of ANSI X3, CBEMA,

(202) 466-2288.

12. Bib! iography : IBM Corporate Systems Standard CSS 3-3220-002, November 1970,
Extended BCD Interchange Code, Latin Alphabets. IBM System 370, Principles of

Operation, GA 22-7000-4, File No. S/370-01, Appendix H.

13. Comments : Representation of the 128 ASCII characters in EBCDIC coding is shown in

an Appendix (not part of the standard) to the Hollerith Punched Card Code, ANSI

X3. 26-1970 (FIPS PUB 14).

1

Supersedes IBM CSS 2-8015-002, EBCDIC.

136

Designation : Encryption Algorithm1 .

2. Title : Encryption Algorithm for Computer Data Protection

3. Maintenance Authority : U.S. Department of Commerce, NBS

4. Scope : This algorithm is designed to encipher and decipher blocks of data
consisting of 64 bits under control of a 64-bit key.

5. Relationship to Other Standards : Identical to an IBM encryption algorithm.

6. Competitive Standards : None

7. Standardization Status : Published as a proposed Federal standard in the Federal

Register , Vol . 40, No. 52, March 17, 1975, pp. 12134-12139.

8. Implementation Status : Implemented in IBM encryption/decryption equipment,
and in integrated circuit chips supplied by several vendors.

9. Known Manufacturing Uses : IBM, NSA.

10. Known Sources of Information : Dr. Dennis K. Branstad, NBS, (301) 921-3861.

11. Probable Sources of Information : IBM, NSA.

12. Bibliography: Federal Register, Vol. 40, No. 52, March 17, 1975, pp. 12134-

12139. U.S. Patent Nos. 3,796,830 and 3,798,359.

13. Comments : The Federal standard is identical to an IBM algorithm. IBM will grant a

royalty-free license, as stated in the Federal Register cited above.

137

1 . Designation : EIA RS-358 (1968)/IS0 840-1973

2. Title : Subset of USA Standard Code for Information Interchange (ASCII) for
Numerical Machine Control Perforated Tape

3. Maintenance Authority : EIA E I -31

4. Scope : Hardware Standard. "This standard describes a subset of USAS X3. 4-1967
(ANSI X3. 4-1968) for numerically controlled machines and associated perforated
tape preparation equipment."

5. Relationship to Other Standards : ANSI X3. 4-1968 (base); FIPS PUB 2-1968/ANSI
X3 .6-1 965 (implementation, perforated tape). ISO 840-1973 is the same coding.
ISO 1113 is a compatible implementation in perforated tape.

6. Competitive Standards : EIA RS-244A-1967

7. Standardization Status : Approved by EIA in July 1968

8. Implementation Status : Implemented in all newer numerically-controlled machine tools.
Some have a switch that allows either this standard or RS-244A coding to be used
in the same machine.

9. Known Manufacturing Uses : Widely used as the perforated tape coding for numerically
controlled machine tools.

10. Known Sources of Information : Mr. A. M. Wilson, EIA, (202) 659-2200;
Mr. John L. Little, NBS

, (301) 921-3723.

11. Probable Sources of Information : NMTBA

12. Bibliography : EIA RS-358, EIA RS-244A, ISO 840, ISO 1113

13. Comments : The original perforated tape code standard for numerical control was
approved in July 1961 (before ASCII) as EIA RS-244, a BCD coding as used in

Flexowriters. A revision, RS-244A was approved in January 1967 and the conflicting
RS-358 was approved in July 1968. RS-244A will be rescinded in order to resolve
the conflict. The character sets of EIA RS-244A and RS-358 are the same, but the

coding is very different.

138

Designation: EIA RS-274-C

2. Title : Interchangeable Perforated Tape Variable Block Format for Positioning,
Contouring and Contouring/Positioning Numerically Controlled Machines.

3. Maintenance Authority : EIA EI-31

4. Scope : This standard applies wherever a variable block format is used on perforated
tape to control numerically controlled machines.

5. Relationship to Other Standards : This standard has replaced EIA RS-273-B (rescinded),

variable block for positioning and straight cut, EIA RS-326-A (rescinded), fixed

block for positioning and straight cut, and EIA RS-274-B, variable block for contouring
and contouring/positioning. It may in turn be superseded by EIA SP-1177A, command
and data format for advanced contouring and positioning.

6. Competitive Standards :

7. Standardization Status : RS-274 was approved in January 1963. It became ANSI standard
X3. 8-1965. RS-274-A was a revision and RS-274-B became ANSI standard X8. 2-1968.

RS-274-C was approved (SP-1147) in April 1974.

8. Implementation Status : Widely implemented in numerical control equipment.

9. Known Manufacturing Uses : Widely used in production where numerical control is

involved.

10. Known Sources of Information: Mr. A. M. Wilson, EIA, (202) 659-2200;

Dr. John M. Evans, Jr., NBS
, (301) 921-2381

11. Probable Sources of Information : NMTBA

12. Bibl iography : EIA RS-274-C

13. Comments : This was formerly known as EIA Standards Proposal No. 1147 (SP-1147),

March 13, 1973. RS-274-C may be superseded by EIA SP-1177A.

139

1. Designation : EIA SP-1177A (a proposal currently under revision)

2. Title : Recommended Command and Data Format for Advanced Contouring and Positioning
Numerically Controlled Machines

3. Maintenance Authority : EIA EI-31

4. Scope : Hardware Standard. "This standard is intended to serve as a guide in

the coordination of system design to promote uniformity in part programming and
operating techniques for inputting extended machine set-up, initialization, and/or
operational parameter data."

5. Relationship to Other Standards : Machine program data are formatted in accordance
with EIA RS-274-C. This standard, when approved, will supersede EIA Automation
Bulletin No. 4, March 1969. It will also probably supersede EIA RS-274-C, which
in turn superseded RS-273-A, RS-274-B, and RS-326.

6. Competitive Standards :

7. Standardization Status: This revision of SP-1177 was circulated for EIA ballot on
April 23, 1975.

8. Implementation Status : Used in all new US computer numerical control (CNC) equipment.

9. Known Manufacturing Uses : Will be widely used in production where CNC is

involved.

10. Known Sources of Information: Mr. A. M. Wilson, EIA, (202) 659-2200;
Dr. John M. Evans, Jr., NBS , (301) 921-2381.

1 1 . Probable Sources of Information : NMTBA

12. Bib! iography : EIA Standards Proposal No. 1177-A (Revision of SP-1177), April 23, 1975.

13. Comments : This SP-1177A will become an EIA Recommended Standard (RS) when the
various points of view and controversy are resolved. SP-1177A contains three key

concepts: the overall architecture of an NC system, specially identifying interfaces
to external components; an escape code to go from RS-358 to full ASCII ("type 1

and type 2 data"); and phonetic abbreviations for CNC control functions. The
proposed standard is essentially a guideline for the development of advanced
systems by NC control manufacturers.

140

1 . Designation : FIPS PUB 36-1975/ANSI X3. 32-1973

2. Title : Graphic Representation of the Control Characters of ASCII

3. Maintenance Authority : NBS/ANSI X3L2

4. Scope : Hardware Standard. This standard provides a graphic representation of the

control characters of ASCII, including SPACE and DELETE. The standard contains
two alternative sets of representations : a pictorial representation and an alphanumeric
representation.

5. Relationship to Other Standards : Gives single or dual symbol representation of the

32 controls as well as SPACE and DELETE of the ASCII code standard, FIPS PUB 1/ANSI

X3. 4-1968.

6. Competitive Standards : None

7. Standardization Status : The ANSI standard X3. 32-1973 was first approved on July 3,

1973. FIPS PUB 36, adopting the ANSI standard in its entirety, was approved on

June 1 , 1975.

8. Implementation Status : Has been implemented on paper tape equipment that prints

one symbol per tape character frame. Has also been implemented in some display
terminals to display character streams, including controls. See comments below.

9. Known Manufacturing Uses :

10. Known Sources of Information: Mr. C. D. Card, UNIVAC, Chairman ANSI X3L2,

(215) 542-3675; Mr. John L. Little, NBS
, (301) 921-3723; Mr. Robert M. Brown,

Vice Chairman of ANSI X3, CBEMA, (202) 466-2288.

11. Probable Sources of Information : Honeywell, Teletype Corporation, Omron.

12. Bibliography : FIPS PUB 36, ANSI X3. 32-1973

13. Comments : Implemented (except for the Backspace character representation) in Teletype
Model 40 display/printing terminals. Implemented (except for the NULL character
representation) in Omron Model 8025 keyboard display terminals.

141

1 . Designation : FIPS PUB 14/ANSI X3. 26-1970

2. Title : Hollerith Punched Card Code

3. Maintenance Authority : ANSI X3L2

4. Scope : Hardware Standard. This standard specifies 256 hole patterns in twelve-
row punched cards. Hole patterns are assigned to the 128 characters of ASCII
(FIPS PUB 1/ANSI X3. 4-1968).

5. Relationship to Other Standards : This standard gives the implementation of FIPS
PUB 1/ANSI X3. 4-1968 (ASCII) in twelve-row punched cards. FIPS PUB 13/ANSI X3. 21-1967,
Rectangular Holes in Twelve-Row Punched Cards, gives dimensions and dimensional
tolerances of the cards and holes. ANSI X3. 11-1969, Specifications for General
Purpose Paper Cards for Information Processing, gives properties of the card stock.

6. Competitive Standards : The round hole "90 column" cards formerly marketed
by UNIVAC are obsolete. The 96-column round hole cards introduced with the IBM
System 3 are not compatible with this standard.

7. Standardization Status : FIPS PUBs 13 and 14 were both approved on October 1, 1971.
ANSI Standard X3. 21-1967 was first approved in 1967. ANSI Standard X3. 26-1970
was first approved in 1970.

8. Implementation Status : These standards are widely implemented in punched card
accounting machines and as input media for computers.

9. Known Manufacturing Uses : Used in many applications where programs or data are

entered into computers via rectangular-hole punched cards.

10. Known Sources of Information: Mr. John L. Little, NBS, (301) 921-3723;
Mr. H. F. Ickes , IBM, (914) 463-9779.

11. Probable Sources of Information : Honeywell, UNIVAC

12. Bib! iography : FIPS PUB 14/ANSI X3. 26-1970, Hollerith Punched Card Code.

13. Comments : The Hollerith Punched Card Code has 256 hole patterns which map into

8-bit ASCII (see Table 1 of the ANSI Standard X3. 26-1970) and also map into 8-bit
EBCDIC, establishing the basis of code conversion between EBCDIC and ASCII, which is

spoiled somewhat by IBM practice. See the writeup on "Code Conversion."

The Hollerith Punched Card Code specified in ANSI Standard X3. 26-1970 is based upon

and earlier "Business" version having the symbols Ampersand, Commercial At, Number
Sign, and Percent Sign included in a 48-character set. Several other versions,
most notably a "Scientific" version which replaced some of the business symbols with
FORTRAN algebra symbols Plus Sign, Apostrophe, Equals Sign, and Parentheses in a

48-character set are still in de facto use. When extended beyond 48 characters,

these two versions employ the same set of Hollerith hole patterns in different ways,

compatible with the earlier 48-character versions. The NBS UNIVAC 1108 "scientific"

installation, for example, employs the standard hole patterns for some of the

punctuation marks and special symbols (Period, Comma, Semicolon, Asterisk, Slant,

Minus Sign, Dollar Sign) but deviates in the following hole pattern coding:

142

Hollerith
Hole Pattern (Note 1)ANSI X3. 26-1970 NBS UNIVAC 1108

12 Ampersand &

12-0 (Plus Zero) Opening Brace {

11-

0 (Minus Zero) Closing Brace }

8-2 Colon :

8-3 Number Sign #

8-4 Commercial At @

8-5 Apostrophe '

8-6 Equals Sign =

8-7 Quotation Marks "

12-

8-2 Opening Bracket {

12-8-4 Less Than <

12-8-5 Opening Parenthesis
12-8-6 Plus Sign +

12-8-7 Exclamation Point !

11-8-2 Closing Bracket }

11-8-5 Closing Parenthesis
11-8-7 Circumflex

~

0-8-2 Reverse Slant \

0-8-4 Percent Sign I

0-8-5 Underline _
0-8-6 Greater Than >

0-8-7 Question Mark ?

(

)

Plus Sign +

Question Mark ?

Exclamation Point !

Ampersand &

Equals Sign =

Apostrophe 1

Colon :

Greater Than >

Commercial At 0 (Master Space)
(Not Used)
Closing Parenthesis)

Opening Bracket {

Less Than <

Number Sign #

(Not Used)
Closing Bracket }

Delta A (Note 2)

Record Stop (Stop)

Opening Parenthesis (

Percent Sign %

Reverse Slant \

Losenge (Note 3)

Note 1 Input: UNIVAC 706 Card Reader
Output: UNIVAC 758 Printer

Note 2 Prints Circumflex (") or Up Arrow (T) on interactive ASCII

terminals. Prints a triangle (Delta) (A) on batch terminals.

Note 3 Prints Quotation Marks (") on interactive ASCII terminals. Prints a

Losenge or Rectangular Box on batch terminals.

Hollerith hole patterns for Space (no punches), 10 decimal digits (one punch),

26 Latin capital letters (two punches), as well as hole patterns for Period,
Comma, and Asterisk (three punches) are universally standard, in accordance with
ANSI X3. 26-1970. Hole patterns for Minus Sign, Slant, and Dollar Sign are nearly
universal, in accordance with ANSI X3. 26-1970.

143

1 . Designation : FIPS PUB 2/ANSI X3. 6-1965

2. Title : Perforated Tape Code for Information Interchange

3. Maintenance Authority : ANSI X3B2

4. Scope : Hardware Standard. This standard specifies the representation of the
Federal Standard Code for Information Interchange (FIPS PUB 1, ASCII) on perforated
tape used in Federal information processing systems, communication systems, and
associated equipment.

5. Relationship to Other Standards : See FIPS PUB 12-2, page 18 for 11 other standards
related to this one, under "Media, Perforated Tape." EIA RS-358 is a subset of
this code for numerical machine control perforated tape.

6. Competitive Standards : None recognized as standards. All perforated tape codes
in use prior to 1965 are competitive. EIA RS-244A is an early competitive standard
for numerical machine control perforated tape. Teletypesetter code is still used
in newspaper communications and in typesetting perforated tape.

7. Standardization Status : FIPS PUB 2 was approved on November 1, 1968. ANSI X3. 6-1965
was approved in 1965. Neither has been updated. EIA RS-244A has been rescinded in

favor or EIA RS-358.

8. Implementation Status : Widely used in perforated tape equipment, including input/
output to minicomputers and in communications.

9. Known Manufacturing Uses : The subset in EIA RS-358 is widely used in numerical
control perforated tapes for drafting and machine control.

10. Known Sources of Information : Mr. John L. Little, NBS, (301) 921-3723;
Mr. John B. Booth, Teletype Corporation, (312) 982-3630.

11. Probable Sources of Information : DEC, Honeywell

12. Bib! iography : FIPS PUB 2/ANSI X3. 6-1965, Perforated Tape Code for Information
Interchange; FIPS PUB 12-2, page 18.

13. Comments : IBM has always emphasized punched cards and magnetic tape in preference
to perforated tape. DEC uses perforated tape and magnetic tape in preference to

punched cards.

144

1. Designation : ANSI X8. 1-1968/ISO 841 -I 974/EIA RS-267-A-I 967/NAS 938-1962

2. Title : Axis and Motion Nomenclature for Numerically Controlled Machines

3. Maintenance Authority : EIA E 1-31 ; IS0/TC97/SC8

4. Scope : Hardware Standard. This standard defines axis and motion nomenclature for

numerically controlled machines.

5. Relationship to Other Standards : Definitions of terms (in the ANSI/EIA standard)
are in accordance with EIA Automation Bulletin 3B.

6. Competitive Standards :

7. Standardization Status : This standard was approved as NAS 938 in June 1959 and

revised by NAS in February 1963. EIA RS-267 was approved in July 1962 and was revised
in June 1967 as RS-267-A which was approved as ANSI X8.1 in March 1968. ISO R841 was
approved in 1968 and reissued as ISO 841 in July 1974.

8. Implementation Status : Widely used in numerical control equipment.

9. Known Manufacturing Uses : Widely used in numerical control applications to drafting
machines, plotters, and machine tools.

10. Known Sources of Information : Mr. A. M. Wilson, EIA, (202) 659-2200

11. Probable Sources of Information : NMTBA, AIA

12. Bibliography : ANSI X8. 1-1968/ISO 841/1 974/EIA RS-267-A-1 967/NAS 938-1962, Axis and
Motion Nomenclature for Numerically Controlled Machines

13. Comments : This standard appears to have been developed first as National Aerospace
Standard NAS 938-1959, and then modified into EIA, ANSI, and ISO standards.

145

1 . Designation : Code Conversion

2. Title : Conversion of Codes, EBCDIC to/from ASCII

3. Maintenance Authority : None (IBM/NBS)

4. Scope : Definition of the one-to-one correspondence between the 256 character
positions (bit patterns) of 8-bit EBCDIC as used in IBM 360/370 computers and (1)
the 128 character positions on character sequences of 7-bit ASCII in ANSI Standard
X3. 4-1968 (FIPS PUB 1) or (2) the 256 character positions in 8-bit ASCII of ANSI
Standard X3. 41-1974 (FIPS PUB 35).

5. Relationship to Other Standards : The Hollerith Punched Card Code Standard, ANSI
X3. 26-1970 (FIPS PUB 14) provides 256 hole patterns mapped into 8-bit ASCII (in

Table 1 of the Hollerith standard). These same 256 hole patterns are shown mapped
into EBCDIC in Appendix B, which is not part of the Hollerith standard, but is

included there for information. There is thus established a 1-to-l-to 1 correspondence
between 256 card hole patterns, 256 ASCII bit patterns, and 256 EBCDIC bit patterns.
However, IBM practice does not adhere fully to this correspondence, as noted below.

6. Competitive Standards : 8-BIT ASCII and EBCDIC can be considered to be competing
standards, although EBCDIC has only the status of a corporate systems standard of
IBM. Both define a different collating sequence which can serve as a default
sequence for ordering files if no other file sequence is specified. Both ASCII
and EBCDIC have "Interchange" in their names.

7. Standardization Status : None for the conversion, except as given by the Hollerith
Punched Card Code Standard (FIPS PUB 14, ANSI X3. 26-1970).

8. Implementation Status : Implemented in various ways in different computer types
and systems, leading to confusion and complicating program and data transferability.

9. Known Manufacturing Uses : Used wherever IBM 360/370 computers operate with ASCII

external devices or communications.

10. Known Sources of Information: Mr. John L. Little, NBS, (301) 921-3723;
Mr. H. F. Ickes , IBM, (914) 463-9779.

11. Probable Sources of Information : Honeywell, UNIVAC

12. Bib! iography : FIPS PUB 14/ANSI X3. 26-1970 (Hollerith Punched Card Code). "Correspond-
ences of 8-Bit and Hollerith Codes for Computer Environments -- A Tutorial,"
Comm, of the ACM , Vol . 11, No. 11, November 1968, pp. 783-789 with corrigenda
in Vol. 12, No. 5, May 1969, p. 294. "IBM System/370 Principles of Operation,"
IBM GA 22-7000-4, File No. S/370-01 (Appendix H on EBCDIC Translate (TR) instruction,
page 303, shows an elusive example of EBCDIC to ASCII conversion for 78 graphic
characters common to ASCII, EBCDIC, and the Hollerith Punched Card Code). See also
the bibliography in the separate writeup on "EBCDIC."

13. Comments : EBCDIC is defined by IBM Corporate Systems Standard 3-3220-002-CSS . The
latest edition which IBM will make available to NBS is dated 70/11. Some EBCDIC
control and graphic characters are not contained in ASCII. However, IBM chooses to

map these, via the Hollerith Punched Card Code, into ASCII character positions, rather
than into the 128 available non-ASCII character positions. EBCDIC equivalent characters
to those displaced are mapped elsewhere, and the correspondence is thus spoiled.
Selected examples are shown in the following chart:

146

CONTROL AMD GRAPHIC CIIARACTLRS OF IBM EBCDIC WHICH MAP VIA
HOLLERITH HOLE PATTERNS INTO 8- BIT ASCII IN POSSIBLY CONFUSING WAYS

IBM Name
of

Character

IBM
EBCDIC

Character

IBM

EBCDIC
Posi tion

Hex. Col. Row

Standard
Hollerith

Hole
Pattern

Corresponding
ASCII

Posi ti on
Col umn/Row

ASCII
Symbol

FS

ASCII
Name

Interchange File
Separator

IFS 1C 11-9-8-4 01/12 File
Separator

Field Separator FS 22 0-9-2 03/2 None None

Tape Mark TM 13 11-9-3 01/3 DC3 Devi ce

Control 3

Cent Sign t 4A 12-8-2 05/11 (Openi ng
Bracket

Open Square
Bracket

[AD 11-0-8-5 13/5 None None

Close Square
Bracket

I BD 12-1 V- 0-3-5 14/5 None None

Exclamation Point 1 5A 12-8-2 05/13 1 Closing
Bracket

Logical Or
I

4F 12-8-7 02/1 1 Exclama-
tion Point

Logical Not 1 5F 11-8-7 05/14 A
Circumflex

There are four interchange separators in EBCDIC which correspond to the four
information separators of ASCII. Only IFS is shown because of the possible
confusion between EBCDIC FS (Field Separator) and ASCII FS (File Separator).
The EBCDIC square brackets are not shown in the principal defining table (Table IV

of the CSS) but are shown as publishing and printing graphic options (in Table VII).

There is no Cent Sign in ASCII. IBM has chosen to displace the ASCII Opening
Bracket by the EBCDIC Cent Sign. However, in representing the ISO 7-Bit Code of
ISO 646-1973, IBM drops the Cent Sign and uses the Hollerith hole pattern 12-8-2

to represent the ISO Left Square Bracket, as shown in Table X of the IBM CSS, as

a displacement of a national use symbol.

The substitutions in ASCII of the symbols for Logical Or and Logical Not are permitted
in the ASCII standard (FIPS 1/ANSI X3. 4-1968). This was done by IBM in order
to get all 60 of the PL/I language symbols into the 64-character subset of FIPS PUB 15.

The ASCII Exclamation Point is displaced. The EBCDIC Exclamation Point then displaces
an ASCII Bracket, and a ripple of confusion follows, as shown in the table above.

147

.

'

STANDARDS FOR COMPUTING SYSTEMS

PROGRAMMING LANGUAGE STANDARDS

INTRODUCTION

STANDARDS ON EXISTING LANGUAGES

FORTRAN

COBOL

BASIC

PL/I

SYSTEMS IMPLEMENTATION LANGUAGES

FUTURE NEEDS IN PROGRAMMING LANGUAGES

General Observations
Standards and Limitations

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

See Appendix C on Artificial Intelligence Languages and
Appendix D on Simulation Languages

149

INTRODUCTION

Programming languages serve the same purposes for commuting as spoken
languages do for human communications. They are the principal mechanisms by
which ideas (algorithms), data, commands, response requirements, etc. are
communicated from man to machine.

Like spoken languages, they have a tendency to diverge into
which case users of different forms of the language find
impossible to continue communicating with each other,
standardization effort is frequently required in order to
dialects to converge acceptably, since the language compilers
to slight variations in use as can humans.

"dialects,” in
it difficult or
A cooperative
get the various
can not adapt

Programming language variations are inevitable and in many instances they are
desirable, because through them better or entirely new forms of useful
expression arise. The "better" forms are perhaps the more dangerous from a

communication point of view because, if adopted, they must either supersede
the older forms or introduce a redundancy into the language; in either case,
considerable attention must be accorded these types of changes, as they
constitute deviations from the approved language definition and threaten
software portability.

New forms, or "unilateral extensions," are usually outside of the previously
defined scope of the language and require some time to be defined,
implemented, tested, understood by others and accepted into the language. As
a result, they do not pose as immediate a threat to program portability as do
the "better" forms. However, consideration must be given to the manner in
which new forms are defined and employed in the building of application
programs, so that users will be aware that the use of these new forms
prevents them from creating oortable code, at least until such time as the
new form is accepted into the language definition.

STANDARDS ON EXISTING LANGUAGES

There are currently standards in existence or in the process of approval for
four general purpose programming languages: FORTRAN, COBOL, PL/I, and BASIC.
Of these languages, only PL/I is a "modern" language that has the potential
for satisfying the requirements of the Air Force for a general purpose
programming language for the CAM program. The choice of a general purpose
programming language is not clear as will be shown. In fact, the language
chosen by the Air Force for the ICAM program may not be any of these four
discussed, although support for at least COBOL and FORTRAN is mandatory for
the near future because of the body of existing programs in these languages.

'

' 1

Although ALGOL is mentioned several times in the following text, there is no
formal standard and or standards committee for ALGOL and it is considered in
terms of historical interest and the heritage it has brought to other
languages. Current use of ALGOL is sufficiently limited that it is not
considered comparable, even as a de facto standard, to the other languages
discussed here.

Independent of which language standard is selected the Air Force must realize
that the simple specification of a standard language in a procurement action
will not be sufficient. Indeed an entire set of software development and
documentation guidelines and validation and testing tools are mandatory to
meet Air Force goals, as will be discussed below.

Only general purpose programming languages are addressed here. For specific

150

problem oriented needs, such as simulation or artificial intelligence, there
are languages but no standards or defacto standards. It is believed that
existing languages and compilers can be selected to satisfy ICAM oroject
requirements when they are set.

FORTRAN

Originally designed in the early 1950's as a replacement for assembly code,
FORTRAN is a simple higher level language that is easy to compile into
machine code. However, the requirements of this efficiency have extracted a

price which is Paid for in annoying restrictions which crop up in use of the
language. FORTRAN statements tend to reflect the hardware characteristics of
the first machine to support FORTRAN. The memorable fact that every DO is
always done at least once is an example. This is due to the fact that the
original machine for the language has a test-and- j ump instruction which
worked by testing at the end of loops, rather that at their entry points.

FORTRAN lacks many features often expected of general purpose languages.
Part of the omission is simply because the language is so old, about
twentyfive years. Nonetheless, a user of ANS (or Standard) FORTRAN can not
expect the following: good string handling; block structure; run-time
allocation of space. FORTRAN'S virtue is that it is simple and effective,
and much preferable to assembly code; this point is important, because for
many uses the competition is not other modern languages such as PL/I and
PASCAL, but rather, machine code. FORTRAN in conjunction with an optimizing
compiler can be very fast.

Elaborate libraries exist of FORTRAN engineering and scientific routines. In
addition, techniques are available [Larmouth, 1976] which can stretch the
design features a bit to circumvent the more annoying restrictions such as
space allocation of arrays. Unlike BASIC, FORTRAN is sufficiently rich in
coherent control structures that it can be sensibly used for large-scale
implementations. The language is well suited to industrial applications
which involve complex numerical calculations such as table interpolations,
function integrations, or measurement smoothings and averaging. This is in
contrast to COBOL which is rather inefficient and clumsy to use for
scientific or engineering evaluations. (FORTRAN is not suited, on the other
hand, for generating in a straightforward manner nicely formatted reports of
a commercial nature.) FORTRAN input/output is both limited and slow. But as
an interim scientific and engineering language for CAM, FORTRAN could serve
nicely

.

The new FORTRAN Standard, long in gestation, was released in draft form in
early 1976. There was an avalanche of criticism—mostly that it should
contain each critic's favorite structure— but it appears that debate will be
cut off- with the addition of IF-ELSE IF— END IF and perhaps STREAM
input/output. Committee members hope to have solidified a new Standard by
March 1977.

COBOL

COBOL was originally conceived as a business language for commercial data
processing. It is an effective means for programming applications that are
characterized by the requirement to manipulate characters, records, files and
input/output (as contrasted with those concerned primarily with computational
problem solving). Quoting Pratt, "COBOL is perhaps the most widely
implemented of the languages ... [See Pratt's book for the context of this.]...
but few of its design concepts have had a significant influence on later
languages, with the exception of PL/I. Both of these facts may be partially

151

attributed to its orientation toward business data processing, a major area
of computer application, but one in which the problems are of a somewhat
unique character: relatively simple algorithms* coupled with high-volume
input-output ..."[Pratt , 1975, o. 359]

Like some other language of the same period, COBOL was developed and has been
maintained by voluntary efforts of implementors and users. The COBOL
standard, as is the case with any standard, does not in itself cure all
problems associated with computer systems. As the language is used, its
flaws and inadequacies become more apparent; action must be taken to correct,
adjust and extend the standard definition.

There exists a rather elaborate mechanism dedicated to the continuing process
of making COBOL evolve in response to user requirements. In addition, to
enhance the viability of Standard COBOL as a tool, ancillary activities have
been initiated to provide for testing of compilers for conformance to the
standard, for interpretation of the language specification when questions of
meaning arise and for development and establishment of policies relative to
procurement and testing of COBOL compilers.

In a recent survey (NBSIR 75-11550), of the 132 Federal government computer
installations responding to the survey question concerning usage of COBOL,
86.4% indicated that COBOL was available and 94.7% of those who had access to
the language actually used COBOL to some extent. (Also see Phillippakis
[1973].) A few examples of COBOL applications illustrate potential uses of
COBOL within a CAM system. For example:

a. The National Weather Service, an agency of the Department of Commerce,
has an operational on-line system providing weather forecast information.
Approximately 30 terminals throughout the nation receive and send weather
forecast information. Among the users are civilian and military agencies and
radio and TV stations. The system is written in various languages; however,
three to four dozen COBOL programs accomplish an important function in the
system. These COBOL programs perform editing of input data for errors and
formatting the data for its presentation over the network. COBOL was
selected for use in implementing these programs because of its ability to
handle editing and character manipulation.

b. The Defense Supply Agency (DSA) , an agency of the Denartment of Defense,
performs central supply service to all Defense agencies. It provides support
materiel such as food, medical supplies, clothing and construction material.
DSA has a very large logistics system called SAMMS (Standard Automated
Materiel Management System) written in COBOL. SAMMS provides the following
daily functions for DSA: distribution, requirements forecasting, financial
management, procurement, and cataloging. This system is used in each of
DSA's five major centers: Richmond, Virginia; Columbus, Ohio; Dayton, Ohio
and two in Philadelphia, Penn sylvan ia . There are 400 to 500 individual
reports produced by SAMMS. Examples of some of the reports are management
reports, statistical reports, rejection reports, exception reports, and
turn-around (time requirement) reports. The system requires about 1000
changes per year, mostly enchancements, because of changing requirements.
The number of records in the system varies in each center from 800,000 to

1,500,000; approximately 12,000 records are updated per hour. With some 800
to 1000 COBOL programs, SAMMS is the largest logistics data system in the
Federal government and is integral to DSA's daily operations. COBOL was
chosen for implementing this system to enhance the portability of the
programs and because of the attributes of COBOL for handling character data.

It is evident from the efforts pursuing development and standardization of !

COBOL and from the examoles of how COBOL can be used effectively in its

152

typical application areas, that COBOL should be given ser
for use whenever a problem requires straightforward and
numbers of limited range, along with a heavy volume of
special commercial formatting requirements (such as flush

ious consideration
few computations on
such numbers with
dollar signs) .

BASIC

BASIC (Beginners All-Purpose Symbolic Instruction Code) is a computer
programming language developed in the mid 1963's by Kemeny and Kurtz at
Dartmouth College. The primary motivation behind the design of the language
was the desire to educate large numbers of undergraduates in the use of a

remote-console, time-shared computer to solve simple problems. Limitations
on names to letter tnumeral have been retained, even though the original
purpose of this— to simplify symbol t)le maintenance— is no longer
necessary. The language was designed to be learned and used easily,
especially for simple problems. In this respect, the design criterion for
BASIC differed from other languages such as FORTRAN (execution speed) or
Algol 60 (expressing algorithms) which aimed at professional programmers.

Since its original design, more advanced features have been added to BASIC,
both at Dartmouth and at other installations, so that BASIC now is often used
as an alternative to FORTRAN or Algol 60. The divergence in the design of
advanced features, in addition to divergence even in the features of original
BASIC, has been a concern among suppliers and users of BASIC. In response to
this concern, ANSI established an ad hoc committee "to investigate the
computer programming languages generally known as BASIC, and determine the
existence of a viable nucleus language suitable for standardization."

This committee recommended that ANSI create a technical committee charged
with developing a standard for BASIC. This recommendation was approved by
the committee at its January 17, 1973 meeting.

In addition to identifying and standardizing a nucleus for the BASIC
language, the ANSI standards committee X3J2 is investigating advanced
features in various implementations and is standardizing other modules as it
sees fit. The standards committee felt it preferable to standardize more
than just a BASIC nucleus, since the greatest divergence in BASIC
implementations occurred in the treatment of features that would most likely
not be in the nucleus.

The now proposed standard for MINIMAL BASIC reflects the original design of
the language for use in a remote-console, time-shared system, though of
course the standard does not preclude the use of BASIC in other modes of
operation. In practical terms, the standard does assume that BASIC will be
implemented in an environment which provides minor editing services and which
emphasizes single-pass, fast compilation and execution rather than
compilation of optimized code. Educational uses of programming languages
require just such an emphasis.

The proposed American National Standard for Minimal BASIC was approved by
X3J2 in January, 1976 and was forwarded to X3 for action. X3 has given the
oroposed standard the reference BSR X3.60 and has submitted the proposed
Minimal Standard for public review. Comments were due by the end of
September 1976. This nucleus standard contains those portions of the planned
language not specifically contained in planned enhancement modules.
Standards for enhancement modules concerning files, strings, matrices,
subprograms and chaining, and formatted input/output are under development at
present

.

153

From the past experience of the development of the Minimal Standard the
completion of the enhancements standardization may take on the order of 2 to
3 additional years. Therefore, a full BASIC standard should be available by
1980 provided the committee does not face any voting deadlocks. These
estimates assume the regular committee meeting schedule of 4 meetings a year
in the last week of each of the months of January, April, July, and October.

:ort in CAM systems being able to store, retrieve, and
; of data is important. Minimal BASIC is not designed
e enhancements will allow file and formatted I/O
scale data handling can be accomplished in a more

There was an attempt to specify some minimal working precision for numerical
constants and variables of at least 6 digits. However, no accuracy
specification is imposed on arithmetic expressions or intrinsic functions.
This limitation on precision makes BASIC unusable for some engineering
calculations

.

From the engineering design point of view many good algorithms for matrix
manipulation, solving differential equations, etc. have already been coded
and tested and installed through library packages such as IMSL (International
Mathematical and Statistical Libraries, Inc.) or the Association for
Computing's Collected Algorithms. FORTRAN and Algol 60 are the principal
languages used for these existing collections.

For any la rge scale e

man i pula te large se
for this aIthough fut
caoa bil i t i es. Lar ge
prom inen t language su

The standard allows minimal string capability. No comparison except equal or
not equal is allowed between strings. This is another disadvantage to the
BASIC standard in its present form.

CAM should rely in the
libraries that have
become popular the ori
step on to another
production language,
a lucid discussion
APL, and possible detr
of this fact, and be
not recommended for us

short run at least on languages and design
the most wide soread use. Although BASIC has

ginal intent of the language was for the lea
language; BASIC was not intended as a lar
(The reader may want to reference Pratt, pp.475
of the demands of an interactive language, in

iments to doing large production programming.)
cause of the limitation in the BASIC standard,
e in the ICAM nrogram.

suppor t

recently
rner to
ge scale
-476 for
his case
Because

BAS I C is

PL/I

PL/I is an extensive, general purpose language which was designed originally
to enhance the IBM model 360 series of machines. Statements in the language
are FORTRAN-1 i ke . In fact, the similarity is close enouqh that long time
FORTRAN programmers are prone to lapse back into FORTRAN when writing some
PL/I statements, such as the DO. (The meaning of a FORTRAN DO is not the
same in PL/I !

)

PL/I Program structures are borrowed from ALGOL (e.g., BEGIN-END) . Data
types in the language show a clear COBOL influence. The language was meant
to be a "universal" or omnibus for scientific, commercial and diversified
general users. Whether it has met this intent is somewhat open to question.
Use of PL/I has not grown nearly as fast as had FORTRAN or COBOL in an
earlier period. Because of the very size of the language, the initial

154

compilers were difficult to write and slow in execution. This problem has
been remedied somewhat with time.

The draft standard represents an attempt to simplify some features of an
otherwise very large language. Because of the tentative nature of the draft,
it is unlikely that any PL/I processor chosen today would conform to the
letter of the new standard. Several PL/I dialects exist, including PL/C
[Conway 1973], a student subset with fast compiling, and a systems support
version PL/S. PL/I is not limited to IBM implementation even for system
work. For example, 95% of Honeywell MULTICS is written in PL/I.

PL/I was accompanied soon after its introduction by a formidable formal
model— the Vienna Definition Language. This meta language, known also as
VDL , has been retained in the draft of the standard. The modeling language is

not very easy to read, and it remains to be seen whether use of it has
removed the threat of ambiguities or omissions in the standard.

Besides the difficult VDL formalism, the PL/I standard has another drawback
of not defining allowed subsets of the language. Implementation of the full
capabilities of the language therefore requires a compiler that can only be
run on large scale computers. Subsets of PL/I have been implemented for
developing cross software for microcomputers (PL/M, PL/M6800) . More
extensive standard subsets could be defined for minicomputers and medium
scale computers.

If PL/I is used, the Air Force should specify standard subsets of PL/I for
various applications within the context of the ICAM program.

Among languages mentioned in this report, PL/I is one that has potential in
the long run as a good growth language for both systems and applications.
The dialect PL/S [see below] is used by IBM on some of their systems work;
student dialects have been mentioned above. Because it borrows from Algol
for block structures, it is fairly easy to write "structured programs" in
PL/I; in addition, the COBOL heritage provides a more definite input/output
capability than that of, say FORTRAN, or (worst) Algol (where i/o is left
undefined). Consideration of PL/I, along with other modern languages such as
PASCAL and its extenions (e.g. EUCLID) , should be made for longer-term
planning in the CAM project. The ANS PL/I with specified subsets and with
features of PL/S might be, for example, a good vehicle to write most of the
CAM systems software.

SYSTEMS IMPLEMENTATION LANGUAGES

The development of large system software projects, e.g. operating systems,
compilers, and data management systems, has been, and still is, hampered by
the lack of adequate tools. The most important of these tools is a good high
level systems implementation language (SIL) . (The term systems programming
language can be used interchangably .

)

Despite the lack of a SIL that can be considered to be really good, the use
of existing SILS is preferable to the implementation of system software in
assembly language or macro-assembly language. If the resulting compiled code
fails to meet execution time constraints, critical inner loops can be recoded
in assembly language. If practical, they should not be placed in-line, but
rather grouped together in a seperate module (or modules) and referenced

155

throuqh orocedure calls. This will isolate machine dependent code to enhance
oor tabil itv

.

1

Of the existinq 3ILS, there does not currently exist one that oossesses a

clear advantage over all others. Some notable attempts have been made in 3IL
design and implementation, but the resulting languages have nearly always
been targeted to a sinqle vendor's machine architecture or have not achieved
widesoead use. As mentioned above, a dialect of PL/I known as PL./S has been
used internally by IBM to implement much of their system software. A dialect
of Algol has been used by Burroughs in the same manner. Many other systems
implementation languages have been developed but have not seen widespread use
because of machine architecture dependencies. Several SILs have been
designed specificallv for microprocessors. There is obviously little
incentive for a vendor to develop a systems imolentation language that could
be readily used to implement systems for another vendor's machines. Thus, if
there is to be any movement to more machine independent systems
implementation languages, that movement must come from without the mainframe
vendors. The Air Force could provide that impetus.

It may be possible to avoid developing a special SIL. For example, 95% of
Honeywell's MULTICS is reported to
language. The key features of a SIL
the Physical level, r?.‘ ier than
orivaleged calls to the hardware,
management system and adequately
languages may be sufficient for
manipulation and portable software.

be written in PL/I, the rest in assembly
are the ability to manipulate data at
at the logical level, and to execute
Implementation of a good data base

standardized general purpose programming
Air Force needs in providing data

The specification and initial design of a machine independent systems !

implementation language (D00-1) is currently underway in the Department of
Defense for use in system programming of weapons systems [Fisher, 1975].
Although its use is not mandated for general purpose, commercial computer
systems, it may prove to be a good choice [DOD, 1976].

In summary, the Air Force must have a SIL. The choice is to oick one or
develop one. There is no clear choice between the SILS that exist and have
been implemented. With the possible exception of PL/S, a proprietary dialect

I

of PL/I, the potential availability of PL/S should be investigated by the Air
Force. Development of a adequate SIL may be the only choice; in this regard,
the D0D-.1 language effort should be carefully evaluated before an independent
development effort is begun under the ICAM program.

FUTURE NEEDS IN PROGRAMMING LANGUAGES

General observations

C.A.R. Hoare[1973] has stated that a programming language should aid in

program design, program documentation, and Program debugging. Me goes on to

stress language simplicity, security, fast translation, efficient object
code, and readability. (His oaper also includes a verv interesting annotated
bibliography on some common languages, including FORTRAN, ALGOL 60, and
COBOL.

)

Documentation can be helped by syntactic forms in a programming language, or

enually, hindered. Indeed, something as simple as a comment can be more (or

less) useful in encouraging clear programs. Scowen and Wichmann [1974] review
a number of comment conventions, including those in PL/I, ALGOL 60, FORTRAN,
BASIC, and COBOL. They provide six design criteria for comments.

156

Program debugging occupies a sizeable portion of a orogrammmer ' s time and
language features can be important. For example, data tyoes in a language can
helo orevent imnrooer transformations between disparate entities. However , a

data-tvoing feature is defeated by an automatic , transparent type conversion
(a la older PL/I), which may then require extremely tedious examinations of
identifiers for improoer tyoe. Unchecked array bounds orovide another very
common source of error that can be difficult to catch without help from a

compiler

.

Although structured programming and related methods have met resistance in

the programming community, the ideas are nonetheless attractive [Lucas, 1975;
Yourdon, 1 975-Chap . 4] . Rerhaos the situation would be different if programs
were physical things which could be viewed for balance and workmanship
[Cheatham, 1971]. Programmers may argue for complete latitude in connecting
pieces of programs together; however imagine a carpenter who set wall studs
sometimes at 15" apart, sometimes 14", and if his lumber was warned, at
varving distances. He could argue that his buildings were no weaker than
anvone else's, but the insulation workers would rate his handiwork less
favorably, since standard batts are 16" wide.

The possibilities for connecting M points of a program are of order N * U . If
nothing else the various structuring and programming refinement disciplines
seek to introduce some constraint uoon this potentially huge d*d. The most
notorious restriction has been, of course, E. Dijkstra's condemnation of
GOTO 1 s [Oijkstra, 1963]. His point —quite valid—was that GOTOs represented
a way of thinking about programming, that many GOTOs indicated shoddy program
organization— a "Rube Goldberg" programmer in action. It was not enough that
a program worked--so did most of Goldberg's bizarre inventions. The
programming task should be thought through as one might organize an essay.

Yet even after the organization of a program has been expressed, it must be
written in terms of some programming language. While an organization may
reflect the virtues of modular pieces and good, tree-like dependencies among
modules, it is egually clear that some languages will not allow one to ban
GOTOs easily. COBOL and FORTRAN have control statements deoendent uoon
GOTOs; for example, in COBOL the EXIT statement is, effectively, only an
exit label at the end of the scope of a PERFORM; interior "exits" must GO TO
this one valid point of egress. Any interior EXITS are treated as no-ops,
and do not affect the PERFORM. And since FORTRAN has no compound statements,
GOTOs are often introduced to produce the effect. More modern programming
languages often include compound statements, conditionals, a DO or FOR
statment, WHILES, the CASE statement, and naturally, procedures including
recursive ones.

A second place for a program to become unbuttoned is in its data;
Hoare[1973] observes that untyped pointers allow as much arbitrary hazard in
the data space of a program as GOTOs nose in the Program (or control) space.
A Pointer can jump around, and if assigned an improper value, jump around
into the wrong data locations. On an even simplier vein, it is possible to
replace GOTOs by flags, only to find that the flags are so ooorlv designed
that their meaning is dependent upon points of control in the program.

The moral is, if a programmer is messy, nothing will help.

Standards and Limitations

Any discussion on standardized languages and their status could be deceptive
if unaccompanied by a caveat on the limitations of the language standards
themselves, for in fact there are many system influences on language use, and
in the wordings of the standards.

157

Lar mouth [1976]
provides details of many loose ends in FORTRAN. For example,

local variables in a subroutine can become undefined (of indeterminate value)
upon exit from the subroutine, even though most systems preserve local
variables, treating them as Algol OWN values or PL/I STATIC. The reason for
the Standard's hedging is that on stack-machines , such as Burroughs, the
subroutine exit poos the storage stack. Local values are truly lost. On
another plane, the recent problem with COMPUTE in COBOL was caused by a

failure in the standard to define intermediate results for arithmetic
expression evaluation. Some manufacturers used their machines' double
precision floating point for the intermediate results, while others
incorporated the various numbers of fixed point digits. It is impossible to
state concisely all of the problems that one might encounter in a particular
standard. The best advice would seem to be to refer the reader to the
Larmouth article and indicate that the FORTRAN standard that generated all
that discussion is about a tenth that of, say COBOL or PL/I Standards.
Caveat emptor .

Files and the handling of system secondarv storage exemplify the importance
of uniform, simple conventions, especially among programs written in
different languages. The dictum of "delayed binding", i.e. late fastening of
attributes, implies that files should have no specific characteristics other
than those absolutely necessary. This allows flexibility in rerouting inputs
and outputs, typical requests for contemporary users. Usually there will be
loadable files and text. Nothing else. Text, if sent to the printer process,
generates— on paper— a user's print file. It is not difficult to cite
systems in which there are user card files, printer files, data files, and
program source code files. For example, on the UNIVAC 1108 under EXEC II, it

is quite easy to find that one has a COBOL preprocessor, written in COBOL to
convert other COBOL decks, whose output is unreadable by the COBOL compiler!
Gerhard Goos [1974] has remarked that:

"The most serious problem of today's system programming languages is the
non-existence of a basic model for file-handling and I/O. All models either
are developed with a certain operating system in mind and are difficult to
adapt to other operating systems. Or they are too simole, allowing for
sequential files only while random-devices are modeled by unstructured linear
address spaces."

Much as one would like programs written in various languages to share files,
one would also like to share library routines. K.W. Morton [1974] discusses
the NAG library and practical limits in current operating systems; e.g. to
serve both FORTRAN and Algol users some routines have to be coded twice.
Hoare [1973] also reflects on the point briell , and is not generally in

favor of shared routines.

In any event, while specification of a standard in a language will improve
compatibilities, such standards may require add i t iona l constraints to be

really useful. This is especially true if distinct programming languages are
to share the processing of file information on the system.

158

RECOMMENDATIONS

1. CAM systems and application software packages should be developed
only with high level programming languages, except for the very few
instances where acceptable performance can only be achieved by
resorting to assembly language for coding of critical algorithms

.

These cases should be carefully controlled and documented.

2. The Air Force should encourage the use of standardized programming
languages. NBS believes their effective use to be the key to
software portability.

3. ICAM may not wish to prohibit the use of nonstandard programming
languages where the reasons for their selection by a contractor
are fully documented and supported. In those cases where the Air
Force allows the use of a nonstandard language, it should at the
same time initiate a standardization effort to formalize the
product definition, through a consensus opinion of users and suppliers,
so that compilers can be implemented on other computers to effect
portability

.

4 . Because of the bulk of existing application programs are written
in FORTRAN and COBOL, these two languages must be supported for
the near term future in the Air Force ICAM program. Eventual
conversion of existing programs to a modern language should be
planned for under the ICAM program. At the present time FORTRAN
and COBOL are the only two general purpose programming languages
that are considered to be immediately useful to the Air Force.

5. The Air Force should support the establishment of a Federal
FORTRAN standard based upon revision of the ANSI standard, now
in progress. Should ANSI fail to approve a revised standard in
1977, the Air Force should support in writing the NBS goal of
adopting the next ANSI committee proposal as a Federal standard.

6. Of all the general purpose programming languages submitted for
standardization, PL/I is the only one that can be considered a
"modern" language suited for Air Force ICAM applications. However,
PL/I compilers can produce inefficient code and tend to require a

large run-time support system. Furthermore, not all of the major
computer manufacturers offer PL/I. Hence, it cannot yet be con-
sidered a "standard" language suitable for Air Force use. If it is
desired to use PL/I, substantial effort in standardization will be
required and particular attention should be given to the definition
of subsets to run on smaller computers and to the development of
extensions for systems work.

7. The Air Force CAM authorities should monitor the DOD-1 project
because it appears to have the broad base of support that could
produce a standardized language suitable for CAM needs in the 1980's.
Among the candidates being considered in the DOD-1 effort that are
particularly relevant to CAM projects are PASCAL and PL/1.

159

REFERENCES

Andreas 3, Ph i 1 1 ippak i s . "Programming language usage."
ANSI BSR X3.53 Basis/1-12 1975 (Feb.) Draft Proposed Standard Programming

Language

.

BSR X3.53 Chao 1 revised 1975 (Feb).

BSR X3.53 Errata Sheet 1976(Jan.)

BSR X3.63

M. Beckmann , et. al . ADVANCED COURSE IN SOFTWARE ENGINEERING.
Spr inger-Ver lag (Berlin, 1974).

Bennet P. Leintz, "A Comoarative Evaluation of Versions
of BASIC," Comm, of the ACM, Anril 1975, Vol . 19, No. 4, po.
175-138 .

T.E. Cheatham. "The recent evolution of programming languages," Proceedings,
IFIP Congress 71, Ljubljana, Yugoslavia, August 1971, op 1-113 —
1-134.

R. Conway and T . Wilcox. "Design and implementation of a diagnostic compiler
for PL/ I." Comm. ACM. IS, 3 (March 1973), 159-179.

Donald R. Deutsch. Appraisal of Federal Government Cobol Standards and
Softwar e Management : Survey Res u lts . NBSIR 76-1130, Final Report
August "1976

, fJ.S. Deot. of Commerce, National Bureau of Standards.
DATAMATION , October 1973, 13 9- 111.

E. Dijkstra. "GO TO statement considered harmful," Letter to editor of COMM.
ACM 11, 3 (March 1968), op 147-143.

DoD Directive 5000.29, Management of Computer Resources in Major Defense
Systems, 1976 (April).

D.A. Fisher, A Common Programming Language for the Department of Defense
Background and Technical Requirements, 1976(June).

M. Griffiths. "Relationship between definition of implementation of a

language," Lecture Notes, op cit.

G. Goos. "Programming languages as tool in writing system software," in
Beckmann, et.al, op. cit.

C. A.R. Hoare. "Hints on prgramming language design." Computer Science
Deoartment, Stanford University, Dec 1973, 3TAN-CS-73-403 , 29 pp.

D. E. Knuth. "Structured orogramming with GO TO statments," COMPUTING SURVEYS
6, 4 (December 1974), 263-331. (Special issue on programming.)

J. Larmout'n. "Serious FORTRAN—The Rules of the Caine." Chapter to appear as
an NBS Tech Note for the NBS/NSF SOFTWARE ENGINEERING HANDBOOK, July 1976,
20pp. (An earlier version appeared in SOFTWARE— PRACTICE & EXPERIENCE)

Larmouth, J. "Serious FORTRAN." and "Serious FORTRAN— Part Two." SOFTWARE:
Practice & Experience 3, 2-3(1973), pp. 87-108, 197-225. Prentice-Hall,
Inc., Englewood Cliffs, N.J. , 1975.

H. Lucas Jr. and R.B. Kaplan. "Structured programming experiment," COMPUTER
JOURNAL 19, 2(1976), pp. 136-138.

K. W. Morton. "What the software engineer can do for the computer user," in
Beckmann, et.al., op. cit.

Pratt, T.W. Programming Languages: Design and Implementation.

R.S. Scowen and 3. A. Wichmann. "The definition of comments in programming
languages," SOFTWARE—PRACTICE & Also see J.G.P. Barnes, op . c i t . , pp . 4 0 1-4 0 8

.

N. Wirth. "On the composition of well-structured programs," COMPUTING SURVEYS
6, 4(December 19 7 4) ,pp . 247-26 2 . (Special issue on programming.)

D. B. Wortman, et.al. "Six PL/I Compilers," SOFTWARE: PRACTICE & EXPERIENCE 6,

(1976) , pp. 411-422.
E. Yourdon. TECHNIQUES OF PROGRAM STRUCTURE AND DESIGN. Prentice-Hall, Inc.
(Englewood Cliffs, N.J., 1976), 364pp.

STANDARDS DATA SHEETS

The following Data Sheets summarize those standards which apply to
Computer Programming Languages.

161

Desi gnati on : ANSI X3J2/76-01

2. Title : Proposed American National Standard for Minimal BASIC, January, 1976.

3. Maintenance Authority : ANSI X3J2

4. Scope : BASIC (Beginners All-purpose Symbolic instruction Code) was orginally
developed at Dartmouth College for use by nonprogrammers . It was designed for
interactive use in program construction and debugging. The range of usage of BASIC
has grown beyond the scopes of the originally intended audience. Usage has expanded
in universities as well as industrial organizations. BASIC is, in general, an easy-
to-learn language and can be applied to nonnumerical as well as numerical problems.

5. Relationship to Other Standards : ANSI X3. 4-1968 American National Standard Code
for Information Interchange (base, 1 28-character set); ANSI X3. 42-1975 The Repre-
sentation of Numerical Values in Character Strings for Information Interchange
(proposed Minimal BASIC accommodates forms stipulated in X3.42).

6. Competitive Standards : X3J3 dpANS FORTRAN^

7. Standardization Status : Approved by mail ballot of X3J2 and transmitted to X3

for action on 12/31/75. No official designation given as yet. The status of the

standard at X3 is unclear at this time, as well as the plans for publication for

comment.

8. Implementation Status: Honeywell 6635, 6080, 437; Hewlett-Packard 2000F, 3000;
IBM 370/168, 145, 158; CDC 3300, 6500; PDP 1070; XDS 940; UNIVAC 1108.

9. Known Manufacturing Uses : Graphics, Interactive Language Requirements

10. Known Sources of Information : Dr. Thomas E. Kurtz, Director, Computation Center,
Dartmouth College (Chairman X3J2); Mr. I. Trotter Hardy, NBS, (301) 921-3491, (NBS

voting member on X3J2); Dr. David E. Gilsinn, NBS, (301) 921-3491.

11. Probable Sources of Information : IBM, Sperry Rand, Hewlett-Packard, General

Electric, Dartmouth College, Digital Equipment Corporation, Control Data
Corporation

12. Bibl iography :

ANSI X3J2/76-01 , Proposed American National Standard for Minimal Basic, Jan. 1976
BASIC/3000, HP

Real-Time BASIC, HP

IBM BASIC for the 370
BASIC (BNF) Burroughs
BASIC, CDC
BASIC, Multics
Xerox BASIC
JPL BASIC
GE Mark III BASIC
DEC, "BASIC-Plus Languages Manual"
Bennet P. Leintz, "A Comparative Evaluation of Versions of BASIC," Comm, of the

ACM , April 1976, Vol . 19, No. 4, pp. 175-188.

162

13. Comments : The proposed standard specifies a minimum of 6 digits of numeric

representation for precision. There is, however, a possible infinite loop case

in the FOR-NEXT statement and there is a new language element OPTION BASE to

specify array lower bounds that has not been implemented on any system.

The FORTRAN standard was identified as a possible conflicting standard in the sense that

BASIC is a FORTRAN-1 i ke language. However, BASIC is more interactively oriented and minimizes

format considerations. Both can be used to solve similar problems.

163

Designation : FIPS PUB 21-1, ANSI X3. 23-1974, ISO 1789

2. Title : American National Standard COBOL

3. Maintenance Authority: Commerce Department, National Bureau of Standards for
FIPS PUB 21-1; ANSI X3J4 for ANSI X3. 23-1974.

4. Scope : Programming language for use in computer applications that emphasize the
manipulation of characters, records, files and input/output (as contrasted with those
primarily concerned with computational problem solving).

5. Relationship to Other Standards : FIPS PUB 44 - Standard COBOL Coding Form

6. Competitive Standards : None

7. Standardization Status : The documents cited represent the current revisions of the
COBOL standard.

8. Implementation Status : Wide range of general purpose computers.

9. Known Manufacturing Uses : No known use for applications directly contributing to

the manufacturing process; however, as stated under "Scope" above, is appropriate
for predominantly data manipulation applications, usually in support of business
management functions.

10. Known Sources of Information : Ms. Mabel Vickers, NBS, COBOL Project Manager, (301)
921-3491; Jitze Couperus, Chairman, ANSI X3J4, (408) 734-7499.

11. Probable Sources of Information: William Rinehuls, USAF, DoD Standards Coordinator,

(202) 695-6547

12. Bib! iography :

FIPS PUB 21-1, COBOL, December 1, 1975

ANSI X3. 23-1974, COBOL, May 10, 1974
C0DASYL COBOL Journal of Development, 1976, (current developments of COBOL)
FIPS PUB 44, Standard COBOL Coding Form, September 1, 1976

13. Comments : The COBOL standard is supported by a mechanism for the continued develop-
ment and standardization of the languge as dictated by user needs and state-of-the-art
developments in language use and implementation. The Federal standard is supported
by Federal Property Management Regulation 101-32.1305-1 which specifies the

procurement and compiler testing policies applicable to Federal agencies.

164

1 . Designation : ANSI X3. 9-1966

2. Title : American National Standard FORTRAN

3. Maintenance Authority : ANSI X3J3

4. Scope : Programming language for scientific and engineering applications.

5. Relationship to Other Standards : ANSI X3. 10-1966, Basic FORTRAN (subset); ANSI

X3. 42-1975, The Representation of Numeric Values in Character Strings for Information
Interchange, (the FORTRAN standard accommodates forms stipulated in X3.42).

6. Competitive Standards : PL/I

7. Standardization Status : ANSI standardization completed March 1966; revision thereto

is now out for public review, comment and X3 ballot; action date January 1977;

new designation to be X3. 9-1 977.

8. Implementation Status : All general purpose computers; most manufacturers are now

updating their compilers to meet the proposed revision.

9. Known Manufacturing Uses : Scientific applications, numerical control, preprocessors
and postprocessors. Most scientific and engineering application programs are

coded in FORTRAN.

10. Known Sources of Information : Mrs. Francis E. Holberton, NBS, (301) 921-3491;
Mr. William F. Hanrahan, Secretary, ANSI X3, (202) 466-2288.

11. Probable Sources of Information :

12. Bibliography : ANSI X3. 9-1966 (Current) ANS FORTRAN
ANSI X3 BSR 3.9, March 1976 (same as X3J3/76) draft proposed ANS FORTRAN

13. Comments:

165

1. Designation : MDC/28, MDC/33, and MDC/34

2. Title : MUMPS Language Standard

3. Maintenance Authority : MUMPS Development Committee

4. Scope : Programming language for interactive data handling.

5. Relationship to Other Standards : FIPS PUB 1/ANSI X3. 4-1968, ASCII (base, 1 28-

character set); FIPS PUB 15-1971 (base, 64-character graphic subset)

6. Competitive Standards : None

7. Standardization Status : ANSI letter ballot mailed May 24, 1976; action date
November 24, 1976; designation to be ANSI Xll.l

8. Implementation Status : Standard implementations: Artronix PC-16, Burroughs B-6700,
DEC PDP-10, DEC PDP-11, IBM 360/370, Philips P856/857; being implemented on
machines of six additional manufacturers.

9. Known Manufacturing Uses : String handling applications, such as in inventory
control and parts cataloging.

10. Known Sources of Information : Mr. J. T. O'Neill, NBS, (301) 921-3485, Jack Bowie, Sc.D
Chairman, MUMPS Development Committee, (617) 726-3937.

1 1 . Probable Sources of Information :

12. Bibl iography :

NBS Handbook 118, issued January 1976, with errata dated March 9, 1976, MUMPS
Language Standard'

MDC/29, 5/28/75, MUMPS Interpreter Validation Program User Guide
MDC/30, 6/25/75, MUMPS Translation Methodology
MDC/35, 10/14/75, MUMPS Documentation Manual

MDC 1/11, 6/13/75, MUMPS Primer
MDC 2/1, 5/15/75, MUMPS Globals and Their Implementation
MDC 2/2, 5/30/75, Design of a Multiprogramming System for the MUMPS Language
MDC 2/3, 6/15/75, Implementation of the MUMPS Language Standard
MDC 3/5, 8/31/76, MUMPS Programmers' Reference Manual

13. Comments:

NBS Handbook 118 consists of three MUMPS Development Committee documents, namely, Part

I, MDC/28, MUMPS Language Specification, dated March 12, 1975; Part II, MDC/33,
MUMPS Transition Diagrams, dated September 17, 1975; and Part III, MDC/34, MUMPS
Portability Requirements, dated September 17, 1975).

166

Designation : None

2. Title : PASCAL

3. Maintenance Authority : Prof. N. Wirth, Institut fur Informatik, Clausiusstrasse
55, CH-8006 Zurich.

4. Scope : General purpose programming language.

5. Relationship to Other Standards : Designed to replace ALGOL 60. A commercially
available process control language is a superset of PASCAL.

6. Competitive Standards : ALGOL-W

7. Standardization Status : The original PASCAL is the product of Prof. Wirth, so

the standardization is fairly clear.

8. Implementation Status : Available on: DEC PDP-10, PDP-11; CDC 6000; CII IRIS 80,
CII 10070; IBM 360/370; Univac 1108; XDS Sigma 7.

9. Known Manufacturing Uses : Scientific and engineering programming as well as some
systems implementation programming.

10. Known Sources of Information : George H. Richmond, Editor, PASCAL Newletter,
University of Colorado Computer Center, 3645 Marine Street Bolder, Colorado 80302

1 1 . Probable Sources of Information :

12. Bib! iography :

A. N. Habermann, "Critical comments on the programming language PASCAL," NTIS

PD-224 777, Oct. 1973, 22 pp.
C.A.R. and N. Wirth, "An axiomatic definition of the programming language PASCAL,"

30 pp.
Kathleen Jensen and Niklaus Wirth, PASCAL: User Manual and Report, Lecture

Notes in Computer Science 18, Springer-Verlag (New York, 1974), 169 pp.
also Geo. H. Richmond, Ed., PASCAL Newsletter, from 1974 onward.

13. Comments : Primary community of users is found in academic institutions.

167

1 . Designation : ANSI BSR X3.53 BASIS/1-12, Feb. 1975.

2. Title : PL/I

3. Maintenance Authority : ANSI

4. Scope : General purpose omnibus programming language.

5. Relationship to Other Standards : None, except that language is generally thought
of as a replacement for both FORTRAN and COBOL, and probably ALGOL too.

6. Competitive Standards : dpANS FORTRAN, dpANS COBOL

7. Standardization Status : BASIS/1-12 + errata sent to ECMA General Assembly for vote in

Jan. 1976. Also sent to ANSI X3 for general processing.

8. Implementation Status : All major IBM systems. Dialects on Honeywell, CDC, and
university installations (PL/C, etc.), including Amdahl machines

9. Known Manufacturing Uses : Business, scientific, engineering.

10. Known Sources of Information : IBM Corporation; General Electric; Honeywell Multics
documents, Cornell PL/C user guides, etc.

1 1 . Probable Sources of Information :

12. Bibliography : ANSI BSR X3.53 BASIS/1-12, Feb. 1975
BSR X3.53 Errata sheets, Jan. 1976
BSR X3.53 CHAP. 1, revised Feb. 1976

Many textbooks, e.g., W.W. Peterson

13. Comments : Standard is pending approval. PL/I is a very large and very powerful
programming language. It was designed somewhat hurriedly and the design is

therefore not the most elegant.

168

1 . Designation : None

2. Ti tl

e

: Composite summary sheet on Simulation Languages

3. Maintenance Authority : Various developers

4. Scope : Simulation languages can be divided into three clases, namely, continuous
discrete, and hybrid. Continuous languages are for implementing models of systems
having continuous dynamic change (i.e., sets of differential equations). Discrete,
languages are for models showing discrete change (i.e., queuing and resource

allocation). Hybrid languages combine both features into one package.

The process of simulation involves:

a. developing a system model expressed in mathematical, logical, or graphical

notation

,

b. implementing the model in a computer using simulation language notation,

c. validating the model to insure an acceptable degree of accuracy, and

d. running the model to accrue experimental data.

Simulation languages are usually of three programmatic types:

1. routines for simulation embedded in a general source language such as FORTRAN,

2. an entire higher order source language, or

3. a data base-driven set of object code.

In certain cases, simulation languages are employed in real-time to accept inputs
sensed from some controlled system or process.

5. Relationship to Other Standards : N/A

6. Competitive Standards: N/A

7. Standardization Status: None

8. Implementation Status:

9. Known Manufacturing Uses : Control of processes; design of processes and facilities;
resource allocation and planning.

10. Known Sources of Information: Mr. Paul F. Roth, NBS, (301'
) 921-3545.

11. Probable Sources of Information: Various developers

12. Bib! iography : G. Gordon, System Simulation, Prentice Hall, 1969.

13. Comments : No standard summary sheets are included here because there are no

standards in this area. Simulation languages are, in most instances, developed
and/or supported by computer mainframe vendors or by software houses specializing
in simulation. Simulation languages encompass such a wide variety of forms and uses
that early voluntary standardization is unlikely; however, some de facto conventions
might well be adopted for the Air Force ICAM effort.

^Languages tentatively identified for detailed consideration are CSSL, CSMP, GASP IV,

GPSS , and SIMSCRIPT.

169

1 . Designation : None *

2. Title : Basic Language for implementation of System Software (BLISS)

3. Maintenance Authority : Digital Equipment Corporation (for official versions);
Carnegie-Mellon University, Dept, of Computer Science (for unofficial versions).

4. Scope : De facto system implementation programming language standard for the
Digital Equipment Corp. PDP-10 (BLISS 10) and PDP-11 (BLISS-11

)

5. Relationship to Other Standards : It is assumed that the source is in ASCII.

6. Competitive Standards : BCPL (and variations, particularly C for the PDP-11); SAIL

7. Standardization Status : The de facto standard for the language BLISS is embodied in

the implementations of BLISS-10 and BLISS-11 by Digital Equipment Corp. To date,
there has been no effort to standardize this language.

8. Implementation Status : The language was designed and first implemented for the PDP-10
at Carnegie-Mellon University. It was later adopted by Digital Equipment Corp.
and has become a supported language under their standard PDP-10 operating system.
The PDP-11 version was likewise designed and first implemented at Carnegie-Mellon.
It is now available from Digital Equipment Corp. via a cross compiler, i.e., it

executes on a PDP-10, producing code for a PDP-11.
V

9. Known Manufacturing Uses : None

10. Known Sources of Information : Digital Equipment Corp., Maynard, MA; Carnegie-Mellon
University, Dept, of Computer Science, Pittsburgh, PA.

1 1 . Probable Sources of Information :

12. Bib! iography :

BLISS-10 Programmer's Reference Manual (DEC-1 0-LBRMA-A-D) , Digital Equipment Corp.,
Maynard, MA;

W.A. Wulf et al .

,

BLISS Reference Manual: A Basic Language for Implementation of

System Software for PDP-10, Dept, of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.

13. Comments : Digital has implemented sophisticated FORTRAN compilers using both
BLISS-10 and BLISS-11 as implementation languages.

170

1 . Designation : None

2. Title : PL/S

3. Maintenance Authority : IBM Corp.

4. Scope : System implementation language used by IBM for the 360/370 series

5. Relationship to Other Standards :

6. Competitive Standards :

7. Standardization Status : The specification of PL/S has not been released by IBM.

8. Implementation Status : By implication, it can be assumed that IBM has implemented
a compiler for PL/S, since much of the system software for the 370 series is written
in PL/S. However, none of the source code is distributed, since IBM refuses to
distribute the compiler.

9. Known Manufacturing Uses : None

10. Known Sources of Information : IBM Corp., Data Processing Division, 1133 Westchester
Ave., White Plains, NY 10604.

11 . Probable Sources of Information :

12. Bib! iography :

Guide to PL/S II (Form GC28-6794-0) , IBM Corp., Data Processing Division,
White Plains, NY;

Guide to PL/S-Generated Listing (Form GC28-6786-0) , IBM Corp., Data Processing
Division, White Plains, NY;

G. Wiederhold and J. Ehrman, Inferred Syntax and Semantics of PL/S, in Proceedings
of a SIGPLAN Symposium on Languages for Systems Implementation (published as

SIGPLAN Notices, Volume 6, Number 9, Oct. 1971).

13. Comments : IBM appears to heavily use PL/S for its own internal system implementations.
Unless IBM or someone else releases a PL/S compiler for general use, this language
is of no utility to anyone but IBM.

171

1 . Designation : None

2. Title : BCPL and C

3. Maintenance Authority : BCPL: installation-dependent; C: Bell Telephone Laboratories

4. Scope : BCPL (Basic Combined Programming Language) is a system implementation
language. C is also a system implementation language developed as a significantly
enhanced dialect of BCPL.

5. Relationship to Other Standards :

6. Competitive Standards :

7. Standardization Status : There has been no formal effort to standardize these
languages.

8. Implementation Status : BCPL has been implemented on a wide variety of machines.
The most important implementation of C has been for the DEC PDP-11. Other imple-
mentations exist for the IBM 360/370 and Honeywell 6000 series.

9. Known Manufacturing Uses :

10. Known Sources of Information: C: Dennis Ritchie, Bell Telephone Laboratories,
Murray Hill, NJ 07974

1 1 . Probable Sources of Information :

12. Bibl iography :

M. Richards, The BCPL Reference Manual (Project MAC Memo M-352-1), M.I.T.,
Cambridge, MA (1968)

M. Richards, BCPL: A Tool for Compiler Writing and System Programming, Proceedings,
Spring Joint Computer Conference (1969);

D. Ritchie, C Reference Manual, Bell Telephone Laboratories, Murray Hill, NJ.

13. Comments : Outside of a few user communities, BCPL has not been used heavily. The
primary user community for C is that of PDP-11 UNIX users. The UNIX operating
system is almost completely written in C, and C is the best supported and most
heavily used language available on UNIX.

172

1 . Designation : None

2. Title : PL/M, PL/M6800, and MPL

3. Maintenance Authority : Intel Corp. (PL/M for the Intel 8008 and 8080);
Intermetrics (PL/M6800 for the Motorola 6800);
Motorola Corp. (MPL for the Motorola 6800)

4. Scope : All three of these languages are high level system implementation
languages for 8-bit microprocessors.

5. Relationship to Other Standards :

6. Competitive Standards :

7. Standardization Status : To date, none of these languages has been the subject
of standardization. However, there has been some effort to make PL/M and PL/M6800
compatible at the source code level.

8. Implementation Status : Cross compilers exist for all three of these languages
and are available through nationwide timesharing services or as FORTRAN programs
designed to run on a user's IBM 360/370 system.

9. Known Manufacturing Uses :

10. Known Sources of Information :

11 . Probable Sources of Information :

12. Bib! iography :

8008 and 8080 PL/M Programming Manual - Revision A (MCS-451 -0275-1 OK) , Intel

Corp., Santa Clara, CA (1975);
D. Fylstra and R. Gardner, PL/M6800 Language Specification (Report No. IR-161),

Intermetrics Inc., Cambridge, MA (1975).

13. Comments : PL/M and PL/M6800 offer an almost completely compatible language for
programming Intel 8080 and Motorola 6800 microprocessors. MPL for the Motorola
6800 was not designed to be compatible. However, all three of these languages are

subset dialects of PL/I and therefore will have a high degree of similarity.

173

1 . Designation : None

2. Title: Composite summary sheet on Artificial Intelligence (AI) Languages'''

3. Maintenance Authority : Various developers

4. Scope : Novel features (new data types and control structures, pattern matching,
deductive mechanisms, etc.) embedded in programming languages for robotics, automatic
programming, and the representation of knowledge (see bibliographic citation 12.

a. below).

5. Relationship to Other Standards : N/A

6. Competitive Standards: N/A

7. Standardization Status: None

8. Implementation Status:

9. Known Manufacturing Uses: "... heuristic programming, algebraic manipulation.
pattern recognition, . .

bibliographic citation 12

. information retrieval, numerical computation" (see

. b. below).

10. Known Sources of Information: See bib! ioaraDhv.

11

.

Probable Sources of Information:

12. Bib! iography :

a. Bobrow, Daniel G. and Bertram Raphael, New Programming Languages for Artificial
Intelligence, Computing Surveys, Vol . 6, No. 3, September 1974 (with
31 bibliographic entries).

b. Abrahams, Paul W. et. al . , The LISP 2 Programming Languaqe and System, Proc.
FJCC , Vol. 29, (1966).

c. SAIL User Manual, Stanford Artificial Intelligence Laboratory, Memo AIM-204,
Computer Science Department Report STAN-CS-73-373 , July 1973.

d. Sammet, Jean E., Programming Languages: History and Fundamentals, 1969.

13. Comments : "For more than a decade, the list processing and symbol -manipulation lang-

uages -- such as COMIT, IPL, LISP, SLIP (Bobrow Raphael 1964) -- have been the media
for almost all AI achievements. Although the effectiveness of research with these
languages has improved dramatically due primarily to greatly expanded memory sizes
and new interactive debugging facilities, the languages have remained remarkably
stable. In recent years, however, new directions for emphasis in AI research --

such as studies of representation of knowledge, robotics, and automatic programming -

have led to a widely felt need for certain rather novel features to be embedded into
programming languages; and some languages containing several of these features have

recently been implemented" (see bibliography citation 12. a. above).

^Languages tentatively identified for detailed consideration are SAIL, PLANNER/CONNIVER,

QLISP/ INTERLISP ,
P0PLER/P0P-2 , and LISP 2.

174

STANDARDS FOR COMPUTER SYSTEMS

OPERATING SYSTEMS

INTRODUCTION

OPERATING SYSTEMS FUNCTIONS

COMMUNICATIONS WITH AN OPERATING SYSTEM

VIRTUAL SYSTEMS

Virtual Memory
Virtual Devices
Virtual Machines

FILE MANAGEMENT PROBLEMS

SUMMARY

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

175

INTRODUCTION

Operating systems can be thought of as the system managers. In response
to demands of a user's program, the operating system manages the allocation
and use of the central processor unit, main and mass memories, and input
and output resources.

The lack of standards and quality in existing operating systems is the
major problem in transporting software from one computer installation to
another, even with only a single make and model of computer.

Operating systems are at once the best and worst place to consider
standardization. Ideally, if one had a standard operating system, then
one could imagine true software portability, since all machines would
appear identical. From a practical point of view, a standard operating
system for a large computer is neither practical nor desirable.

Operating systems for large computers are huge collections of software
programs intimately related to the particular hardware architecture for
which they were designed. For this reason, those features that are common
among large computers, and could be the basis for standardization, are
generally a very small subset of the total features implemented in a modern
operating system. This lowest common denominator approach would deny
the user the best features of the large computers in use today. Further,
the mainframe manufacturers have a market incentive to keep operating
systems both unique and proprietary.

The second problem for the Air Force in considering operating systems
is their size and complexity: the cost of developing a new operating
system for a large machine would probably exceed the total resources of the
ICAM program. Worse, advances by the industry in hardware and system designs
would soon obsolete whatever system was developed.

Incompatible features of operating systems will undoubtedly cause
the Air Force serious problems in creating complex integrated systems soft-
ware that is sufficently independent of the host computer to be portable.
However, overall operating system standardization does not seem to be a

viable answer. There are several areas in which limited standards can
and should be implemented for the ICAM program which will be discussed
below.

The situation is somewhat different for mini and microcomputers. The
16 bit minicomputers are sufficiently similar in their hardware characteris-
tics and system architectures that the idea of a standard operating system
is feasible. For a distributed, integrated system based on 16 bit mini-
computers, the development of a communications oriented standard operating

system is probably within the resources of the ICAM program. The 32 bit
machines which are byte oriented (in handling internal data communications)
are generally extensions of comparable 16 bit machines and could also be
considered in developing a standard operating system.

Microcomputers are too small to have much of an operating system.
Simple terminal monitors or switch monitors are supplied on ROMS in micro-
computer kits to allow the user to load programs, but that plus some simple
debugging routines is the extent of the system software. There is an
opportunity to facilitate the use of microprocessors in CAM systems through
the development of a cross software system based on PL/M or some other sub-

set of a high level language that would run on higher level computers.
Such a system would be essentially independent of the rapid hardware
innovations at the microprocessor level and could provide full system
support capabilities.

176

OPERATING SYSTEM FUNCTIONS

Historically, operating systems first arose as a matter of convenience
rather than necessity. In the early 1950's, each programmer actually
operated the machine and debugged his program on-line, controlling card
input formats and line printer formats with patch panels inserted in the
periphals. Batch processing programs were developed in the late 50'

s

to

expedite this situation by automatically loading another program as one
was completed.

Executive systems were developed in the early 1960's that provided
users with common access to complex programs developed for handling input
and output. At this time computers were basically constrained to a single
user and each job was completed before the next one began.

Because input and output functions depend on external periphal devices
generally much slower than the CPU, single user systems are very inefficient.
For this reason, multiprogramming batch systems were developed that allowed
more than one job to be executed at once.

The development of time sharing systems, on line file management,
real time operating systems, and virtual storage and virtual machine concepts
has led to the operating systems of the 1970 's, in which multiple users
can simultaneously have access to the resources of the computer. The operat-
ing system is required to schedule the computer resources while preventing
unwanted interaction between unrelated processes and to enforce access
restrictions to data.

The primary functions of modern operating systems can roughly be divided
into 4 classes:

1. Job control
job scheduling
process scheduling
control of information flow
start/stop processes

2. Main Storage management
allocate memory (including partitioning and/or paging)
access control

3. Device management
schedule I/O devices
control data flow to I/O devices
monitor interrupts on I/O devices

4. File system management
create/destroy file
open/close file
read/write file

It is in this last area of file management that many of the worst problems
of software compatibility and portability arise, as we will discuss below.

COMMUNICATION WITH AN OPERATING SYSTEM

The user communicates with an operating system by two methods: system
calls and an operating system command language (OSCL)

.

System calls can be thought of as procedure calls to special operating
system procedures. They are used in programs to request services of the
operating system. For example, READ and WRITE statements are supervisory

177

Functions

user

user system

programs software

operating system

computer hardware

periphals, secondary memory, and
communications

specifies desired operation
of computer

user specified applications
programs

compilers, assemblers, loaders
debugging, text editing
libraries

job scheduling and control
storage management
device management
file system management

main memory
electronic data processing

interaction of CPU with outside
world

Figure 1

OPERATING SYSTEM FUNCTIONS

178

calls. The system calls represent the "primitive actions" that an operating
system can perform for an executing process.

These primitives vary greatly between operating systems since they
represent basic design decisions and implementation realizations.
Standardization at the system call level is not practical nor advisable
since it might stifle new innovation.

However, it is possible to present a more uniform view of the system
call interface to a process by layering it with routines which map user
intentions into system calls. This is, in fact, exactly what is done
by the I/O runtime support routines for a programming language.

Figure 2 shows schematically how a user program interfaces to an
operating system through a runtime support routine. These routines are
necessary to translate the varying system calls in different languages
to a form understood by the operating system. For example, OUTPUT FILEZ
in BASIC and WRITE 600, FILEZ in FORTRAN may be translated into the same
system call to initiate an I/O action.

It is at this level that the direct interaction takes place between
a user program and an operating system for I/O.

An extension of this approach to other system feature calls may
yield improved benefits and warrants investigation. However, any such
approach is still limited by the basic primitives that the operating system
designers implemented.

An operating system command language (such as JCL) is a self-contained
but often rudimentary language for direct communication between a user
and the operating system. The command language is used to schedule jobs,
•assign files, etc. and otherwise direct the execution of programs on the
behalf of the user. The design of a command language is greatly influenced
by the primary intended mode of operation of the operating system: batch
or interactive. Unfortunately, there exist systems orginally designed
for batch operation to which an interactive mode was later added. The
resultant command languages are often ill-suited for interactive use.

Some attempts have been directed towards the development of a system-
independent command lanugage. They have received very little, if any,
vendor support and probably for that reason have had no success. However,
on some of the more well-designed operating systems, the command language
exists as a separable part of the system, and thus can be easily changed.
If fact, some of these systems can support more than one command language.

Each vendor of operating systems has a unique appraoch to the imple-
mentation of the user-system interface from one generation to another.
No operating system in widespread use can be said to possess sufficient
redeeming qualities in its user-system interface that acceptance of it
as even an ad hoc standard can be advocated.

VIRTUAL SYSTEMS

There are several concepts that can be considered under the general
title of virtual systems. These include virtual memory, virtual devices,
and virtual machines. All are intended to make a physical characteristic
of the computer appear to be more than it actually is in order to help
the user and improve the efficiency of utilization of the computer itself.

Virtual Memory : this is by now the well known concept of placing
only parts (pages) of a users program or data files in the high speed
main memory at any one time. By managing the partitioning of the main
memory and bv swapping appropriate pages to and from low speed, low cost,

179

USER PROGRAM

RUNTIME SUPPORT ROUTINE

V

OPERATING SYSTEM

HARDWARE

Figure 2

RUNTIME SUPPORT ROUTINE

180

high volume secondary disc storage, the user program sees a memory that
appears to have the capacity of a disc with the speed of the main memory.

Virtual Devices ; with multiprogramming systems, the limitations of
communication to and from I/O devices can cause the system to bog down.
This can be circumvented by creating duplicate, virtual devices. A program,
then, will output to a virtual device. After a program is completed,
the data file can be scheduled for output on the physical output device.
Several different programs may be simultaneously performing j/o operations
to the same (virtual) device.

Virtual Machines : the same essential problem exists with process
management as with device management. Ey creating multiple, virtual ver-
sions of the operating system hardware interface, several operating systems
can (seemingly) simultaneously execute privileged system calls at the hard-
ware level. The virtual monitor, or hypervisor, is shown in Figure 3.

The hypervisor operates on an interrupt basis in response to privileged
instructions for the operating system. A file is set up of these instruc-
tions for execution when the hardware is actually available, and control
is returned to each operating system in such a way that it thinks the in-
struction was executed. This can make one computer look like several com-
puters with different operating systems.

The possibility of extending the virtual machine concept to gain hard-
ware independence for Air Force software has been considered and discarded.
The same arguments that were given at the first of this section still
hold true:

1. The basic limits are the hardware features of the machine. Using
only those features that are common to all large machines is inefficient
and too severe a restriction.

2. Adding another layer of interpretation is inefficient.

3. The potential cost of operating systems development is huge and
will be quickly rendered obsolete.

For these reasons, extensions of the virtual machine concept are
not recommended.

FILE MANAGEMENT PROBLEMS

It is in this area that the Air Force can expect to encounter serious
problems unless adequate care is taken in the early design stages. Different
computers have different file management schemes which may cause problems
in an integrated, distributed environment such as that envisionaged by
the Air Force for ICAM.

File management can even be a problem in a single computer environment.
For example, a file written by a FORTRAN program may be unreadable by a
COBOL program because of the formatting and the addition of "invisible"
bits such as file designations and check sums.

These problems can be solved by careful consideration and standardiza-
tion of the file management system calls made by the runtime support routines
for each of the languages to be allowed in the ICAM program. Changes
can be made to these routines, if necessary, at low cost.

Standardization of file formats and naming conventions can and should
be done for the ICAM program as special project standards. This will simplify
the file compatibility problem and will help insure portability. This can
be carried out in conjunction with development of the data base management
system for the program.

181

USER PROGRAM USER
1

PROGF
2

AMS
3

OPERATING
SYSTEM #1
(e.g. DOS)

OPERATING
SYSTEM #2

(e.g. TIME SHARE)

USER OF
"BASE"
VIRTUAL
MACHINE

HYPERVI'SOR

HARDWARE

Figure 3

HYPERVISOR CONCEPT

182

Another problem is in the creation of files when reading . from a

maqnetic tape. For example, the same problem of "invisible" bits . mentioned

above can occur here. As another example, if a 7 bit ASCII code is used

on the tape, a 36 bit machine operating system may pack 5 1/7 characters

into one word. This will produce an unreadable file.

Again, using an example from the field of automatic image pattern
recognition, in loading digitized image data into a 60 bit word computer,
the file management software may pack 7 1/2 8 bit bytes into each word.
Since one 8 bit byte is a discrete information element (pixel), further
processing of the data may be difficult.

System programmers are used to dealing with these problems. Still,
several man-days may be spend in modifying software to read a tape into
a computer. These problems can and should be avoided in the Air Force
ICAM program through the use of proper specifications and standards
for file management.

SUMMARY

In summary, the lack of standardization and quality in available
operating system software is a major contributor to the difficulties and
costs experienced in transporting program systems to different computer
installations. The difficulties may be significant even when the computer
hardware configuration is nearly identical between the source and the target
installations. The costs due to operating system problems may now exceed
the costs resulting from minor discrepancies in the programming language
compilers involved. Thus some consideration of operating system standardi-
zation is essential to the future success of the Air Force CAM projects.
It would not be feasible to seek industry or national standardization of
this software in the near future; the extent of previous efforts to do
so have never progressed past a study stage. It would not be economical
either to consider developing a standard operating system or modifying
an existing one for Air Force purposes.

However, several areas of interaction between user and the operating
system have been identified in the discussion above where attention will
be needed to maximize portability:

1. Runtime support routines between user program and operating system.

2. Operating system control language.

3. File management and data base management system interfaces.

4. Input/output software to read files to and from tapes or other
media for transporting software and data.

RECOMMENDATIONS ON OPERATING SYSTEMS

1. The Air Force should not undertake to develop a new operating system
or modify existing systems for large machines.

2. Standards on programming languages and data base management systems

are the best approach to software portability and integratability . In other

words, the operating system area should be avoided and system functions im-

plemented using the general purpose programming languages, if at all possible.

183

3. Limitation of the number of operating systems for the ICAM system
may ultimately be necessary. In any case, identification and isolation of
all systems dependent code in ICAM software will expedite transitions to
other computer systems.

4. No current operating system command language has such features as
to recommend it over others. However, this is one area in which standardiza-
tion is at least technically feasible and should be considered. Federal
standardization is already underway in a limited way, addressing the user
access protocol to computer networks and services. This effort in FIPS
Task Group 20 could be expanded to consider the full range of command language
functions. The Air Force should request the Associate Director for ADP
Standards, NBS , to determine the feasibility of expanding the scope of work
of TG 20 to address Air Force requirements for its CAM program.

5. A standard operating system could be developed for many of the 16
bit (and 32 bit) minicomputers in use today. For a distributed computer
system based on 16 bit or 32 bit minicomputers, this approach is attractive
and should be examined in detail.

6. File management standards, such as naming conventions for data files
and library software, should be enforced for all ICAM development projects
to maximize portability of CAM software products. Many potential problems
in file management may be avoided through the use of an adequate data base
management system (see next section)

.

V

REFERENCES

(1) Madnick, S.E. and Donovan, J.J., Operating Systems, New York, McGraw
Hill, 1974.

(2) Organick, E.I., The Multics System: An Examination of Its Structure,
Cambridge, MIT Press, 1972.

(3) Organick, E.I., Computer System Organization (The B5700/B670Q Series)

,

New York, Academic Press, 1973.

SUMMARY DATA SHEET

The following page summarizes areas of standardization pertaining to
Computer Operating Systems.

184

1 . Designation : None

2. Title : Composite summary sheet on Operating Systems

3. Maintenance Authority : Various vendors

4. Scope : The functions of a modern operating system can be divided roughly into:

1) job control (job and process scheduling and control), 2) storage management
(allocation of main and secondary memory resources), and 3) file system imple-
mentati on

.

Communication with an operating system is across two interfaces: system calls and

an operating system command language (OSCL). System calls can be thought of as

procedure calls to special operating system procedures. They are used in programs
to request services of the operating system. An operating system command language
is a self-contained but often rudimentary language for direct communication between
a user and the operating system. The command language is used to schedule jobs,
assign files, etc., and to otherwise direct the execution of programs on behalf
of the user. On some of the more well-designed operating systems, the command
language exists as a separable part of the system, and thus can be easily
changed. In fact, some of these systems can support more than one command
language.

5. Relationship to Other Standards : Operating systems require a great deal of inter-
action with hardware interface standards, code standards and language standards.

6. Competitive Standards :

7. Standardization Status : There have been some attempts to develop a standard operating
system command language. These attempts have not succeeded. There appears to be

little vendor support for these efforts.

8. Implementation Status :

9. Known Manufacturing Uses :

10. Known Sources of Information : Various vendors.

11. Probable Sources of Information:

12. Bib! iography :

Code, Inc., Standardized Job Control Language: Introduction to SJCL Concepts,
1971 October 22, (NTIS AD 742 542).

13. Comments : No standard summary sheets are included in this section because there
are no standards in this area. Each vendor of operating systems has a unique
approach to the implementation of the user-system interface. No operating system
in widespread use can be said to possess sufficient redeeming qualities in its

user-system interface that acceptance of it as even an ad hoc standard can be

advocated. In fact, very few vendors use the same user-system interface from one
generation to another.

185

'

L :
- H m ''"'J^on

.

v

STANDARDS FOR COMPUTER SYSTEMS

DATA BASE MANAGEMENT SYSTEMS

INTRODUCTION

TYPES OF DATA BASE MANAGEMENT SYSTEMS

CODASYL
Self Contained Packages
Host Language Approach
Relational Concept

CENTRALIZED VS DISTRIBUTED DATA BASES

Areas of Consideration

DEVELOPMENT OF A DBMS VS A COMMERCIAL DBMS

ASSESSMENT OF SYSTEMS AND SOME POPULAR COMMERCIAL PACKAGES

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

See Appendix E on Data Base Management File Structures

187

INTRODUCTION

A data base management system (DBMS) is a generalized tool for manipulat-
ing large data bases. It provides a flexible facility for accommodating
different data files and operations while demanding less programming effort
than use of conventional programming languages. DBMS possess the following
general properties:

* Software which facilitates such operations as data definition,
data storage, data maintenance, data retrieval, and output.

* Software which facilitates reference to data by name and not by
physical location.

* Software which is general, rather than specific to a particular set
of application programs or files.

Since the early 1950's, when generalized file handling routines were
first developed, the technology of DBMS has matured considerably. Within
the last ten years, a great number of DBMS packages have appeared on the
market. No precise count of operational DBMS exists, but it is estimated
that at least 200 are now available.

The use of DBMS to control large data bases and provide information
to multiple users has already gained acceptance in the data processing world.
A recent survey (1) of DBMS usage, just on IBM 360/370 computers in the United
States, reported 3,900 DBMS installations as of 1976.

The off-the-shelf DBMS packages do not provide the same set of functions,
and the implementation of functions differs widely in depth and strength
of effectiveness (2). There are as yet no standards in the area of DBMS
as a total package. Many groups are concerned about standardization and
are actively working in this area. The CODASYL Data Base Task Group (DBTG)
report (3) has been published by the Programming Language Committee of
CODASYL as a part of the 1976 COBOL Journal of Development (4). This report
represents a specification of a data base management system; future national
and international standards will certainly be influenced by this report.
The ANSI/X3/SPARC Data Base Study Group has been meeting since 1972; see
Interim Report (5)

.

Part of their charge is to develop a basis for DBMS
standardization

.

In planning the use of data base software for CAM, the Air Force should
recognize the severe difficulties that stem from the lack of standard systems,
the technical complexity of data base packages and the consequent problems
of training and applications analysis, and the rather high costs in storage
and processing time that may be unacceptable in some applications. Although
available data base packages may be categorized by a similarity of concept,
such as the CODASYL or network approach, none of the available packages are
even close to being identical in their commands, language, and functions.
No de facto standard data base systems exist or are likely to develop in the
next three years. The transferability of data base packages between different
computers, particularly between minicomputers and large machines, is very
limited. Fundamental differences may be presented in the same package because
of machine dependent factors, such as the available mass storage.

188

TYPES OF DATA BASE MANAGEMENT SYSTEMS

Although there are many DBMS packages in the market with different func-
tions and strategies, for the purpose of this study, the total DBMS technology
can be described as four broadly different approaches:

1. CODASYL Data Base Task Group Specification
2. Self-Contained Approach
3. Host Language Approach
4. Relational Approach

Inherent in this classification is the data organization which the data
base management system supports. The three favored data model approaches
are: network, hierarchical, and relational. (See Figures 1, 2 and 3).
The CODASYL DBTG supports a network structure. Most of the self-contained
type systems support a hierarchical structure. The non-CODASYL host languages
are distinguished from the CODASYL host language types becuase of the two
popular packages; IMS which is hierarchical, and TOTAL which supports networks.
The relational approach models the relational data organization which has a
tabular orientation. The characteristics of the four approaches are dis-
cussed below.

Figure 1

HIERARCHICAL DATA STRUCTURE ILLUSTRATION SHOWING
SIMPLE SUPERIOR/SUBORDINATE ASSOCIATIONS

189

Figure 2

NETWORK DATA STRUCTURE ILLUSTRATION SHOWING
ARBITRARY ASSOCIATIONS OF DATA ELEMENTS

190

I

A Relation a Particular Tabular Association

Figure 3

RELATIONAL SYSTEMS REPRESENT COMPLEX DATA
ASSOCIATIONS IN SIMPLE TABLES

191

CODASYL Data Base Task Group Specification

The CODASYL Data Base Task Group (DBTG) specification as published in
1971 consists of two parts: (1) syntax and semantics of a data description
language (DDL) for describing the structured data base, (2) the definition
of data manipulation language (DML) statements to augment COBOL (for retrieving
and updating data in the data base)

.

Three important characteristics of the CODASYL DBTG specification (see
Fig. 4) are as follows:

* The data relationships are explicitly defined in the data base.
Records that are logically related are tied together £>y eitner
pointers or by indexes. The relationships are defined when the data
base (schema) is defined. The advantage of this architecture is
that the relationships can be carefully worked out by the people
who understand the data. The disadvantage is that it can be a
nontrivial task to change the relationships.

* The Data Definition Language (DDL) is separated into two parts:
(1) the Schema DDL is totally language- independent and used to
describe the data relationships as mentioned above, and (2) the
Sub-Schema DDL which is fashioned around the language of the user's
program and restructures the data base for the particular requirements
of the program. Thus, this separation permits multiple-language
interface, data independence, a smaller view of the data to a program,
and protection for the remainder of the data base not used in a
given application.

* The Data Manipulation Language (DML) has been designed to help the applica-
tion programmer "navigate" within the data base. Any given record
in the data base can be related to a number of other records, and it
might be accessed by any of several paths. The application programmer
must know where his program is operating, and how it should retrace its
steps when a search proves unfruitful.

The CODASYL DBTG approach adopts the network data model. A network
is a more general structure than a hierarchical structure because a given
node may have any number of immediate superiors as well as any number of
immediate subordinates. Therefore, this approach provides the most powerful
means of handling complex data structures, but querying and reporting may
prove to be a complex matter.

Self-Contained Packages
i

The majority of the commerically available data base software packages
are of the self-contained type. Typically, these systems possess three major
processing capabilities: data creation, data update, and data retrieval
and report formatting. A self-contained user language is provided to accom-
plish all three processing tasks. These systems are aimed at handling a

certain set of data base functions in such a way that conventional procedural
programming is not required. The capability to specify in detail the search
method and data retrieval the programmer wishes is replaced by preprogrammed
or built in processing algorithms so that the amount of writing required by
the user is minimized. The self-contained systems are optimized on their
interrogation and update functions. As a result they represent the most advanced
DBMS in the area of user language capabilities.

The very reason for the success of the self-contained DBMS, ie. their
high level, non-procedural interrogation language, becomes a large disadvantage
in those cases where the user wishes to exercise control over the sequence
of detailed steps the system uses to process his requirements. Some systems
also provide external programming interfaces where the user can enter his own

192

DATA

BASE

ADMINISTRATOR

-P

G
CD

G
(D

m
ip

H
T3

m
o

CD

U)

G

CD CD

Cfi ,G
fd 4-)

X!
£

fO o
4-1 I—

I

td i—

i

fd

T3 w
G CD

fd Cp
(d

w g
CD CP
Cn G
td td

G 1 l

CP
G
fd CD

i—I G
•H

i—i td

fd 4-J

T3 O
CD I

O M-4

O H
G CD

a W

CD

G
G
CP
*H

193

routines written either in FORTRAN, COBOL, PL/I or assembly language to
perform processing not inherently supported by the system. However, this
does not yield the same capabilities as a host-language DBMS with its appro-
priate data manipulation language (DML) . The majority of the self-contained
data base management packages model the hierarchical data structure with
repeatinq groups. Typically, the system employs the inverted indexed technique
to facilitate quick retrieval.

Characteristics of these systems are that they are:

* End-user oriented. The user-language is easy, natural and English-
like. Very little application programming is necessary.
However , the user is paying for an added layer of software with
less efficiency and flexibility,

* Easy to install. After the data base has been created it is

relatively easy to change the structure. The data base can be
built an application at a time, without requiring that the whole
data base be defined at the outset. These capabilities are largely
a result of the implementation of an inverted or partially inverted
file system for storing the data. However, the (partially) in-
verted file structure results in difficulty in handling of queries
that specify records located in different branches and/or at dif-
ferent levels of a hierarchy, and in addition, results in consider-
able storage space required for the indicies.

* Easier to formulate unanticipated ad-hoc queries. Self-contained
systems permit the user to ask the question directly, and he has
no need to call on a programmer as an intermediary. For those
applications that self-contained systems can handle, they offer
considerably reduced set-up time and a vast reduction in the time
required to prepare a new interrogation or update to the data
base. However, the end-user must be aware of the data structure
supported by the system; if the needed data elements are not
keyed or inverted, the system either searches sequentially or refuses
to respond. Another caution on a hierarchical tree structure,
if the data elements requested in the queries are not of the
same hierarchy, no "hits," or even erroneous ones, will be made.

Host Language Approach

Although the CODASYL DBTG specification is a host language type, we
have treated it as a separate entity because of two distinctly different
packages that are already widely used; IMS by IBM, and TOTAL by Cincom
(See Table 1) . The host language approach is characterized by the following
features

:

* The system is designed as a tool for the experienced programmer.

* System functions are invoked from within host programming languages
(e.g., COBOL, FORTRAN, PL/I, assembly language).

* The supported data structures generally permit more user control,
even down to the physical storage level, than those found in self-
contained data management systems.

Host language DBMS generally lack high level language constructs
for conditional data, updates and retrievals, as are found in the self-
contained type. Typically, this is because the emphasis has been placed
on defining logical relationships among records or group of records in large
interrelated data bases, rather than on generalized functions. However,
these systems do interface to separate Report Program Generators (RPG)/
Query packages (this provides some aspect of the interrogation capabilities

194

inherent in the self-contained systems) while providing the flexibility
to the user of specifying the details of how his request is to be processed
through the use of the procedural-DML

.

Host language type systems can be thought of as extensions to the pro-
gramming languages. The method chosen to interface the host language data
management system with the programming language is usually through the
facilities of the CALL statement in the programming language.

Host language type systems provide powerful data management functions
for manipulating data, programmable through the flexibility of a programming
language and considerable user control over the physical storage structure.

Relational Concept

With commercially available DBMS, the variety of data representation
characteristics which can be changed without logically impairing some
application programs is still quite limited. Some people feel that the present
data base management systems require entirely too much knowledge on the
part of the user on how the data base is structured and how the data should
be accessed (for the case of host language systems) or are too limited
by preprogrammed algorithms (for the use of self-contained systems).
Instead, the user, be he an application programmer, manager, engineer,
or other - should simply have to specify what data is desired, not how
it is to be retrieved. The main problem with present systems is that the
data relationships are structured, which favors some types of access at

the expense of others, i.e. the application programs are not independent of
the data base. (See Appendix for a discussion of some of the characteristics
of various file structure techniques.)

Three of the principal kinds of data dependence are:

1) Ordering dependence - e.g. records of a file concerning parts
might be sorted in ascending order by part serial number - these
systems fail if this ordering is replaced by a different one
(e.g. if a search is desired by part material - aluminum, brass,
steel etc.) The same is true for a stored ordering implemented
by means of pointers.

2) Indexing dependence - from an informational standpoint, indices
are redundant components of the data representation, requiring
large additional storage capacity from the data structure.

3) Access path dependence - many of the existing formatted data systems
provide users with tree-structured files or slightly more general
network models of the data. Application programs developed to
work with these systems tend to be logically impaired if the
trees or networks are changed in structure. Or, if a query is
made for data in other than the structured form in the data base,
then a time consuming, total and complete search of the data base
may be required. In general, the user (or his program) is required
to exploit a collection of user access paths to the data.

The relational data base is proposed as a possible solution to these
problems. This concept is relatively new (Codd 1970) (6). The approach
is based on the premise that users of data base management systems are
becoming increasingly concerned with the information content of their data,
as opposed to specific representation details. That is, there is a trend
toward data base user interfaces that deal with information in application
terms rather than with the bits, pointers, and lists that are used to
represent information on computer mass-storage devices.

The relational approach to data base management can be characterized
as follows:

195

* Simplicity of user interface. The relational user is presented
with a single, consistent data structure ancf requests can be form-
ulated strictly in terms of information content, without reference
to most system-oriented complexities.

* Data independence. The user is relieved of concerns forknowing
specific information storage and access strategy.

* Flexible response to ad-hoc queries. Since all information is
represented by data values in relations, there is no preferred
format for a question.

The most serious question regarding the relational approach is whether
it can be implemented to form an efficient and operationally viable DBMS.
Many prototype systems exist but no commerical systems exist that are truly
relational. These systems are summarized in Table 1.

CENTRALIZED VS. DISTRIBUTED DATA BASES

There is no clear-cut best answer regarding which approach to use.
Each approach has its advantages and shortcomings. But the answer seems
to depend upon the particular needs and application environment. Data
base management packages also need to be selected in the context of some
architectural configuration. Two opposite data base architectures can be
identified: the centralized data base approach and the distributed data
base approach.

Centralized data base - A central data base is usually maintained
using a large-scale third generation type mainframe. Data may be generated
centrally or bulk entered from several remote data entry stations. The
centralized approach allows centralized control of the data bases, which
is necessary for efficient data administration. The data base management
system for the central computer would need to have full facilities for
storage and maintenance of data. In particular, some of the mandatory
features should be powerful control functions for data validation, update
control, centralized data dictionary capabilities to manaqe the centralized
data base. Retrieval and output reports can be optionally weighed against
very end-user oriented query language facility versus transaction invocation
via predefined process written in a programming language such as COBOL.
The data base management system for the centralized architectural approach
can be all of the above four types: CODASYL DBTG-like, non-CODASYL self-
contained, non-CODASYL host language, or the relational approach.

Distributed data base approach - The development of computer networks
has led to the prospect of distributed data bases. Distributed data bases
also include distributed processing which generally consists of remote
stations distributed throughout remote locations. The remote stations
evolved from intelligent terminals to, at present, minicomputers installed
with their own secondary storage. Distributed data bases can have numerous
configurations. One scenario might be identified as follows: The distrib-
uted information system might be a multi-level hierarchy of processors,
generally matching, at each level, the organizational structure and com-
plexity of the manufacturing system. The network could be comoosed of a number
of mini-computers so that processing logic and storage (distributed data
bases) would be placed at or near the points where transactions occur.
A common design would be used for the numerous data bases and for the data
base management systems, so that the total data base could be distributed
throughout the system. However, due to the data base being stored under
a common data base structure, using common data definitions, any portion
of the total data base would be accessible from any node in the network.

This modular design allows modules to be added and others deleted
to meet the needs of a particular situation. This would give the network

196

0 0
0 CP
TJ 3
3 p •H 0
P \ « 3
U p 3 0
3 2 - 0 -H
•P 0 H 0

-X PH
3, 2 U 0 0
2 O 0 0 <C 0 P >
O on 0 P 2 S 3 G
U o P 0 Eh P 0 U p

r- - >iP 2 0 0 P
go w s mom P P o 2 -H 0 0

s \ [" 3 p PUP CJ S
dS < - o \ 2 P - O \ P a o Eh

>H 2 3 VO U H 0 U £ P u H
CO M 0 ro < rH urn « p 3 0 0 -

«

2 O
< 2 -P > co o H u TJ P CO w 2 o
Q 2 0 Shu 1 m CQ 0 0 3 P U Eh iD
o D 0 CQ 2 Q o p o P -H 0 3 h 2 D
u cj m H D 2 in u U 2 2 2i U H U A

O'
O rH 3
O P •H
o T3
co u 3
o W rp p 0 W

u co a u \ 3 >
P 2 3 p 0 3 - Wmu •H 2 •H 0 > H

0 a < 0 * -H H - 2
•H S ‘U Eh P H P P P Eh Eh

co p cq o 2 < O 2 0 H 0 \ 2 H >H

0 s o HO Q 3 < > 0 P 2 2 2 CO
Cn w o - a 2 C S 3 O <; 2 <
0 ^ - - ON O 2) Eh •H P O 2 2 SUM
3 CO -H O rp Eh 0 2 0 P H w D
tJ' >H -P r" -o 2 0 — O 0 2 0 > § H - U -

1—

*

3 CO 0 m O 04 H P 0 2, P U 2 S co CO O
0 3 \ r- \ >1 p •H -\ w O <q W - Eh

S 3 o o - p 0 p 0 g U S Eh Eh U
i O -H p P 3 0 - 2 \ CO <C O
p U U 2 P o P -H 0 CO w 2 2 1 2
0 2 3 > H 3 CQ P 0 3 U Eh CO U H Eh r-
0 M -H S h 2 2 m p O 3 P 0 H 2 <c O co X
2 U U CQ 2 O <H D SC >

u U U 2 U H Eh co C w A

0
0
0P O

0 O
U 0
•H
P P Tl
O O 0

0 H 0 P
tr> 0 H P

GO
0 w H P 0 2
3 0 \ 00 g - W> tn P p rH - S Eh

GO
3 >i 2 P U S CO

0 o P a o Eh >
SI i

-
1 r-~ 1 u S H H Eh

I m 2 p - 2 \ 2 CO o
P o CO W 2 2 2 1 o
0 S S O CQ ^ a co U Eh CO 2 2 h in

o CQ CQ in O Cl CO H M H 2 < D »cC CO

2 H H p CJ 2 2 2 2 U H Eh use

El\ p <i Q
P 0 CO H
2 •H M P

0 o P ^ u
I> 2 2 3 P 0 CO

T3 3 S P 2 00 U ^ U
0 •H 0 P P 3 0 0 P H

GO 3 0 0 2 CTP U 0 u
U P O -P 0 0 0 P -H 2 2

r- p 0 0 0 2 CO 0 Q - W 2-2
-P > CO 0 P P 3 O s S H W Eh >
3 0 \ co >i >i CJ> P T3 T5 T3 S co Eh 2 2
o P - o P P 3 0 0 0 0 o a, PHI— o
u 0 3 CD u 0 - P 0 P P u s! 2 2 2 in

1 5 0 CO < 2 2 P P U 0 U U 2 \ £ U E-

Ul -P 4-> > o 0 O 0 0 W 2 CO >- f'

Ul 0 S H o o 3 CQ > O > > Eh CO < < 2
0 0 0 CQ 2 cnj in 5 o 3 < 3 3 2 < d a e
CO CO 2 H D i—i i—

i

o u H H H H gH < < 2

'
o
Ip
p

p\ \ 0
CO p 0 tJ>

o 2 CT> 0
0 2

1—

1

0 P U\ 0 2 O 0
0 0 O CO P 0 a
3 0 r- o >i 0 2 i—

1

a
0 x CO P P Cn Eh 0 " o o

CNJ g 0 \p 0 Oi O P 2 2 o
-P 0 E-i o 2 3 O •H 0 Eh 2 >i p

SI 3 P CO | o CP P P P T) U
UJ 0 W - p o o 3 O P 0 3 3 0 A
1

—

O >. 3 U o P 0 - H 3 P £ ^ 3
GO CO -H l C vo CN P P 0 0 U 0 O D1

>- P > 1 O H 3 0
GO H 0 Shu P 3 CQ 0 cr> 0 0

0 2 3 P2P P £ O •H 0 3 0 0 3
CO S e H D U o u 2 CO H 2 2 0

c/;

CD

1

—

<r
_4

SI
LU ZD

GD
03
CD

1

<c
1

—

GO
LU

LU
03

GO
LU

LU
03 Q
ZD CD GO

1

—

03

1

—

GO
zz

GO
>-
GO

>- 1— DZ GO LU 1
—1

GD 1

—

LU GO go

LU d: GO CD
P~

GD ZD LU
03 SI

GD LUO GD
LU LU
CD —

«

LUO
<=£ SI
PQ UJ

LUO 03
LU LU

SI
<=C

1 GO GO
GO

LU LU
1 CD GD

03 <C
CU LU

1

—

1

—

03
LU

GO
«rtl «^C LU a o_ == 03 LU LU—J

1—
CD 03*—
Q_LUC—

)

eg

1

—

>-
1

— u"l GO LU ^ LUZD<C ZD

33 SI > CD SI 3D LU h- — Q3C3LU

LU
GO
<C
CQ

h—
<c
CD

197

Q
S

I

O

CODASYL

Xerox

Information

Systems

Group

El

Segundo,

CA

XDS

SIGMA

6,

7,

9,

560

12-18

K

words

(32

bits)

COBOL,

FORTRAN

Direct,

Random/Cal-

culation

Indexed,

Chains,

Network

1

1

1

1

1

1

1

1

>

50

CODASYL

Honeywell

Information

Sys

Phoenix,

Arizona

H

9GS)

200,

400,

600

H-

6000

,

Large

Series

60's

2
K

words

Monitor

10

K

words/Partition

COBOL,

FORTRAN

Random/direct

,

Hierarchy

,

Networks

1

1

1

1

MDQS

Report

Generator

(on-line

request

only)

>

170

(including

IDS-I

which

is

not

CODASYL)

CODASYL

UNIVAC

RoseviJ-le,

Minnesota

UNIVAC

1106,

1108,

1110

16-65

K

words

(36

bit)

COBOL,

FORTRAN

ISAM,

Direct Random/Calculation

Inverted

Tables,

Pointer

array

Transaction

Interface

Package

1

1

1

1

>

40

u
c <u

(H o
•H
>

CO P T5
d> G >H

in in fd id

o
u 0) 1 i i—1 -H i 1

fd P 1 i fd x: i 1

G fd 1 l G U i 1

0 fd -C 1 i 0 P i 1

•H c U) •h td

-P 0 p p
fd •H V fd d)

i—

i

-P £ i—1 "H in

<D id •H d) a:
0$ 2 Eh « A

fd

•H
C
Ll

0 X
Ll H
-H C
i—

1

D
fd

u x:
-p

4-1 •H
0 >i

d)
1—

1

i—

1

1 i i i 1

fd -P <u r—

1

1 fd i 1

c •H ^ 1 c i 1

0 W P 1 0 i 1

•H Ll 0) Q •H
P (U CQ CL -P

fd > fd

i—

I

•H -P U >H kO

d) c fd w D 0)

z> Q CL

CO

o
1

—

<c
1

ZD cd
CD CD CD
LU CO LU 1

—

LU or LU QL GD CO
1

—

CD ZD CD CO cd
GO >-

I— zn CO LU
>- or =D CD 1

—

LU CO ^ CO
CO CO o CD ZD LU CD LU LU LU LL

cd Qz s: CD CD CD —

h

O
LL_ LU LU Cd <C
CD Cd _J CO CO Q_ LL Cd

CD ZD CO cd Cd 1 LU
LU Q Q_ or LU LU LU LU CD *—

«

CQ
Q_ S= LU —1 CD CD —1 1

—

CL CD s:>- L-U CD CO LU ^ LU
1— > CD SI 13 ll <r <T h- —

•

Cd LL

_

TABLE

1
-

DATA

BASE

MANAGEMENT

SYSTEMS

the ability to withstand severe damage to some of the processors (or some
of the storage units) with the remainder being able to continue operation.
(Due to the centralization of the data that has occurred as a result of
the installation of DBMS some plants have experienced severe problems in
the total shut down of the operations when something goes wrong with the
system. The solutions organizations are arriving at turn out to be ap-
proximations to the network philosophy - some companies have logically
and physically subdividided the data base to cause it to reside on dif-
ferent storage units - others have installed additional minicomputers
to allow for continued data-taking if the main system goes down . The
distributed communications in a network structure would provide at least
two independent paths between any two modes , so as to provide automatic
alternate routing for messages. Two kinds of data base management software
can be considered in this scenerio

:

1) There are data base management systems specifically built for
the minicomputer. For example, Hewlett-Packard has developed
a package called IMAGE, and Data General has a data base manage-
ment system (INFOS) for its Eclipse series. Varian and Harris
have signed contracts with Cincom to offer TOTAL. Cullinane
offers IDMS which is precompiled on an IBM 360 and the object
module run on DEC'S PDP 11/45. Other prototype systems which are
not yet commerically available are operational for DEC'S PDP-11.

2) Another approach is relatively new. It is the concept of a Data
Computer. It consists of hardware solely used for the accessing
of data. A prototype is being built by Computer Corporation of
America for the ARPA network. A similar concept is the "back-end"
computer concept where the data base is maintained as the "back-
end" computer, usually a minicomputer, and interfaced to a host
computer, usually a large-scale third-generation type where user
request language is translated.

Many advantages would accrue from a geographically dispersed approach
to data base management, including:

* Better provisions for protection than with centralized systems.

* Flexibility and localized control of data processing activities.

* Data validation at local sites, resulting in cleaner data input
to the central computer data base.

* Flexibility and potential of a distributed architecture.

The distributed data base concept is not without problems. For example,
does the user have to know the data location, does the request language
need to be different to access different distributed data bases, etc.
Most importantly, there is no fully operational distributed data base system
as yet.

Areas of Consideration

1) There are no standards in data base management as a total package.
The CODASYL DBTG report lends itself to be a potential candidate
for standardization, but many feel that the CODASYL DBTG approach
is not universally accepted and should not be standardized.
This is a result of the general feeling that data base management
systems are very much an evolving technology where many develop-
ments are yet to come. It is felt that the standardization of the
CODASYL data base task group (DBTG) report would provide sufficient
inertia to the system so as to impede the development of new and
perhaps better data base management systems. In addition, the

199

specifications of the DBTG report are felt to be too incomplete.
The proposed data manipulation language (DML) is felt to be too
procedurally oriented (therefore, not easily used by the non-
programmer) and to have shortcomings with respect to data indepen-
dence, data integrity, and compatibility (Guide-Share report).
The CODASYL specifications make no provision for handling existing
sequential and index sequential file structures. Nor do they
define a device media control language (DMCL) which is the storage
structure language used to describe the mapping of the data onto
physical storage media. And while the specification of a totally
language-independent data definition language (DDL) would theoret-
ically allow access to the data base by either a host-language
request or a self-contained-like query, only the host-language
data manipulation language (DML) has been specified. CODASYL
has not yet developed the specifications for query and reporting
languages. As mentioned earlier, the application programmer must
know how to "navigate" in a complex data base environment. Query
and reporting languages will have to do such "navigating" automat-
ically, and as a result could be quite complex in their development.
However, this difficulty exists for any type of complex data base
structure (i.e. a network or graph structure), and is not limited
to CODASYL-like systems. Some report program generators (RPG)/
Query packages are available and interface to the commerical CODASYL
systems. These are not as powerful, as yet, as the self-contained
system query capabilities. In addition, CODASYL does not specify
the recovery techniques to be used after a system goes down, nor
the method to be used for restructuring and/or reorganizing the
data base. All of these features are left up to individual vendor
and/or user to supply.

2) The possibility exists that there will be standards in each of
the different DBMS approaches. The rationale is that since
there are different programming languages for different applications,
e.g. COBOL, FORTRAN, PL/I, BASIC, it is conceivable that there
may be different data base management systems under consideration
for different applications.

3) The contemporary large-scale data base management systems are
built with separable functional modules. For example, a data base
management system may consist of a nucleus plus the following kind
of functional modules:

* the data definition language for specifying the logical structure,

* the data dictionary/directories for ease of managing data
description

,

* the teleprocessing message handling for on-line interactions,

* the user language processor for user interface to manipulate
the data,

* the protocols for invoking procedures on the data base system,

* the data access methods for physical storage accesses,

* the report writer for formatting fancy reports.

Each of these areas may potentially be considered for standardiza-
tion. Already, the commercial world has been marketing data base
management software in optionally upgradable and pluggable modules.
Adjunct packages such as report writer, query languages, telepro-
cessing front-end, data dictionary and various utilities such as

200

bulk load, sort, etc. have started to appear in the marketplace.
These adjunct packages usually operate in conjunction with a specific
data base management system. Although the interfaces of these
packages are not as yet flexible, standardizing the interfaces
of a data base system leads to the concept of interchangeable
parts

.

DEVELOPMENT OF A DBMS VS A COMMERCIAL DBMS

The development of a data base management system is considered too
involved, too expensive, and too risky to attempt. Years of problems
of cost overruns, unattained goals, and expensive maintenance have plagued
new development efforts. There are, at present, a number of commerical
data base management systems available, that, while they fall short of meet-
ing the requirements of an idealized DBMS, effectively provide for the record-
ing, retrieving, and updating of large, complex stores of data. It is
recommended that the Air Force choose one of these commercial systems
with the expectation of updating or even converting to an entirely new
system in several years as major advances in DBMS occur. To wait for these
advances, or to attempt to develop new systems (which would entail a great
expenditure of resources in a not-well-unders tood field to obtain questionable
improvements) would cause a major setback to the overall project. Experience
and a clearer understanding of the problem of what is really needed from
a DBMS in an Integrated Computer Aided Manufacturing system can be better
obtained from using an existing commercial DBMS in a working system rather
than attempting to develop a DBMS for a non-working system.

At present, there are no working commerical packages of the relational
DBMS type. This area is considered too experimental to be implemented in
the Air Force project. Much more research and development is required to
see if these relational systems can provide the theoretical advances they
promise

.

There are a number of commerical systems (both host-language and self-
contained) available and the choice of a system should include such considera-
tions as

flexibility - in terms of use on a number of different computers in
a distributed system all addressing the distributed
data base.

portability - in terms of being able to move a DBMS or a data base or
portions of a data base from an existing hardware/software
complex to another.

adaptability - in terms of the ability to change data definitions
easily (i.e., to add, delete, lengthen, shorten, or
change the relative location of fields within records,
records within sets or files, or relationship indicators
(pointers or indices)) , to do all of this without having
to make changes in application programs and without having
to dump and reload the whole data base.

ASSESSMENT OF SYSTEMS AND SOME POPULAR COMMERCIAL PACKAGES

Self-contained systems - System 2000 marketed by the MRI systems
corporation and ADABAS , distributed by Software AG, are among the most
popular self-contained DBMS. As mentioned previously, these self-contained
systems originated with their own internal language with no connection
to any of the procedure-oriented languages (such as COBOL or FORTRAN)

.

However, most self-contained systems now provide interfaces to allow use
of COBOL, FORTRAN, and PL/1 in formulating data requests, but the use of
these procedural languages does not result in the same capabilities or

201

efficiencies as obtained with host-language DML . Eten though these self-
contained systems are very good in query and reporting capabilities, they
are not recommended for the Air Force project because, due to the limitations
of a hierarchical file structure. System 2000 does not handle complex data
structures (networks), ADABAS , however does have a network file structure
that is like the CODASYL approach; the limited capabilities of the built-in
processing algorithms which are only partially corrected for by providing
interfaces to procedural language programs; and, their rather large size
somewhat restricts their use in a distributed system.

Host-Language Systems - The host- language systems such as IBM's In-
formation Management System (IMS) and CINCOM's TOTAL are embedded in a
host language (COBOL, PL/1, or FORTRAN (TOTAL only)) and therefore are built
upon the facilities of a procedural language. -

IMS is a hierarchical based file structure which means network -type
relationships are difficult to handle, but IMS does allow network-like
structures. This probably results in a considerable overhead in additional
pointers and indices and is probably partially responsible for IMS requiring
the largest amount of main memory (450K bytes) of any of the DBMS. IMS
does not have a FORTRAN host-language capability.

IBM will provide the hardware, operating system, data base management
system, data communications package, and query and reporting facilities.
Further, IBM makes frequent improvement? to these, and gives them good
support. IBM is not currently implementing the CODASYL DBTG specifications
and has no plans to do so.

User comments on IMS include good recovery, flexibility in data orgniza-
tion and administration, versatile file structures, and that changes to data
relationships can be achieved via rule redefinition without requiring major
program modification or data reentry. However, IMS is also reported to be
a very complex product requiring much application software support, and
it has large core requirements. IMS is not recommended for this project
because it is specific to IBM equipment and produces a sole source condition
incompatible with the objectives of a portable system. In addition, the DBMS
is so large that it does not fit in with the concept of a distributed system,
which has been given as a potential Air Force objective.

TOTAL is the most successful data base management system in terms
of number of installations (>750). It, like the CODASYL DBTG specifica-
tions, was derived from Integrated Data Store (IDS) , the grandfather of the
data base management systems. TOTAL does not, however, conform to the
CODASYL DBTG specifications but conceivably could be converted (TOTAL
is similar to the CODASYL specifications in the way data is structured
and the way the data relationships are expressed)

.

TOTAL does allow file inversions, chains, and networks so that complex
data structures can be easily represented and quickly retrieved. Users
report that the system requires small amounts of core (^ 35K bytes) and is

inexpensive and easy to install. It was developed with small users (DOS

environment) in mind. But while it is simple to use, the system is some-
what awkward for large multi-file use since when one file is being accessed,
all other files are locked out. Hence, simultaneous processing of several
data files is impossible. Also the system's performance degrades with the

addition of new variable data records over a period of time.

The major drawbacks seen with TOTAL at present are its inability to

efficiently handle multi-file access. However, an interactive query package
has recently been added, and future developments could easily make TOTAL
a reasonable alternative to a CODASYL based system.

202

CODASYL Systems - The data base management systems built along the guide-
lines of the CODASYL specifications are considered to be the most promising,
at present, for implementation by the Air Force. The CODASYL specifications
represent the most comprehenisve effort to form a "common" (not standard)
and machine independent approach in the development of a DBMS. No real
standards are expected in this field for at least five to ten years due
to the present lack of knowledge and understanding about how a data base
should really be structured and accessed and what all the requirements
are for the "best" data base management system.

The CODASYL specifications have gone the farthest in providing the
basis for a common, modular architecture for DBMS. This approach of care-
fully partitioning the system to develop a modular architecture has two
very important advantages

:

1) by partitioning the system, interfaces can be carefully defined
and eventually standardized,

2) a common architecture for data base management systems should
facilitate the development of distributed systems with distributed
data bases.

Data base management systems, in general, were originally designed
either as a host-language system or a self-contained system according to
expected applications and many that were developed were specially tailored
for the unique applications of that individual company, that is, there
are many unique DBMS solutions. Now, the trend of the successful system is
to modularity: the self-contained systems have interfaces to procedural
languages; the host-language systems have interfaces to report generation/
query systems; both types of DBMS have provided interfaces to teleprocessing
packages, and data dictionary/directories. Thus, all of the DBMS appear
to be moving in the direction that the CODASYL specifications had originally
outlined. The CODASYL specifications specifically and comprehensively
attack this problem of modular partitioning and definition, rather than
backing into it as the other commercial systems appear to be doing. Whereas
all of the systems seem to be coming to the same end, CODASYL, alone has
attempted to charter the path and define the architecture. Thus, the
CODASYL sepcifications are most in line with the philosophy of correctly
defining the logical modules and then standardizing on the interfaces
connecting them. The CODASYL specifications provide the type of common
architecture necessary for the distributed computer network. But although
a number of CODASYL-type systems are available, they are by no means identical.
The specifications themselves are in a state of change by the Data
Description Language Committee. Additionally, it appears that TOTAL is
widely implemented and is a reasonable alternative to the CODASYL approach.
Hence, a competetive procurement should be used to select a single DBMS
to suit ICAM requirements for the near future.

203

RECOMMENDATIONS

1. A common data base management system will be critical to the integration
of ICAM software. In particular the DBMS provides the interface be-
tween all applications programs.

2. The Air Force should not attempt the development of any new general
purpose data base management system due to the expenditure of re-
sources required without any guarantee of success.

3. Functional specifications should be prepared for the competetive pro-
curement of a commercially available data base software package to
support all near-term ICAM projects. The specification should require
the package to be available on all hardware systems that would be
considered for CAM applications in the first few years of the program.
Emphasis should be placed on obtaining modular architecture, well
defined interfaces, portability of applications programs, integrata-
bility of ICAM modules, and future adaptability to a computer network
system with distributed data bases. The evaluation for selection
should include a benchmark demonstration of performance on a typical
CAM application.

4. The Air Force should initiate participation in NBS FIPS Task Group 24,
which has begun to consider government-wide needs for data base
standards, and in ANSI efforts, such as the ANSI/X3/SPARC Study Group,
that is identifying the need for ANSI standards.

5. The Air Force should monitor the continuing research and development
work with relational data base management systems.

REFERENCES

(1) International Data Corp. , "The Data Base Management Software Market
on IBM 360/370 Systems," International Data Corp. #1685, 214 Third
Avenue, Waltham, Mass., 02154, May 1976.

(2) Fong, E., Collica, J. , and Marron, B. Six Data Base Management Systems:
Feature Analysis and User Experience. NBS Technical Note 887, Nov., 1975.

(3) CODASYL Programming Language Committee, Data Base Task Group Report,
Available from ACM, April 1971.

(4) CODASYL Programming Language Committee, COBOL Journal of Development,
1976.

(5) ANSI X3/SPARC/Study Group - Data Base Systems, "Interim Report"
ACM/SIGMOD Newsletter: fdt. 7,2 (Dec. 1975).

(6) Codd, E. F. "A Relational Model of Data for Large Shared Data Banks",
Comm. ACM 13,6 (June 1976) pp. 377-397.

Berg, J. L. , ed . Data Base Directions, NBS Special Publication 451,
Sept . , 1976

.

Sibley, E. H. , The CODASYL Data Base Approach: A COBOL Example of
Design of Use of a Personnel File. NBSIR 74-500, Feb., 1974.

(7) "Data Base Management System Requirements, Nov. 11, 1970," by the
Joint Guide-Share Data Base Requirements Group. Order from Share
Secretary, Suite 750, 25 Broadway, New York, NY 10004, price $1.50.

204

(8) "The Debate on Data Base Management" by Richard G. Canning. EDP
Analyzer , March 1972, Vista California 92083.

(9) "The Current Status of Data Management" by Richard G. Canning. EDP
Analyzer , February 1974, Vista California 92083.

(10) "Introduction to Feature Analysis of Generalized DBMS," Communications
of the ACM , May 1971 p. 302-318.

(11) "Concepts of Data Base Management" Honeywell's manual for their IDS
Technical Presentation.

(12) "Data Base Design" The Manual for AMR International, Inc.'s Course
on data base design. Copyrighted 1973 by AMR International, Inc.

SUMMARY DATA SHEETS

The following data sheets summarize those standardization activities
which apply to Data Base Management Systems.

205

1 . Designation : None

2. Title : CODASYL Data Base Task Group (DBTG) Specification

3. Maintenance Authority : CODASYL Data Description Language Committee for the Data
Definition Language (DDL) portion; CODASYL Programming Language Committee for the
Data Manipulation Language (DML) portion.

4. Scope : Proposed standard for data base management systems. The DBTG specification
includes the DDL and the DML.

5. Relationship to Other Standards : ANSI COBOL (base for DML specification).

6. Competitive Standards : ANSI X3/SPARC/DBMS Interim Report; Non-CODASYL Self-Contained
approaches; Non-CODASYL Host Language approaches; Relational approaches.

7. Standardization Status : None

8. Implementation Status : There are commercial data base systems implemented, based
on the CODASYL specification. While these systems may employ syntax that is

slightly different from the CODASYL specification, they follow the same basic data
model. Some of the commercially available systems which are generally deemed to

be "CODASYL DBTG type" systems are:
\

0 DBMS-10 (Data Base Management System-10) developed by Rapidata, Inc.;

as a Digital Equipment Corporation product runs on the DEC PDP-10.

° IDMS (Integrated Data Management System) developed by Cull inane Corporation
runs on IBM 360/370 and on UNIVAC 70.

° DMS 1100 (Data Management System 1100) developed by Xerox runs on the

Xerox SIGMA 6, 7, 9 and 560 machines.

9. Known Manufacturing Uses : Used primarily for business applications such as

payroll and inventory control.

10. Known Sources of Information : Chairman, DDLC, CODASYL, Box 124, Monroeville, PA 15146

11. Probable Sources of Information : Cullinane, Rapidata, DEC, UNIVAC, NBS.

12. Bibl iography :

l.a. CODASYL Programming Language Committee, Data Base Task Group Report. Available
from ACM, Apri 1 1 971

.

l.b. CODASYL Data Description Language Committee, CODASYL Data Description Language,
Journal of Development, U.S. Department of Commerce, NBS, NBS Handbook 113.

l.c. CODASYL Programming Language Committee, COBOL Journal of Development 1976,
Chapter 12 - Data Manipulation Language, Section 4 - Subschema Specifications.

13. Comments : In May 1967, the Conference on Data Systems Languages (CODASYL) formed a

group called the Data Base Task Group (DBTG). In October 1969, the DBTG produced
a specification of a data base known as the DBTG Report (l.a.). The report detailed
the semantics and syntax of a Data Description Language (DDL) and a Data Manipulation
Language (DML). The DDL is a language for describing a data base. The DML is a

language which is associated with a host language such as COBOL, FORTRAN, PL/I,

etc., and which allows the manipulation of the data bases described by the DDL.

206

The Data Definition Language was developed with the intent that it would eventually
become the basis for an industry standard and that many individual host languages
could interface with implementations of it. A Data Description Language Committee
was established. This Committee produced a CODASYL Data Description Language Journal

of Development dated June 1973 (l.b.).

The data manipulation work was continued under the Programming Language Committee
with the goal of developing subschemas and a DML specification. A CODASYL COBOL
Journal of Development which specifies the Data Manipulation Language and subschema for

COBOL was published in May 1975 (l.c.). Similar specifications for FORTRAN and

perhaps for PL/I are still in the working stage.

207

1. Designation : None (composite summary sheet)

2. Title: Composite summary sheet on Self-Contained Data Management Approach

3. Maintenance Authority :

4. Scope: The majority of the cornmercially available data base management systems

are of this type. They are widely used by government and industry as a nucleus

in building special applications for customized data processing work.

5. Relationship to Other Standards : COBOL, FORTRAN, PL/I (for procedural language

interface)

.

6. Competitive Standards : CODASYL DBTG Specification

7. Standardization Status : None

8. Implementation Status: There are many operational packages that are commercially

available. These packages differ in the functions provided. Among the many,

the following packages are believed to be representative of widely recognized

and proven products available in the market today.

Packaqe Name Supplier Computers Initial Installation No. of Users

ADABAS Software Ag. IBM 360/370 March 1971 (in Germany)
Marketed in U.S. since
early 1972.

Over 150 as of
May 1976

INQUIRE Infodata Sys-
tems Inc.

IBM 360/370 1969 Approximately
70 as of May

1976

MODEL 204 Computer Corp.

of America
IBM 360/370 1971 22 as of May

1976

System 2000 MR I Systems Inc. IBM 360/370 July 1970 Over 100 as of

UNIVAC 1100 May 1976
Series

CDC 6000
Series

9.

Known Manufacturing Uses: Current applications are: management information systems,

inventory control, ecological data bases, personnel information systems, project

control systems, pharmaceutical use history, health records, petrochemical data base,

etc.

10. Known Sources of Information : Datapro Research Corporation, Delran, NJ

11. Probable Sources of Information : Specific Vendors of Systems: Software Ag.; Infodata

Systems, Inc.; Computer Corp. of America; MRI Systems, Inc.

208

12 . Bib! iography :

2. a. CODASYL Systems Committee, "Feature Analysis of Generalized Data Base Management
Systems," May 1971.

2.b. Datapro Research Corp, "A Buyer's Guide to Data Base Management Systems, "May 1976.

2.c. Koehr, G. J., et. al . , "Data Management Systems Catalog." MITRE Corp. Report
MTP-139, Jan. 1973.

13. Comments : "Self-contained" type of data base management systems is a classification
distinguished by the CODASYL Systems Committee (2.a.). The key characteristic of the

self-contained type is that the data definition, data retrieval and data input
are all provided in such a way that conventional procedural programming is not

required.

1

Data gathered from bibliographic citation 2.b.

209

1 . Designation : None (composite summary sheet)

2. Title : Composite summary sheet on Host Language Data Management Approach

3. Maintenance Authority :

4. Scope : The majority of host language type data base management systems are based
on the CODASYL DBTG Specification. However, IMS (Information Management System),
an IBM product, is of the non-CODASYL host language type. TOTAL, developed by
Cincom Systems, came out in early 1968 before the CODASYL DBTG Specification; it

too is a non-CODASYL host language type. The two packages alone account for
approximately 50% of the current market.

5. Relationship to Other Standards : COBOL, FORTRAN, PL/I (base for host language)

6. Competitive Standards : CODASYL DBTG Specification

7. Standardization Status :

8. Implementation Status : IMS (Information Management System), developed and marketed
by IBM, has gone through many evolutions and improvements. The earliest, IMS- I

,

operating on the IBM 360, appeared around 1969 and is based on another product developed
jointly with North American Rockwell Company called DL/I (Data Language/I), which is

a data description facility to describe and organize a hierarchical ly structured
data base. IMS-I also provides an interface through which programmers can store
data from the host language (COBOL). In 1971, IMS-VS was released to run on IBM

360/370s, under the VS (Virtual System) operating system. The IMS data base
management package is the leading package among IBM 360/370 computer users. It is

estimated that there were 1,000 installations at year-end 1975 (3. a.).

TOTAL, developed by Cincom, is widely used and is second to IMS. TOTAL, in its

initial release in 1968 was primarily a direct access data base management system.
Facilities were soon added to process DBTG-like sets implemented with chain pointers.
TOTAL is a host language system which can model the major data stuctures of the DBTG
specification. It is considered non-CODASYL because Cincom claims TOTAL was imple-

mented before CODASYL DBTG was published. TOTAL runs on the following machines:
IBM 360/370, Honeywell 200/2000, UNIVAC Series 70 and 9400/9700, NCR Century Series,
CDC 6000 Series, and IBM System/3 Model 10 and Model 15. TOTAL had 900 installations
at year-end 1975 (3. a.).

9. Known Manufacturing Uses : Used in support of a large number of diverse applications,
including applications in manufacturing, finance, and process control.

10. Known Sources of Information : 3. a. International Data Corp., "The Data Base

Management Software Market on IBM 360/370 Systems," IDC # 1685, (May 1976)
International Data Corp., 214 Third Ave. , Waltham, MA 02154. For IBM information,
see local representative. For information on TOTAL: Cincom Systems, Inc.,

2300 Montana Ave., Cincinnati, OH 43211

11. Probable Sources of Information : Government users of IMS package are: Federal

Reserve Board and Naval Materiel Command Support Activity. Users of TOTAL package
are: Social Security Administration and Bureau of Labor Statistics.

12. Bibl iography : None

13. Comments:

210

1

.

Designation : None

2. Title: Composite summary sheet on Relational Data Management Approach

3. Maintenance Authority :

4. Scope : It is still being researched within academia.

5. Relationship to Other Standards : None

6. Competitive Standards : CODASYL DBTG Specification

7. Standardization Status : None

8. Implementation Status : The concepts of n-ary relations as a tool for data base
management systems dates from a 1970 paper by E.F. Cudd of IBM (4.a.). As yet,
no large scale implementation exists. There were a number of early projects:
MACAIMS developed at MIT and RDMS developed at General Motors. A large scale
prototype data base management system, called System R, is presently under construction
at IBM Research in San Jose. Another large scale attempt at constructing a relational
prototype is the INGRES (Interactive Graphics and Retrieval System) of the University
of California at Berkeley. INGRES is operational on a PDP-11/40 under the UNIX
operating system.

There are two commercially-developed data base software packages which claim to

possess relational characteristics, but these are not considered true relational
systems:

° MAGNUM, developed by Tymshare, Inc., runs on IBM 360/370.

° NOMAN, developed by National CSS, Inc., also runs on IBM 360/370.

9. Known Manufacturing Uses : There are no known manufacturing uses of the
prototype university-based relational systems. Limited uses of the two commercial
relational systems are: maintenance and inventory data, and invoice processing by a

utility company..

10. Known Sources of Information : E.F. Codd, IBM Research Laboratory, San Jose, CA;

For INGRES System contact: M. Stonebraker, University of California, Berkeley, CA;

for MAGNUM System contact: Tymshare, 10340 Bubb Road, Cupertino, CA 95014; for
N0MAN System contact: National CSS, Inc., 300 Westport Ave. , Norwalk, CT 06851

1 1 . Probable Sources of Information :

12. Bib! iography :

4. a. Codd, E.F., "A Relational Model of Data For Large Shared Data Banks,"
Communications of the ACM 13.6 (June 1970), pp. 377-397.

13. Comments:

211

-

'

*

.

r*

'

STANDARDS FOR COMPUTER SYSTEMS

SOFTWARE TESTING AND TOOLS

INTRODUCTION

SYSTEM TESTING

APPLICATIONS TESTING

Static Testing
Dynamic Testing
Testing Mathematical Software

SOFTWARE TOOLS

Types of Tools
Minimum Essential Tools

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

213

INTRODUCTION

The most thoroughly tested software pieces are usually the system components;
compilers, editors, file management procedures, schedulers. This is hardly
surprising considering that systems software is crucial to all aspects of a
marketable system. Although this brief discussion will begin with an
examination of tyoical systems testing procedures, there remain many aspects
which arise mostly in applications. These topics are covered later in the
discussion

.

SYSTEM TESTING

Two aspects of system testing are easily visible even in the most cursory
examination

.

Performance measurement is fundamental to any operation involving expensive
components such as cpu, discs and memory. The natural questions of What
helps best? and Who pays for what? occur over and over. Each question
involves some aspect of measurement (hence, testing) of a computer system.
It is quite important that a system have a fine enough clock to allow
meaningful measurements of user and system states. Without such a hardware
clock a system is tuned only with difficulty, and (importantly) billing of
services can become confused.

Language processor testing is another significant domain for system checkout
and testing. Several checkout schemes have been mentioned earlier: for
COBOL, FORTRAN, BASIC, and MUMPS. For languages such as these which are
heavily used on their systems the investment in language test routines is
quite justified, specifically since it also promotes program transferability
among orocessors on distinct and different systems. Testing also assures
conformance to an acceptable performance standard: that is, it shows a
capability to handle required language features.

APPLICATIONS TESTING

There is a vast users' area over which the tag "testing" can be attached.
For sake of convenience it is often the case that static (or textual) program
features are treated as distinct from dynamic (or executable) behavior.

Static Testing

Static testing encompasses several labels. At this level of the lexicon,
names must be accounted for, e.g., external system names should not conflict.
A common problem along these lines occurs when one module in a system is
rewritten and external storage maps are changed. The new maps may not agree
with other module-maps unless some monitoring is made of storage definitions,
and enforcements made to maintain consistency.

Syntactic testing is obvious, and every compiler does it with greater or
lesser degrees of success. A number of points may be worth mentioning.
First, the compilation facilities can serve as good enforcers of any system
"standards" that are required for transportability or clarity. The compiler
is an especially good and effective place for enforcement, in that failure to
comply can imply failure to get any work done. Secondly, many compilers have
extremely poor error message and diagnostic facilities. For some reason this
is especially true for COBOL, and it seems to be more the fault of the
compilers than the language. Some test programs have been written to test
compiler diagnostics, but further work could be done on this aspect. The
problem is easy to ignore but important to the everyday programmer. Thirdly,
some languages such as early PL/1 have conventions, defaults design choices

214

which make compilation errors less apparent, and sometimes, almost invisible!

Semantic and functional testing are
technology. Questions arise on the
dependencies (e.g., word size), and r

pr oof-of-cor rectness asks whether
specifications; this is an extremely
has been made of a practical nature.

Dynamic Testing

more wishes than current realizable
meaning of primitive operations, machine
epresentat ions . Functional testing, or
a program corresponds to its original
difficult problem and little progress

The first aspect of dynamic testing is one of cor resoondence . Has the
correct problem been solved? Comparing actual runs against true answers may
reveal the ultimate bug—having solved the wrong problem.

Performance measurement has been mentioned regarding the need for a good
hardware clock for accounting and tuning. Similar requirements apply
directly to applications programs. Three other points are worth mentioning;

(i) Program conversion and modularization— Help find "related" code to load
together

;

(ii) Learn variations in efficiency, isolate bottlenecks and non- critical
parts

;

(iii) Subsetting. Given
program, thereby limiting

The third area of dynamic
wants to thoroughly ex
instrumented
latter are
omission, so
when program

code can be
truly thoro
parts of the
segment coun

cases of interest, chart "live" segments in a large
the code to that of immediate interest.

testing could be called functional- empirical. One
ercise a program [Huang, 1975]. In addition, the
tested against standard test cases to check that the
ugh. Weaknesses in test data are usually sins of
program may not be used. This shows up immediately

ters are zero.

Mathematical Software Testing

In CAM system utilization, any numerical errors arising during design or

production management would be reflected in the finished product. It is

important then that CAM engineers have confidence in the numerical
performance of software as well as in the logical correctness of the
programs. Although there are no standards for the numerical quality of
mathematical software testing, there are testing practices that are somewhat
de facto standards. We review some of these practices in this section.

Mathematical software according to Cody [1] denotes those computer programs
that implement mathematical algorithms. Mathematical theorems are usually
established about the theoretical nature of the algorithms and their
convergence properties. In general, such results do not concern themselves
with finite machine arithmetic. Very precise theoretical error bounds can
usually be established for these theoretical function approximations [3],

However, when machine considerations such as word length, radix, floating or
fixed point arithmetic are introduced, the theoretical algorithm must be
restructured for a particular implementation in order not to lose the
mathematical properties required to assure the theoretical error bounds. The
restructuring of the theoretical algorithm for a particular imolementation

215

might be referred to as the machine algorithm. By an implementation of a
theoretical algorithm we mean the restr uctur ing- of the computation to make
use of particular machine optimization of computations and the programming
language used.

With respect to the testing of mathematical software there are two divisions.
These are:

(1) Programming Languages Supporting Mathemat ical Functions
(2) Scientific/Engineering Support Mathematical Software

These divisions arise because, for language support mathematical software,
i.e., mathematical function routines, there has emerged what appears to be a
consensus approach, or de facto standard, for testing the mathematical
function routines such as exponential, sine, cosine, etc. However, for
general scientific software there are no general standards, but there are two
approaches that might be referred to as test or benchmark problem sets and
roundoff error analysis, (See Cody [1]). These latter approaches will not be
considered here since we are concerned only with the mathematical function
libraries that impinge on the language standards.

The simplest type of error testing is a direct comparison of computed
function values against published tables. There are several difficulties
with a naive application of this method. The first difficulty is the entry
and storage of the large data set that would be needed in order to perform an
exhaustive comparison. It would also require detailed checking of the input
data to determine transcription error, and it would of course require editing
of the data after entry. The next difficulty is the sparseness of the
entries. Approximation procedures would have to be programmed to generate
reference values to test the function subroutines at arguments between the
table entries. The major difficulty is that these table-generated data
points do not provide a sufficient sample of the behavior of the routine
under test. Sample sizes of several thousand arguments have been used by
some testers. Furthermore, table generated tests do not provide flexibility
to the user .

Although the data table methodology is cumbersome and requires manual
checking and preparation, the general idea is the same as the methodology
used by the function testing commun i ty . The difference lies in the fact that
the procedures for generating the comparison tables have been automated and
allow a wider testing range and flexibility.

The most prominent scheme of accuracy checking is one that involves automatic
tabular comparison where the standard table values are generated within the
machine as needed. This usually requires the provision of a subroutine to
compute standard values for a function to a precision greater than that of
the routine under test. With such a routine it is possible to generate a

table of comparison values automatically that can either be stored for future
use or used immediately at the time of generation. This routine would
generate high precision function values for specific arguments or for random
arguments

.

The emphasis in the mathematical testing community has been on the
statistical sampling of the accuracy because of the objective ability to
measure this. The approach has been widely used by a number of researchers
(See Kuki [3], Cody [4], and Lozier [10] for examples.)

216

With regard to de facto testing methodologies, mathematical software divides
itself into two classes. First the language support elementarv function
routines and second general scientific routines that are collected into
libraries. There is a well- defined orocedure for testing the language
support function routines. However, there are a number of orocedures that
rely on oerforming arithmetics other than floating ooint that have been used
to estimate numerical error. Since the process of developing scientific
libraries, especially those that may be used to design critical parts, is a

lengthy and expensive one, it is imperative to identify as soon as possible
viable numerical software testing procedures and begin using them in
evaluating user libraries.

SOFTWARE TOOLS

It is evident from prevailing experience and research that every software
production project, regardless of complexity, must include a tool
provisioning activity. The toolmaker faces several questions, to be answered
in collaboration with his project manager: Is there a commonly accepted set
of standardized tools appl i cable to every project?; What set of special
tools can be identified for a project at the outset?; Are necessary tools
already available as commercial packages with acceptable cost?; What are the
economical approaches to creating special tools and modifying them as may be
needed in the course of a oroject? Corresponding evidence shows there is
inordinate difficulty in selecting tools tools from the marketplace shelf.
Commercial items are available at reasonable cost, but there is essentially
no standardization of tool capabilities. The number of suppliers and the
diversity of packages confound the would-be buyer. But equally important,
proprietary packages cannot be modified and tailored by the buyer since the
source code is usually not delivered with purchase. Although a basic set of
tools is identifiable for any project, it appears that that special
modifications are warranted in many cases. Furthermore, a general expansion
and integration of available tool functions would be well-advised to cope
with the widely-recognized problem of software quality control. The
following analysis tends to support a recommendation for standardization of
basic tools at source code level, so that CA;-1 software production can be
conducted with a common set of tools amenable to user extension and
special ization

.

Types of Tools

The only standard tool for software production today is the high-level
language compiler. This statement applies the traditional understanding that
a standard is a formal specification produced by a recognized professional
group for nearly universal application. Yet, national and international
standardization of compilers has only addressed programming language
definition, ignoring crucial capabilities such as the form and content of
output listings, accuracy and scope of diagnostic messages, debugging
features, and interactive and batch modes.

Even so, use and economics of tool design have lead to commonly discernible
types. These tools cannot be called defacto standards, for they reflect only
similar ouroose and function, and not by any means a near equivalence of
capability brought about by uniform commercial demand. The following common
types have been determined from a survey of commercial packages. Omitted are
compilers , assemblers, data base management systems , utility routines,
application programs or libraries (e.g. mathematical routines). Also
excluded are replacement packages for software normally offered by a hardware

217

vendor, such as operating systems and I/O access methods. Common tools are:
Abort diagnoses—provide full or selective dumps; Breakpoint control— for
interactive debugging; Cross reference' generator; Data
aud i tor /catalog—analyzes data relationships; Error analysis and
recovery— intercept selected abnormal terminations; File or library
manager—centralized retrieval and update; Flowchart generator; Program
auditor— checks conformance of programs; Program execution monitor— see
testing sections, above; Program formatter /documentor— Rearranges and
structures source text; Project manager—scheduling and production aid;
Resource monitor—accounting information; Shorthand or macro expander—may
also include decision table expansion; Source level translator—e.g. RPG to
COBOL; Test data generator; Test simulator— simulates execution and flow,
allow user decisions in testing; Text editor.

Minimum Essential Tools

Contemoorarv exoerience and practioners' concensus are sufficient to
recommend some tools as essential for almost any software development
project. Exceptions may arise if a computer has unusual architecture or
limited caoabilities (e.g. no mass storage). Minicomputer systems are
generally included, particularly since the UNI* system [Ritchie] has
demonstrated that a highly effective, Interactive programming support system
is practical on a low-cost minicomputer 4

It is recommended that in general program development be done with support of
an interactive computer system. Interactive support increases productivity
throughout the changes, debugging, and testing that characterize most
projects

.

The orimary tool is the compiler for the high-level programming language.
Again, experience has amply proven enhancements of programming productivity
using high-level languages. Only selected procedures critical to system
performance need to be assembly-language coded for extreme execution speed.
Other essential tools are recommended as a minimum complement for most
projects:

Text editor - For entering, correcting, and modifying such texts as program
specifications and design documentation. Requires a facility for online
storage and recall of named text units for inspection, printing or editing.

Program editor - For entering, correcting, and modifying program texts. With
free-form programming languages, one editor could serve both as text and
program editor.

Program librarian - For storing all program texts, associated job control
statements, common data definitions, and test data, and maintaining a

chronological record of modifications between distinct versions. Includes
appropriate access controls for members of the project group.

Debugger - For analyzing program behavior during execution on test data
input, and deriving execution statistics and traces to help correlate program
output with the results of individual high-level language statements.

Project manager - For recording chronologically the activity of the
individual project members on defined program modules and deliverables of
the project. Standard specifications of functions for each tool type appear
feasible and desirable, and would assist those who undertake toolmaking
without benefit of prior study and experience. Yet it is clear that

218

individual projects often may need to create spec
be available in standardized tools. Var iou
circumstances may dictate such specializations,
with many personnel especially would benefit from
enforce unique design standards and practices tha
through personal communications and code inspecti

Desirable soec ial i zat ions may range in difficulty
extant tools to new composite tools formed
several distinct packages. Both of these cases r

source code— ideally in a system-standard high
documentation of course. The latter case also r

block tools be carefully designed, with fie
design, permitting extensive modifications with r

ial f eature s that wo uld not
s p r o j ect r equ i r ements or
For in stance, large projects
ext en s ions to automatically

t ar e diff icult to ensure
ons

.

from mino r extens ions of
by in tegra ting and refining

egui re the or ig inal tool ' s

leve 1 langu age--and thorough
eau i re s that the building
x ibl e inter faces and modular
elat ive eas e

.

RECOMMENDATIONS

It is appropriate therefore to recommend studies and development on CAM
programming tools, with the following goals:

1. to make widely available a set of CAM building block tools, with
standard designs and source code in CAM-system high level language;

2. to evaluate alternatives for interfaces and modular design that would
support major modifications of tools without loss of efficiency and
performance; and

3. to develop guidelines for raoid and reliable specialization of tools
from available building blocks, based upon the characteristics of CAM
projects most benefitting from special tools.

REFERENCES

(Computer Validation)

Federal Property Management Regulation 101-32 . 1305-a Validation of COBOL
Compilers

.

NBS Special Publication 399, Vols. 1-3, "MBS FORTRAN Test Programs."

MDC/29, MUMPS Validation Program User Guide.

(General)

NBS Technical Notes 874, "Software Testing For Network Services"; 849, "A
FORTRAN Analyzer"; 800, "Computer Networking" (above some
approaches to quality assurance).

K. V. Hanford, "Automatic Generation of Test Cases," IBM Systems Journal 9,
4(1070) , op. 242-257

.

J. C. Huang, "An Approach to Program Testing," Computing Surveys 7,
3(Seotember 1975), op. 113-128.

(Mathematical Soft /are Testing)

W. J. Cody, "The Evaluation of Mathematical Software," Program Test Methods,
EWilliam C. Hetzel, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1973), 121.

C. T. Fike, Computer Evaluation of Mathematical Functions, Prentice-Hall,
Inc., Englewood Cliffs, NJ, (1968).

H. Kuki, "Mathematical Function Subprograms for Basis System Libraries
Objectives, Constraints and Trade-Off," Mathematical Software,
Academic Press, NY, ol37-199.

W. J. Cody, "Performance Testing of Function Subroutine," AFIPS ConProc.,
Vol . 34, 1969.

N. A. Clark, W. J. Cody, K. E. Hillstrom and E. A. Thieleker, "Performance
statistics of the FORTRAN IV (H) Library for the IBM Systems/360,"
Report ANL7321, Argonne National Laboratories (1967).

C. L. Lawson, "Study of the Accuracy of the Double Precision Arithmetic
Ooerations on the IBM 7094 Computer," JPL Tech. Memo #33—142 , Jet
Propulsion Laboratory, Pasadena, 1963.

D. W. Lozier, L. C. Maximon, W. L. Sadowski, "A Bit Comparison Program for
Algorithm Testing," The Computer Journal, Vol5, N2, pp. 111-117.

A.C.R. Newberv, Anne P. Leigh, "Consistency Tests for Elementary Functions,"
AFIPS ConProc., Vol. 39, 1971.

W. J. Cody, "Software for the Elementary Functions," Mathematical Software,
R. Rice Ed., Academic Press, NY, 1971.

D.W. Lozier, L. C. Maximon, and W. L. Sadowski, "Performance Testing of a
FORTRAN Library of Mathematical Functions Routines— A Case Study
in the Application of Testing Techniques," Journ. of Res., NBS , B.
Math. See., Vol. 77B, Nos. 3 & 4 , July- December 1973.

(Software tools)

Brooks, Frederick P., Jr. The mythical man-month. Add ison-Wesley Publishing
Company, Reading, Mass., 1975, o.!28.

Reifer, Donald J., "Automated aids for reliable software," Proceedings of the
International Conference on Reliable Software, SIGPLAN Notices 10,
6 (June 1975), pp. 131-140.

Ritchie, Dennis M. and Thompson, Ken. "The UNIX Time-sharing system," Comm.
ACM 17, 7 (July 1974), pp . 365-375.

Van Dam, Andries, and Rice, David E. "On-line text editing: a survey,"
Computing Surveys 3, 3(Sept. 1971), op. 103-105.

Wichmann, B . A. "A syntax checker for ALGOL 60," NPL Report NAC 53, August
1974, Division of Numerical Analysis and Computing, National
Physical Laboratory, Teddington, Middlesex, England.

SUMMARY DATA SHEETS

The following data sheets summarize
which apply to Software Testing and

the standardization activities
Tools

.

220

1 . Designation : None

2. Title : Composite summary sheet on Computer Software (Testing and Validation)

3. Maintenance Authority : COBOL: (U.S. Navy); FORTRAN: (NBS) ; BASIC (NBS) , MUMPS
(MUMPS Development Commi ttee

)

4. Scope : Test for compiler compliance with 1968 COBOL and 1966 FORTRAN standards, and

for ANSI proposed Minimal BASIC and MUMPS standards.

5. Relationship to Other Standards: Complement present or pending standards for COBOL,
FORTRAN, BASIC and MUMPS.

6. Competitive Standards :

7. Standardization Status : COBOL 1968 and FORTRAN 1966 are available; Minimal BASIC
and MUMPS are pending standards.

8. Implementation Status: Test data available from Federal Testing Service or NTIS.

(BASIC) - NTIS & NBS

9. Known Manufacturing Uses : System procurement and quality control aids.

10. Known Sources of Information : Mrs. Frances E. Holberton (FORTRAN), Ms. Mabel V. Vickers
(COBOL). Dr. David E. Gilsinn (BASIC), NBS, (301) 921-3491, Dr. Jack Bowie (MUMPS),

Massachusetts General Hospital, (617) 726-3937.

1 1 . Probable Sources of Information :

12. Bib! iography : Federal Property Management Regulations 101-32. 1305a, Validation of

COBOL Compilers; NBS Special Publication 399, Vol . 1-3 "NBS FORTRAN Test Programs."
NBS-IR (in draft) "Proposed NBS Minimal BASIC Test Programs." MDC/29, MUMPS
Validation Program User Guide.

13. Comments : COBOL testing is used in acquisition of compilers for the Federal Govenment.

221

1 . Designation : None

2. Title : Numerical Testing and Validation of Mathematical Software

3. Maintenance Authority : None, although some certification of algorithms and
programs is given in the ACM algorithms collection and both IMSL (International
Mathematical and Statistical Libraries, Inc.) and Argonne National Laboratory
have produced and continue to test specialized mathematical libraries.

4. Scope : To define methods and guidelines to evaluate the numeric properties (such
as accuracy) and ascertain this domain of mathematical software (that is, identify
clearly the class of problems that a program solves). Another measure addressed
is the speed of the programs. These qualities are referred to as the perform-
ance evaluation of mathematical software.

5. Relationship to Other Standards : Error analysis of mathematical software depends
strongly on numeric representations. This subject is addressed from the point
of view of character strings by ANSI X3. 42-1975, American National Standard
for the representation of numeric values in character strings for information
interchange. Extrinsic mathematical functions routine capability is specified
by the proposed ANS FORTRAN, BSR X3.9 and proposed ANS Minimal BASIC, BSR X3.60.

6. Competitive Standards : There are no standards for evaluations of mathematical
software although there are a number of colnpetitive approaches to evaluating the
effect of error propagations in mathematical software (see comments below).

7. Standardization Status : None, although there is a recently organized I FI PS Working
Group on Numerical Software (WG 2.5). The ACM SIGNUM, SIGMAP and SIGSAM are
concerned with mathematical software.

8. Implementation Status : Ad hoc evaluation tools have been used by IMSL and Argonne.
IBM has implemented in S/360 a quality mathematical function library developed
at the University of Chicago. UNIVAC has also used a quality evaluation methodology
to enhance the accuracy of its mathematics libraries.

9. Known Manufacturing Uses : To develop and evaluate the mathematical function
software libraries peripheral to the programming languages FORTRAN, ALGOL, PL/ I,

BASIC, etc. IMSL uses evaluation techniques to generate quality mathematical
software for engineering and scientific use.

10. Known Sources of Information : David E. Gilsinn, NBS, (301) 921-3491;
Dan Lozier, NBS

, (301) 921-2631

.

11. Probable Sources of Information: IMSL, Argonne Natonal Lab., Jet Propulsion
Lab.

12. Bibl iography : This bibliography is by no means exhaustive, but it covers a fair

sampling of the literature dealing with tools and approaches to quality testing.

(1) W. J. Cody, "The Evaluation of Mathematical Sc are," Program Test Methods ,

Ed., William C. Hetzel , Prentice-Hall, Inc., Engiewood Cliffs, NJ (1973), p. 121.

(2) C. T. Fike, Computer Evaluation of Mathematical Functions , Prentice-Hall,
Inc., Engl ewood Cl i ff s , NJ , (1968)

.

(3) H. Kuki , "Mathematical Function Subprograms for Basic System Libraries --

Objectives, Constraints and Trade-Offs," Mathematical Software , Academic
Press, NY, pp. 187-199.

222

(4) D. W. Lozier, L. C. Maximon, and W. L. Sadowski , "Performance Testing of a

FORTRAN Library of Mathematical Functions Routines -- A Case Study in the

Application of Testing Techniques," Journ. of Res., NBS, B. Math. Sci .

,

Vol . 77B, Nos. 3 & 4, July - December 1973.

13. Comments : There are a number of proposed approaches to quality evaluation of

mathematical software. There has been no concerted effort to determine which
methods are appropriate to which programs. First, a straightforward approach
to determining accuracy is to run a program on a standard set of problems and to

compare the computed results against the known results. For certain problems
this method can give meaningful and useful measures of the error generated within
the routine. In particular, the accuracy of mathematical function routines is

frequently determined by using the comparison approach. This method of analysis
is sometimes called forward error analysis. Second, when a solution of a problem
involves arrays of numbers, then another approach to quality evaluation is to show
that the computed results are the exact solutions to a perturbation of the original
problems and to measure that perturbation. This method is sometimes called
backward error analysis. Third, the domain of the problem is evaluated. That is,

the problems that a particular piece of mathematical software solves are determined.
This method is related to method one, but requires a classification and codification

of problem sets. Fourth, another approach to studying error propagations is

statistical in the sense that the errors incurred for each operation are assumed
to be random variables with some specified distribution. The error analysis can

then proceed, using the tools of probability theory in order to determine the resulting
error distributions, by computing the individual error random variables. Finally
for some problems a-priori error bounds can be estimated by the use of inequalities
and bounds for the accumulated error at each step of a program.

223

'

.

.

.

STANDARDS FOR COMPUTER SYSTEMS

DOCUMENTATION STANDARDS

INTRODUCTION

SOFTWARE DOCUMENTATION GUIDELINES

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

225

FIPS

PUB

38

DOCUMENTATION

REQUIREMENTS

UOLIBDLJ. Loads
aseg BqBQ

quawnooo
squauiaupbay BqBQ

uoLq.BOLj.pads
UJBU 60Ud

quoday

slsA'lbuv qsaj_ * X
*

uopBoppads
waqsX'sqns/waqsA's

quaiunooa squaw
-auLnbag [Buopounj

ue Ld

qsai X.

[BnUBlftl

aouBuaquLB^ wBa6oug

LenuBw
suoLqBuadQ

LBnuBW
suasf]

AjBwuns
auBMqqos

CC
03O
DC
Cl.

*
CO

E
03
S_
co
o
S-
Q.

CU
CO

CU

CD
£Z

CO
I

4->

o

trr

S-
CD
O
o
Q.

CU
CO
o
CL
S-
C5
CL

X!
CU

03
S-

CD
O
S-
CL

CO
s_
CU
d
cu

CD
i

<u
CO
o
CL
S-

C3
CL
•r—
4->

OO

03
S-

CD
O
s-
CL

i~
a>
CO

I

CU

03
U
co

<u
CD
s-

03

<U
CO

03
S-
CD
O
S-
CL CO

CO

<D CU O
+-> CO *f-
00 03 +->

>%JO 03
CO (_)

03 •>—

OJ 4-> I—— ns a
03 T3 CL
CJ 03
CO C

O -r-

cu E +-*

CD E
s- o
03 C_>

13

CU O

4-

> i

—

CO CO CU
>> S- >

CU CU
co X3a i3

aj s-

a; o
IB C U
5— -i— C_)

CD i— 03
at a c
4-> -r- 4->

C CO c
•r- -i- O

X> CJ

i— -M -M

CJ

o
CL

ired

by

loca

i

nformal

ly

.

pon

project.

C3 X3 33 co
CD CU CU
CU S- CD cj
S- (O c c CO

CL'l- CU 4-3

CU CU X3 13 cu s. c i

—

<u
CL CU 4— EX CL SC CU

03 CU CU i—

i

S-EJ3U •I—

>3 ds
SC >,X3 4-3 CD
O 03 CU •1

—

CU
•'-EX) X DC
4-J CU CU
03 4-> CU 1

—

d
4-3 S- SC CL o
c o E *1—

CU CL CU o 4-3

E CU -Q C_3 03
13 CC 4-3

CJ 4-3 4-3 C
O CO O cj CU
x> •<- C CU E

CO •1—3 d— >> >3 o u
03 i— 03 S- o
C 03 E D_ Q
O SC•r< S-
-M O |

•t— 4->

X) CO >, CU
X) CU 03 s-

=3

CD

* * * Ll.

* *
*

226

INTRODUCTION

One of the recent developments in software has been the emphasis on
control of the complete generation cycle, and an examination of the depen-
dencies that should exist in this cycle. Documentation preparation should
be treated as a continuing effort evolving from preliminary requirements-
drafts, through change and reviews to the final documentation and continuation
documentation of the delivered software products. Since clear and complete
documentation is a keystone for portable and maintainable software modules,
definitive guidelines for its preparation are of vital importance to the
Air Force program. A documentation administrator should be assigned to
work with the contracting officer to define and enforce requirements for
clear documentation including source code of system components which should
be Air Force property. The documentation administrator should have a
clear idea of what is in the CAM system; therefore a model should be
constantly kept of system components to catch any omissions. The model
should be available to users for feedback on its adequacy and degree of
coverage in current documentation.

The extent of documentation should depend on the size, complexity
and value of the project. Special requirements are necessary for certain
well-defined components; for example, interactive processors (editors,
language translators, networking modules) should have available on-line
"help" files to show how to use them. A user should be able to run these
interactive components without shutting off his terminal, but rather, using
it to advantage.

Documentation should spell out clearly the specific software com-
patibilities and incompatibilities; i.e. does compiler X read files of
type Y. In addition, compatibilities should be spelled out as specific
mandatory requirements in early stages of design documentation, and the
design requirements written to preclude as many undesirable conflicts as
possible. The extent, detail, and formality of software documentation must
be included in all contractual arrangements for software procurement.

Automated aids for development and maintenance of ICAM documentation

_

would be a great assistance to both contractors and the documentation adminis-
trator. The development of such aids should be considered as an early
ICAM project.

SOFTWARE DOCUMENTATION GUIDELINES

In reviewing various guidelines for software documentation a growing
tendency is noted toward the development of a full life cycle management
system for the software creation process. NASA documentation standards
for part of the Appollo project are a good example. Entitled "Procedures
for Management Control of Software Development for Appollo" the guidelines
address each functional step from requirements analysis to coding, testing
and maintenance. Specifications are made for the documentation required
for each functional step.

Considerable progress has been made in Federal standards for software
documentation: FIPS PUB 38 is prehaps best suited for the development of
large systems, providing as it does a checklist of items worthy of detailed
attention in a project. The documentation categories of FIPS PUB 38 begin
with functional requirements, pass through the natural stages of a project,
and end with test plans and analyses. The standard recognizes that not
all documentation categories are needed for every project. Rather as the
size, complexity and visibility of a project increases so does its need
for more extensive documentation. Figure 1 has been abstracted from FIPS
PUB 38 to emphasize this concept.

227

CAM- I has established documentation standards to assure the availability
of detailed information on the software products developed. The standard
defines the structure, content and use of ten separate documents to be develope
within each software project. The functional content of the CAM-I specified
documents is quite similar to those in FIPS PUB 38 although the latter are
more completely defined.

Three other differences are noted:

FIPS PUB 38 breaks out separate Test Plans and Test Analysis Reports
rather than embedding the functions in other documents. These two
are very important for validating the applications module and for
assuring that the coding meets portability requirements.

CAM-I describes a Project Status Report necessary for good Air Force
management control of the software development process. Also included
is a Project Prospectus which ICAM may find quite useful as a brief
descriptive outline of a module that can be sent to all prospective
users or included in press releases, etc.

FIPS PUB 38 contains an in depth specification for defining a module's
interdependence with various data bases. In the distributed processing,
integrated systems environment envisioned for ICAM due attention must
be given to these data requirements.

A number of miscellaneous recommendations exist for bits and pieces
of program development. For example, there is FIPS PUB 24 on flowcharting.
In addition, a large number of texts and articles exist. Yourdon

,
pages

23-24, provides some excellent common sense on documentation and maintenance
of program modules, including advice on the use of variables in original
codings

.

The Department of Defense has issued in December 1972 a manual on
Automated Data Systems Documentation Standards which has been implemented
by all three services.

Smaller programs and projects in the CAM undertaking may find the work
of the American Nuclear Society (244 East Orden Ave . , Hinsdale, Illinois
60521) useful. Two documents of the Society are referenced at the end of
this chapter.

RECOMMENDATIONS

1. The Air Force should extend FIPS 38 in order to have more detailed
guidelines for computer program documentation and to software. The
guidelines should use the framework of FIPS 38, and may incorporate
useful sections of the CAM-I, NASA, and American Nuclear Society
publications

.

2. The Air Force should establish a documentation administrator to
specify and maintain system and software documentation. Since
there are many disparate CAM interests, a tight rein on documentation
in the first development stages combined with industry participa-
tion (as practical) could promote a clarification of standard CAM
system components and procedures

.

3. Automated aids for production and maintenance of documentation
should be considered as early program efforts.

228

REFERENCES

(1) Guidelines for Documentation of Computer Programs and Automated
Data Systems i Federal Information Processing Standards Publications
FIPS PUB 38, February 15, 1976. US Department of Commerce, National
Bureau of Standards.

(2) Guidelines for the Documentation of Digital Computer Programs .

Americal Nuclear Society, ANS-10.3. (Also ANSI N413)

.

(3) ANS Standard . Recommended Practices to Facilitate the Interchange
of Digital Computer Programs . ANS STD 3-1971.

(4) Flowchart Symbols and Their Usage in Information Processing. FIPS PUB
24, June 30, 1973. (Same as ANSI X3. 5-1970)

(5) Daniel D. McCracken. "How to write a readable FORTRAN program."
DATAMATION (Oct. 1972), pp . 73-77.

(6) E. Yourdon. Techniques of Program Structure and Design , Prentice-
Hall, Inc., (Englewood Cliffs, N. J . , 1975)

.

(7) Department of Defense Automated Data Systems Documentation Standards
Manual ^ 4120 . 17M, December 1972.

(8) CAM- I Standard for Computer Program Documentation , STD-73-SC-01

,

May 1973.

SUMMARY DATA SHEETS

The following data sheets summarize those standards which apply to
Software Documentation.

1 . Designation : FIPS PUB 38

2. Title : Guidelines for Documentation of Computer Programs and Automated Data Systems

3. Maintenance Authority : NBS (FIPS TG 14)

4. Scope : These software guidelines provide a basis for determining the content
and extent of documentation for computer programs and automated data systems.

5. Relationship to Other Standards : FIPS PUB 30 (subset)

6. Competitive Standards : None

7. Standardization Status :

8. Implementation Status : Published on Feb. 15, 1,976.

9. Known Manufacturing Uses : These documentation guidelines are applicable to all

computer software development and use applications.

10. Known Sources of Information : James Gillespie, USN, FIPS TG 14 Chairman, (202)
695-0680; Thomas Kurihara, Department of Agriculture, FIPS TG 14 Vice-Chairman,
(202) 447-6261; Bea Marron, NBS, FIPS TG 14 Executive Secretary, (301) 921-3491

1 1 . Probable Sources of Information :

12. Bib! iography :

FIPS PUB 38, February 1975, Guidelines for Documentation of Computer Programs and
Automated Data Systems

Automated Data System Documentation Standards Manual, Department of Defense Manual
4120. 17-M, December 1972

Computer Program Documentation Guideline, National Aeronautics and Space Administration,
NHB-241 1.1, July 1971.

13. Comments : Documentation of computer software provides information to support the

effective management of ADP resources and to facilitate the interchange of information.
It serves to:

Provide managers with technical documents to review at the significant develop-
ment milestones, to determine that requirements have been met and that resources
should continue to be expended.

Record technical information to allow coordination of later development and use/
modification of the software.

° Facilitate understanding among managers, developers, programmers, operators,
and users by providing information about maintenance, training, changes, and

operation of the software.

Inform potential users of the functions and capabilities of the software, so

that they can determine whether it will serve their needs.

These guilelines were prepared to improve the quality and consistency of software
documentation.

230

1.

Designation : FIPS PUB 30, Standard Form 185

2. Title : Software Summary for Describing Computer Programs and Automated Data Systems

3. Maintenance Authority : NBS

4. Scope : This standard software summary form is used in documenting summaries or

abstracts of programs and/or automated data systems that are developed or acquired
by Federal departments and agencies.

5. Relationship to Other Standards : FIPS PUB 38 (superset)

6. Competitive Standards : None, but ANSI X3K7 was organized in October 1975 to develop
a computer program abstract.

7. Standardization Status : Published June 30, 1974

8. Implementation Status : On Feb. 25, 1976, a Federal Property Management Regulation
was announced which requires the use of this standard form for reporting "common
use software" to a new Federal Software Exchange Center.

9. Known Manufacturing Uses : This documentation standard is applicable to all computer
software development and use applications.

10. Known Sources of Information : James Gillespie, FIPS TG 14 Chairman; Thomas Kurihara,
FIPS TG 14 Vice-Chariman; Bea Marron, FIPS TG 14 Executive Secretary.

1 1 . Probable Source s of Information :

12. Bib! iograph.y : FIPS PUB 30, June 1974, Software Summary for Describing Computer
Programs and Automated Data Systems

13. Comments : This standard, a one-page form with instructions on the back, is intended
for succinctly describing computer programs and automated data systems for identi-

fication, reference, and dissemination purposes.

231

1 . Designation : FIPS PUB 24

2. Title : Flowchart Symbols and their Usage in Information Processing

3. Maintenance Authority : NBS (ICST)

4. Scope : This publication establishes standard flowchart symbols and specifies
their use in the preparation of flowcharts in documenting information processing
systems

.

5. Relationship to Other Standards : Same as ANSI X3.5 - 1970, American National
Standard Flowchart Symbols and their Usage in Information Processing.

6. Competitive Standards : None

7. Standardization Status : Published June 30, 1973. The ANSI standard was approved
Sept. 1, 1970 as a revision of USA Standard X3.5 - 1968.

8. Implementation Status : This standard applies to any Federal information processing
operation where symbolic representation is desirable to document the sequence of

operations and the flow of data and paperwork.

9. Known Manufacturing Uses : Applicable for all systems and software documentation.

10. Known Sources of Information : Mr. Harry S. White, Jr, NBS, (301) 921-3157.

1 1 . Probable Sources of Information :

12. Bib! iography : FIPS PUB 24, June 1973, Flowchart Symbols and their Usage in Information

13. Comments : A FIPS Jiffy Template (#673) of Flowchart Symbols, which conforms to

FIPS PUB 24, is now available.

232

ANNOTATION

FOR THE ADDITION OF
DESCRIPTIVE COMMENTS
OR EXPLANATORY NOTES
AS CLARIFICATION

AUXILIARY OPERATION

OFFLINE OPERATIONS
PERFORMED ON EQUIPMENT
NOT UNDER DIRECT CON-
TROL OF THE CENTRAL
PROCESSOR.

o
A JUNCTION IN THE
LINE OF FLOW

I/O FUNCTION IN WHICH
THE MEDIUM IS MAG-
NETIC CORE (USE
AUXILIARY OPERATION
SYMBOL)

O
POINTS IN A PROGRAM
WHERE SEVERAL PATHS
MAY BE POSSIBLE, BASED
ON VARIABLE CONDITIONS

DOCUMENT

I/O FUNCTION IN WHICH
THE INFORMATION IS

DISPLAYED FOR HUMAN
USE AT TIME OF PROC-
CESSING.

C3
I/O FUNCTION IN WHICH
THE MEDIUM IS A
DOCUMENT

A
REMOVAL OF ONE OR
MORE SPECIFIC SETS OF
ITEMS FROM A SINGLE
SET OF ITEMS.

INPUT/OUTPUT MAGNETIC DISK MAGNETIC DRUM MAGNETIC TAPE

O
MAKING AVAILABLE
INFORMATION FOR
PROCESSING OR RE-

CORDING PROCESSED
INFORMATION

I/O FUNCTION IN WHICH
MEDIUM IS MAGNETIC
DISK

a
I/O FUNCTION IN WHICH
MEDIUM IS MAGNETIC
DRUM

Q
I/O FUNCTION IN WHICH
THE MEDIUM IS

MAGNETIC TAPE

MANUAL INPUT

I/O FUNCTION IN WHICH
THE INFORMATION IS

ENTERED MANUALLY AT
THE TIME OF PROC-
CESSING.

MANUAL OPERATION

O
ANY OFFLINE PROCESS
GEARED TO THE SPEED
OF A HUMAN BEING

OFFLINE STORAGE

V
COMBINING TWO OR
MORE SETS INTO ONE
SET

V
REPRESENTS ANY
OFFLINE STORAGE OF
INFORMATION REGARD-
LESS OF THE MEDIUM

ONLINE STORAGE PRE DEFINED PROCESS PREPARATIONa
REPRESENTS AN I/O

FUNCTION UTILIZING
MASS STORAGE THAT
CAN BE ACCESSED
ON LINE

A NAMED PROCESS CON-
SISTING OF ONE OR MORE
OPERATIONS OR PRO-
GRAM STEPS, SPECIFIED
ELSEWHERE.
(SUBROUTINE)

O
A GROUP OF INSTRUC-
TIONS WHICH MODIFY,
UPDATE, CORRECT OR
OTHERWISE CHANGE
THE PROGRAM

REPRESENTS THE
PROCESS OF EXECUTING
A DEFINED OPERATION
OR GROUP OF OPERA-
TIONS

PUNCHED CARD PUNCHED TAPE

I/O FUNCTION IN WHICH
THE MEDIUM IS PUN-
CHED CARDS INCLUDING
MARK SENSE CARDS,
STUB CARDS

a
I/O FUNCTION IN WHICH
THE MEDIUM IS

PUNCHED TAPE

ARRANGING
A SET
INTO A
PARTICULAR
SEQUENCE

(USE EXTRACT
AND MERGE)

CZD
A POINT AT WHICH
INFORMATION CAN
ENTER OR LEAVE

233

1 . Designation : Data Element Standards (composite summary shefet)

FIPS PUB 4 - Calendar Date
FIPS PUB 5-1 - States and Outlying Areas of the United States
FIPS PUB 62 - Counties and County Equivalents of the States of the United States
FIPS PUB 8-4 - Standard Metropolitan Statistical Areas
FIPS PUB 10-1 - Countries, Dependencies, and Areas of Special Sovereignty
FIPS PUB 19 - Guidelines for Registering Data Codes

2. Title :

3. Maintenance Authority : NBS

4. Scope : Data Element Representations and Codes

5. Relationship to Other Standards : (See individual publications)

6. Competitive Standards:

7. Standardization Status: (See individual publ ications)

8. Implementation Status: (See individual publ ications)

9. Known Manufacturing Uses:

10. Known Sources of Information: Mr. Harry S. White, Jr.,

11

.

Probable Sources of Information:

12. Bib! iography : (See individual publications)

13. Comments : These data elements are not directly relevant to CAM; on the other hand,
if any of these data elements are utilized in a CAM system, the standard formats
should be followed to allow transferability. In addition, these standards offer
models for standardizing the data elements that are directly relevant to CAM.

234

Designation : FIPS PUB 1 1/ANSI X3. 12-19701 .

2. Title : Vocabulary for Information Processing

3. Maintenance Authority : NBS

4. Scope : This Vocabulary is a reference document for general use throughout the

Federal Government to help promote a common understanding of information processing
activities

.

5. Relationship to Other Standards : Same as ANSI X3 .12-1 970

6. Competitive Standards : None known.

7. Standardization Status : Published Dec. 1, 1970. The ANSI Standard was approved
Feb. 18, 1970 as a revision of U.S.A. Standard X3 .12-1966.

8. Implementation Status :

9. Known Manufacturing Uses : Applicable to all information processing activities.

10. Known Sources of Information : Mr. Harry S. White, Jr., NBS, (301) 921-3157;
Ms. Josephine Walkowicz, NBS, (301) 921-3485.

1 1 . Probable Sources of Information :

12. Bib! iography :

13. Comments : An "American National Dictionary of Information Processing" will be issued
as an ANSI Technical Report on or about October 1, 1976.

235

STANDARDS FOR COMPUTER SYSTEMS

MEDIA STANDARDS

INTRODUCTION

PUNCHED CARDS

MAGNETIC TAPE

MAGNETIC DISK PACKS

PUNCHED PAPER TAPE

RECOMMENDATIONS

REFERENCES

SUMMARY DATA SHEETS

237

INTRODUCTION

Of basic importance to any computer system is the media on which
computer readable information is prepared, stored and exchanged. Adherence
to formal media standards is a simple economic principle. Consider a computer
program of 20 thousand language statements punched onto a nonstandard
card deck. A lengthy and costly keypunch task would await anyone wishing
to use this program. Fortunately the industry has pretty well standard-
ized the media in common use; punched cards, magnetic tape, punched
paper tape, and disk packs.

PUNCHED CARDS

These are the familiar 31/4x7 3/8 inch heavy paper cards that are
as common to a computer programmer as nails to a carpenter. ANSI Standard
X3.ll describes the physical attributes and quality of these while ANSI
Standard X3.21 defines the size and location of the rectangular holes.
It should be remembered that for punched cards to be readily transportable
it is necessary that a specification be made to the coding of characters
on the card. See the Hollerith Punched Paper Card Code.

MAGNETIC TAPE

Specifications for 1/2 inch wide magnetic tape and reels are given
in ANSI Standard X3.40 while format and recording data are detailed in
ANSI X3.14 and X3.22. Together these standards enable mechanical, magnetic
and recording format interchangeability of data among various systems and
equipment utilizing the American National Standard Code for Information
Exchange, X3 . 4 . Magnetic tape written in this manner provides the best
means of exchanging computer data. It is also a convenient method for
use in archieval storage and distribution of ICAM developed software. A
recent DATAMATION article details recommended procedures for maintaining
good quality control over a magnetic tape based archieval record storage
facility.

MAGNETIC DISK PACKS

ANSI Standard X3. 46-1974 provides the general, magnetic and physical
requirements for interchangeability of six-disk packs among various disk
drives. However, ANSI leaves the formating and recording of data to the
manufactures' discression. As a result absolute compatibility is not
guaranteed. The six-disk pack is giving way to a twelve-disk pack for
which an ANSI standard is yet unavailable.

PUNCHED PAPER TAPE

Two ANSI Standards exist for describing punched paper tape. This
media is most extensively used for the numerical control of machine tools.
However, some use is seen for data storage in minicomputer applications.
ANSI X3.29 details the physical characteristics and acceptance test pro-
cedures for one inch wide and eleven-sixteenths inch wide unpunched,
oiled paper tpae. ANSI X3.18 covers the physical dimensions of the tape
as well as its perforations. Caution is advised that to insure
portability of paper tapes one must specify the format and coding of
the data as well as the physical characteristics.

When used in NC applications, punched paper tape has been justly
described as the weakest link in the process. This is a result of the many
maintenance problems that exist on paper tape punches and readers. It
would be unfortunate if the Air Force perpetuated the use of paper tape
in large scale CAM Systems. Direct wire link is today far more efficient,
reliable, and versatile.

238

RECOMMENDATIONS

1. Magnetic tape should be used as the primary means of exchanging
and storing computer readable information.

2. All magnetic tapes should conform to ANSI X3.40, X3.14 and X3.22
Standards

.

3. The use of punched paper cards should be deemphasized as it is an
inefficient media of information storage. However, where it is
necessary to produce cards the ANSI X3.ll and ANSI X3.21 Standards
should be specified.

4. The use of punched paper tape should be avoided for transmitting
NC data. Direct wire link from computer to machine controller
provides a higher quality system configuration.

REFERENCES

(1) Specification for General Purpose Paper Cards for Information Processing ,

ANSI X3.ll, October 1969, American National Standards Institute,
Inc., 1430 Broadway, New York City, New York 10018.

(2) Rectangular Holes in Twelve-Row Punched Cards ,
ANSI X3.21, October 1976,

American National Standards Institute.

(3) Recorded Magnetic Tape for Information Interchange;
200 CPI, NRZ I , ANSI X3.14, December 1972
800 CPI, NRZ I , ANSI X3.22, December 1972
9 Track 200 CPI, NRZI, ANSI X3.40, February 1976
9 Track 800 CPI, NRZI, ANSI X3.40, February 1976
9 Track 1600 CPI, PE, ANSI X3.40, February 1976
American National Standards Institute.

(4) One Inch Perforated Paper Tape for Information Interchange ,

ANSI X3.18, March 1974, American National Standards Institute.

(5) Eleven-Sixteenths-Inch Perforated Paper Tape for Information Interchange
,

ANSI X3.19, March 1974, American National Standards Institute.

(6) Specification of Properties of Unpunched Oiled Paper Perforator Tape ,

ANSI X3.29, May 1971, American National Standards Institute.

(7) Unrecorded Magnetic Six-Disk Pack , ANSI X3. 46-1974, May 1974, American
National Standards Institute.

(8) Archival Data Storage , Sidney B. Geller, DATAMATION , October 1974,
pp 72-80.

SUMMARY DATA SHEETS

The following Data Sheets summarize those standards which apply to
Computer Media.

239

1 . Designation : MEDIA

2. Title : Punched Cards (80-column "IBM" Type)

3. Maintenance Authority : NBS/ANSI/I SO/ E I

A

4. Scope : Card stock, card and hole dimensions, Hollerith coding

5. Relationship to Other Standards :

ISO Recommendation
or Draft Recommendation

Related National
Standard

Related Federal
Standard (FIPS)

ISO 1679 Representation of ISO 7-Bit X3 .26- 1969 Hollerith Punched
Card Code

FIPS PUB 14 Hollerith Punched
Card CodeCoded Character Set in 12-

Row Punched Cards

ISO 1681 Specifications for Unpunched
Paper Cards

X3. 11-1969 Specification for
General Purpose Paper Cards
for Information Processing

ISO 1682 Demensions and Locations of X3. 21-1967 Rectangular Holes
in 12-Row Punched Cards

FIPS PUB 13 Rectangular Holes
in 12-Row Punched CardsRectangular Punched Holes

in 80 -Column Punched
Paper Cards

6. Competitive Standards :

7. Standardization Status : Summarized in 5 above.

8. Implementation Status : Widely implemented in IBM and other computer installations.

9. Known Manufacturing Uses :

10. Known Sources of Information : Mr. H. F. Ickes, IBM, (914) 463-9779

11. Probable Sources of Information: Mr. Robert M. Brown, Vice-Chairman of ANSI X3,

CBEMA, (202) 466-2288.

12. Bib! iography : See 5 above.

13. Comments : Hollerith cards have 80 columns and 12 rows of rectangular holes.
They are not compatible with the round hole 90-column cards formerly marketed
by UNIVAC, nor with the 96-column cards introduced by IBM with the System 3.

240

1 Designation : MEDIA

2. Title : Magnetic Tape (1/2 inch, 9 track. Digital)

3. Maintenance Authority : NBS/ANSI/ ISO/ EIA

4. Scope : Unrecorded tape stock, recording formats, bit densities, coding, hubs,

reels.

5. Relationship to Other Standards :

ISO Recommendation
or Draft Recommendation

Related National
Standard

Related Federal
Standard (FIPS)

ISO R961 Implementation of the 6 and
7-Bit Coded Character Sets
on 7-Track 12.7 mm (1/2 in)

Magnetic Tape.

ISO 962 Implementation of the 7-Bit
Coded Character Set on 9-

Track, 12.7 mm (1/2 in)

Magnetic Tape.

ISO R1858 General Purpose Hubs and
Reels with 76 mm (3 in)

Centrehole for Magnetic
Tape Used in Interchange
Information Applications

ISO R1859 Un recorded Magnetic Tapes for
Instrumentation Applications
--General Dimensional Re-

quirements

ISO R1860 Precision Reels for Magnetic
Tape Used in Interchange
Instrumentation Applica-
tions.

ISO R1861 7-Track 8 rpmm (200 rpi)

Magnetic Tape for Infor-
mation Interchange.

RS-346 Type A Hubs and Reels
and Magnetic Tape

ISO R1862 9-Track 8 rpmm (200 rpi)

Magnetic Tape for Infor-
tion Interchange.

X3. 14-1973 Recorded Magnetic
Tape for Information Inter-
change (200 CPI, NRZI)

ISO RS1863 9-Track 32 rpmm (800 rpi)

Magnetic Tape for Infor-
mation Interchange.

X3. 22-1973 Recorded Magnetic
Tape for Information Inter-
change (200 CPI, NRZI)

FIPS PUB 3-1 Recorded Mag-
netic Tape for Information
Interchange (800 CPI, NRZI)

ISO R1864 Unrecorded Magnetic Tape for

Information Interchange,

8 and 32 rpmm (200 and

800 rpi), NRZI, and 63

rpmm (1600 rpi), Phase-

Encoded.

ISO 2690 Unrecorded Magnetic Tape for

Instrument Applications—
Physical Properties and Test

Methods.

X3 . 40-1 973 Unrecorded Mag-

netic Tape for Information
Interchange (9-Track 200
and 800 CPI, NRZI, and
1600 CPI, P.E.

)

ISO 3788 9-Track, 64 rpmm (1600 rpi)

Magnetic Tape for Information

Interchange.

X3. 39-1973 Recorded Magnetic
Tape for Information Inter-

change (1600 CPI, P.E.)

X3. 54-1976 Recorded Magnetic
Tape for Information Inter-

change (6250 CPI, GCR)

FIPS PUB 25 Recorded Magnetic
Tape for Information Interchange

(1600 CPI, Phase Encoded)

SRM 3200 is used internationally. SRM 3200 is used nationally. Standard Reference Material 3200,

Secondary Standard Magnetic Tape
(Computer Amplitude Reference)
(Sold by NBS)

.

241

6. Competitive Standards :

7. Standardization Status : Summarized in 5 above.

8. Implementation Status : Widely implemented in computers.

9. Known Manufacturing Uses :

10. Known Sources of Information: Mr. John L. Little, NBS, (301) 921-3723;
Mr. Sidney B. Geller, NBS

, (301) 921-3723

11. Probable Sources of Information: Mr. Robert M. Brown, Vice-Chairman of ANSI

X3 , CBEMA, (202) 466-2288.

12. Bibl iography : See 5 above.

13. Comments : There are no ANSI or Federal standards for the 7-track tapes shown
in 5 above.

242

1 . Designation : MEDIA

2. Ti tie : Paper tape (one inch, 8-track)

3. Maintenance Authority : NBS/ ANSI/ ISO

4. Scope : Paper stock, tape and hole dimensions, coding, reels, rolls

5. Relationship to Other Standards :

ISO Recommendation Related National Related Federal
or Draft Recommendation Standard Standard (FIPS)

FIPS PUB 2 Perforated Tape
Code for Information Interchange

FIPS PUB 26 One-Inch Perforated
Paper Tape for Information
Interchange

FIPS PUB 27 Take-Up Reels for
One-Inch Perforated Tape for
Information Interchange

7. Standardization Status : Summarized in 5 above.

8. Implementation Status : Widely implemented in minicomputers, teletype machines,
certain other computer terminals.

9. Known Manufacturing Uses : Widely used to drive numerically controlled machine
tools.

10. Known Sources of Information : Mr. John L. Little, NBS, (301) 921-3723

11. Probable Sources of Information : Teletype Corporation

12. Bibl iography : See 5 above.

13. Comments : Some tapes contain Mylar plastic to resist tearing. Dimensions of such
tapes are the same as for paper tapes. Dye is used in some tapes to improve
optical reading of the holes. The 11/16 inch width of ANSI X3 .19-1 967 tape accommodates
only 5 tracks for communications in "Baudot" 5-bit code.

ISO 1113 Representation of 6 and 7-Bit
Coded Character Sets on
Punched Tape

ISO 1154 Dimensions for Punched Paper
Tape for Data Interchange

ISO 1729

ISO 2195

Properties of Unpunched
Paper Tape

Data Interchange on Rolled
Up Punched Paper Tape--
General Requirements

X3. 6-1965 Perforated Tape Code
for Information Interchange

X3 . 18-1967 One-Inch Perforated
Paper Tape for Information
Interchange

X3. 19-1967 Eleven-Sixteenths
Inch Perforated Paper Tape
for Information Interchange

X3. 29-1971 Specifications for
Properties of Unpunched Oiled
Paper Perforator Tape

X3. 20-1967 Take-Up Reels for
One-Inch Perforated Tape
for Information Interchange

6.

Competitive Standards :

243

1 . Designation : FIPS PUB 25/ANSI X3. 39-1973

2. Title : Recorded Magnetic Tape for Information Interchange (1600 CPI, Phase Encoded)

3. Maintenance Authority : ANSI X3B1

4. Scope : Hardware Standard. This standard specifies the recorded characteristics
of 9-track, one-half inch wide magnetic computer tape, including the data format for
implementing the Federal Standard Code for Information Interchange (FIPS 1)

on magnetic tape media.

5. Relationship to Other Standards : See FIPS PUB 12-2, pages 17-18 under "Media,
Magnetic Tape" for the relationship to 16 other standards dealing with
magnetic tape. Also ANSI BSR X3.54 (6250 CPI).

6. Competitive Standards : All 7-track magnetic tape codes. All magnetic tape codes
in use prior to 1967. EBCDIC is widely recorded on 9-track magnetic tapes, and such
tapes are similar except for the coding.

7. Standardization Status : Magnetic tape standards were first approved in 1967 and
have been augmented and updated ever since.

8. Implementation Status : With ASCII coding, as specified in the ANSI magnetic tape
standards, these standard tapes are not nearly as widely used as similar tapes with
EBCDIC coding, because of the prevalence of IBM System 360 and 370 machines using
EBCDIC tapes.

9. Known Manufacturing Uses : Wherever manufacturing uses magnetic tapes.

10. Known Sources of Information: Mr. Michael D. Hogan and Mr. John L. Little, NBS,

(301) 921-3723.

11. Probable Sources of Information : IBM, Honeywell, UNIVAC, Burroughs.

12. Bibliography : FIPS PUB 25/ANSI X3. 39-1973; FIPS PUB 12-2, pages 17-18.

13. Comments : There have never been any ANSI standards for 7-track magnetic tape. The
9-track standards are identical to IBM 360/370 tapes except that the coding in the

standards is specified as ASCII instead of EBCDIC. The 9-track tape was the
first 8-bit environment in which 7-bit ASCII was embedded. The technique is to make
the high order bit a "zero" bit when the other 7 bits are ASCII' bits. Pari

always odd.

Relationships in 9-Track Magnetic Tape

Track No., ANSI X3. 22-1967 (FIPS 3) 4 7 6 5 3 9 1 8 2

Environment (8 information bits) P E
8

E
7

E
6

E
5

E
4

E
3

E
2

E
1

ASCII (FIPS 1) Bits (high to low) P Z >7 b
6

b
5

b
4 >3 b

2
b

l

IBM EBCDIC Bit Numbers (high to low) P 0 1 2 3 4 5 6 7

Binary Weight (unpacked) P 2
7

2
6

2
5

2
4

2
3

2
2

2
1 2°

Binary Weight (packed) P 2
3

2
2

2
1 2° 2

3
2
2

2
1 2°

Packed Numeric Digit Order P High Low

Note that the ASCII low-order bit is b-,, and the EBCDIC low-order bit is bit 7. The
packed numeric formats are not standardized. A more complex 10-character, 90-bit
Group Encoding Scheme is employed on 6250 bpi magnetic tape.

244

1 . Designation : ANSI BSR X3.48

2. Title : Magnetic Tape Cassette for Information Interchange (Co-Panar, 3.81 mm
(0.105 in), 32 bpmm (800 bpi), PE)

3. Maintenance Authority : ANSI X3B5

4. Scope : Hardware Standard. This standard specifies the physical, magnetic, and

recorded characterise cs for a 3.81 millimeter magnetic tape cassette in order
to provide for data interchange between information processing systems at a recording
density of 32 bits per millimeter using phase encoding techniques.

5. Relationship to Other Standards : ISO DIS 3407 (technical deviations, probably
compatible); ECMA-34, 1973 (technical deviations, probably compatible)

6. Competitive Standards :

7. Standardization Status : Final ANSI approval is pending and publication date is

estimated to be August 1976. Designation will be ANSI X3. 48-1976.

8. Implementation Status : The ANSI compatible cassette has been implemented widely
in communication terminals, P0S terminals, intelligent terminals, and minicomputers.
It is used in General Electric Terminet 300; Hazeltine 2000, 3000, 5000; Interdata
74; Memorex 1280; 01 i vetti -P602 ; Sycor-340E, 310; TI-700 Series; and UNIVAC
Uni scope equipments.

9. Known Manufacturing Uses : The ANSI cassette is used as a data storage device
in data processing systems designed for scientific, business, and industrial
applications.

10. Known Sources of Information: Mr. Raymond C. Smith, 3M Company, Chairman of ANSI X3B5,

(612) 733-6297; Mr. Michael D. Hogan, NBS, Member of ANSI X3B5, (301) 921-3723;
Mr. William F. Hanrahan, CBEMA, Secretary of ANSI X3, (202) 466-2288.

11. Probable Sources of Information : ANSI X3B5 Membership List (available from CBEMA)

12. Bibliography : ANSI BSR X3.48

13. Comments : It is anticipated that ANSI X3. 48-1976 will be available by August 1976.

A FIPS PUB adopting the requirements of ANSI X3. 48-1976 has been drafted for Federal

and public review.

245

Designation : ANSI BSR X3.56

2. Title : Magnetic Tape Cartridge for Information Interchange, 4 Track, 0.250 inch

(6.30 mm) , 1600 bpi (63 bpmm). Phase Encoded.

3. Maintenance Authority : ANSI X3B5

4. Scope : Hardware Standard. This standard specifies the recorded characteristics
for 0.250 inch magnetic tape cartridge in order to provide for data interchange
between information processing systems at a recording density of 1600 bits per inch

using phase encoding techniques.

5. Relationship to Other Standards : ANSI BSR X3.55 -(base); ISO DIS 4057 (technical

deviations, probably compatible); ECMA-46, 1976 (technical deviations, probably
compatible)

6. Competitive Standards :

7. Standardization Status : Final ANSI approval is pending and publication date is

estimated to be late 1976. Designation will be ANSI X3. 56-1976.

8. Implementation Status : The ANSI compatible cartridge has been chosen for use in

many minicomputers and communication terminals. It is used in the Three Phoenix
TCT-300, the Kennedy Co. 4344/45/46 digital ^cartridge recorders, and the Mohawk
Data Sciences 2021/2022 cartridge tape drive, for example.

9. Known Manufacturing Uses : The ANSI compatible cartridge is used as a data storage
device in data processing systems designed for scientific, business, and industrial
appl i cations

.

10. Known Sources of Information: Raymond C. Smith, 3M Company, Chairman of ANSI X3B5

(612) 733-6297; Michael D. Hogan, NBS , Member of ANSI X3B5, (301) 921-3723;
Mr. William F. Hanrahan, CBEMA, Secretary of ANSI X3, (202) 466-2288.

11. Probable Sources of Information : ANSI X3B5 Membership List (available from CBEMA)

12. Bibliography : ANSI BSR X3.56; ANSI BSR X3.55

13. Comments : ANSI BSR X3.55, Unrecorded Magnetic Tape Cartridge for Information
Interchange, 0.250 inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded, contains
the mechanical and magnetic requirements for the 0.250 inch magnetic tape cartridge.
It supports ANSI BSR X3.56 and will be published concurrently.

246

APPENDIX A STATEMENT OF WORK

"National Bureau of Standards Support in the Determination
and Evaluation of U.S. Industry Standards Applicable to the
Development of a Computer Aided Manufacturing Architecture"

1.0 OBJECTIVE

The objective of this effort is to provide the Air Force with definition
and analysis of existing and potential standards which are necessary for the
optimum development and implementation of integrated computer aided manufacturing.
The Air Force Computer Aided Manufacturing Program team will develop a close
working relationship with the National Bureau of Standards staff. This relation-
ship will serve as a basis for continued co-involvement in the standards area
throughout the Computer Aided Manufacturing Program. Results from this effort
will provide the Air Force with a sound basis upon which to structure the

development of individual computer based subsystems so that these systems not

only work independently, but are able to perform as an integrated computer aided
manufacturing system.

2.0 SCOPE

Five tasks are outlined to fulfill the objectives of this program.

2.1 Identify and provide current standards applicable to computer aided
manufacturing

.

2.2 Analyze current standards.

2.3 Assess actual usage of standards throughout industry.

2.4 Hypothesize optimal standards for integrated computer aided manufacturing.

2.5 Assess the relative roles of existing standards organizations and the Air
Force in organizing for the development of optimal standards for computer aided
manufacturing.

The existing expertise and experience level of the NBS with respect to
standards, standards usage, standards conflicts and standards organizations will
be called upon to perform the program tasks. Especially in task 2.3, but in

general for all tasks, additional information information should be gained from
outside government and industry sources to the extent required to increase tne
confidence level in task results. Hypotheses about future standards needs
should also deal mostly with NBS experience and should be tested by outside
sources only to the degree required to insure confidence in results.

The results of each task will be a report containing findings, conclusions
and recommendations as appropriate according to Section 5. In addition, monthly
written reports will be provided to AFML/LT identifying both progress and
problems. A close verbal working relationship is also expected between NBS and
the Air Force Computer Aided Manufacturing team during program execution.

247

3,0 BACKGROUND

Developments in the use of the computer as an aid to manufacturing have

proceeded in a modular but disjointed fashion. Hardware and software systems

have been designed and developed to solve the particular problem of the day and

have been by and large limited in scope in order to most expediently aid the

performance of a particular manufacturing function. The events subsequent to

the development of N/C machine tools and the AFT language are examples of this

approach. Integration of these systems has been attempted in some cases, but

only as an afterthought. This situation has resulted in the proliferation of

disjointed computer software and hardware that has in many ways tended to

actually magnify problems in manufacturing.

The long term adverse effect of continuing development in this way has

been recognized both in the United States and in many foreign countries.
Information compiled by the Comptroller General of the United States and others
suggests that foreign nations have not only identified this problem, but have
developed national programs aimed directly at providing strong impetus to

increased productivity through the application of integrated Computer Aided
Manufacturing systems.

The evidence, both abroad and in this country, advises that the economic
and sociological benefits to be gained from this integration far exceed those
benefits that have been accepted as being directly attributable to individual
development efforts. This is particularly true in discrete parts-batch
manufacturing based-industries because of such factors as the dual requirement
to maintain both a flexible fabrication base and a highly efficient, controlled
operation. These companies comprise a high percentage of U. S. industry, but
their individual outputs are relatively small. The prime aerospace companies
and their vast network of subcontractors fall into this group.

The Air Force recognized these facts and in 1973 produced a conceptual
master plan (AFML-TR-74-104) Xvzhich attempted to identify and group the major
functions of manufacturing so that an organized approach at integration could
evolve. The results of this contractual effort were briefed to American industry
in June of 1974. At that time there appeared to be a general opinion in industry
that an important new data base in support of integrated Computer Aided
Manufacturing had been created, but there was little agreement in either the
public or the private sector as to a subsequent course of action. Dialog in this
vein continued between industry and DoD 'for the remainder of 1974.' Subsequently,
further study of Computer Aided Manufacturing was undertaken in 1975 by the Air
Force in response to a memorandum by Deputy Secretary of Defense, W. P. Clements.
This study focused on the state of the production art in aerospace and related
industries. Its primary objective was identification of cost" saving opportunities
in the production of defense materiel through the application of computers and
elements of computer technology. Among the conclusions was that subsystem
integration provides the key to ultimate benefit realization in'this area.

248

NASA, through the IPAD Program, is attempting to accomplish the same
objective in the design area, but through the use of a single, dedicated
hardware/software computer system. Other organizations such as the Aerospace
Industry Association, Computer Aided Manufacturing-International Incorporated,
the Society of Manufacturing Engineers, the National Science Foundation (RANN
Program) and possibly others have also attempted to evolve programs which
consider not only advances in individual areas of manufacturing, but also the
relationship of some of these areas.

All of these programs recognize the need for an organized plan for
integration of subsystems in order to insure such factors as portability of

software and adequacy of communications. However, to date, although it is

cl ear that a key to affordable integration is through the use of various types
of standards, no effort has been made to specifically identify and characterize
actual requirements which would enable integration of Computer Aided Manufacturing
subsystems

.

In addition, while good work continues to be accomplished in areas related
to Computer Aided Manufacturing by various standard groups, such as ANSI, ISO,

EIA, NCS
,
SME

,
IEEE, CAM -I and some computer system manufacturers, no work has

been done to identify potential conflicts or to establish a master plan for

standards development.

The Air Force has proposed a major new initiative in the development of
Computer Aided Manufacturing. This is a long term program which includes
development of individual subsystems within the general areas displayed
in Section 5, Attachment 2. The long tetm goal of this program is totally
integratable Computer Aided Manufacturing.

In its ultimate, this would allow manufacturing activities to be performed
in a manner which today is only barely within the ability to comprehend -- both
managerial ly and technically. For example, two illustrative, conceptual goals
could be:

(1) The ability for a part designer to not only optimally design a part,
but at the same time to subject this part to a performance evaluation and to

plan for the most economical fabrication of the part within the constraints of
schedule and availability of raw materials. Further, it could be envisioned
that the fabrication test may be performed immediately and the part production
may be automatically introduced into the overall manufacturing plan.

(2) A manufacturing capability where all information is available in

standard data formats "on time" via computer display and where the chief
executive's staff could be able to perform "what if" simulation ranging from

global risk analysis to plant layout.

The first five years of this program have been outlined in some detail.
Included are projects that are both quite specific within the functional areas
of manufacturing and projects solely designed to effec.t the interface, of code
within subsystems and communications between subsystems. Some of these projects
will advance the state of the art in discrete areas such as sheet metal part
fabrication and assembly. These projects arc required both for the long-range
goal and in order to demonstrate short-term payoff. But, even in short-term
projects, the overriding goal is integration. This can only be accomplished
through the use of interface standards, acceptable validation procedures and

techniques and other such concepts.

249

It is definitely not the intent of the Air Force to legislate in these

areas, neither docs it seem feasible that all standards related problems can be

solved with today's technology. This is also a most dynamic environment and

the probability and possibility of change must be allowed in order to accommodate
unforeseen technical advances and to not stifflc individual initiatives. Never-
theless, it Is believed that both problems and requirements must be at least
recognized in the early stages of the Computer Aided Manufacturing Program.
Where existing standards will aid integration, they should be utilized. Where
standards do not exist, they should be developed by the appropriate agency and

then adopted within the Air Force Program. Where conflicts arise, they should
be identified and a plan for their resolution outlined.

4.0 TASKS /TECHNICAL REQUIREMENTS

4.1 The first task involves the accumulation and grouping of current standards
vhich may be relevant to the use of computers in all aspects of manufacturing.

4.1.1 For the first report NBS shall obtain and provide the Air Force with
copies of all current standards which may be relevant to the use of computers
in all aspects of manufacturing. As a minimum, such areas as CAD/CAM interfaces,
hardware interfaces, software interfaces and procedures, communications codes

and protocols, test validation concepts, security issues, Federal Information
Processing Standards (FIPS), et al ,

which apply to manufacturing shall be

addressed

.

4.1.2 NBS shall organize these published standards into logical groupings
for easy reference by the reader. A graphical matrix display of these groupings
shall be prepared as part of the Task Report.

4.1.3 NBS shall develop a bibliography of all standards obtained for Task 4.1.1
and include this in the first report as identified in Section 5, Attachment 1.

4.2 NBS shall analyze standards obtained in Task 4.1.1 in order to determine
the merit of various standards or groups of standards for use in integrated
Computer Aided Manufacturing.

4.2.1 NBS shall analyze each standard or groups of standards (as appropriate)
obtained in Task 4.1.1 for the standards merit in terms of relevance for use in

integrated Computer Aided Manufacturing. NBS shall identify existing and
potential conflicts between standards or groups of standards considering such

factors as: fitness for use in particular application approaches and stability
in light of advancing manufacturing and computer technology.

4.2.2 NBS shall modify the matrix of Task-4.1.2 in order to -clearly display
the results of Task 4.2.1 in graphical form.

4.2.3 Task 2.0 report of NBS shall annotate the bibliography obtained in Task
4.1.3 and shall include this bibliography and the matrix of Task 4.2.2 as part of
the Task Report identified in Section 5, Attachment 1.

250

4.3 Standards actually in use today within manufacturing industries should be

identified. This shall include both those standards displayed in Task 4.1 and

any additional private standards which may be of significance to the CAM Program.
Included shall be both computer based standards now in use as well as those
standards likely to be affected or which must be considered in the application
of computers to aid a particular manufacturing, function.

4.3.1 Standards actually in use should be identified
including communications codes, protocols and line disciplines. Of particular
interest are defacto communications and security standards which may be evolving
as a result of advanced network research and recent announcements by IBM, Digital
Equipment Corporation, and Control Data Corporation.

4.3.2 NBS shall develop a report at the completion of this task summarizing
the actual usage of standards as identified in Section 5, Attachment 1.

4.4 Upon completion of the analysis of current standards in Task 4.2 and the

assessment of the usage of standards in Task 4.3, hypotheses from NBS about the

most appropriate ("best") standards for specific applications are required.

4.4.1 NBS shall integrate their experience and expertise with their findings
from Task 4.2 and Task 4.3 and for each standard or set of standards identified
in Task 4.1.2, NBS shall recommend the "best" to be used in integrated Computer
Aided Manufacturing.

4.4.2 If new standards are suggested*, status and timing for development of
these new standards should be outlined and suggested mechanisms for development
of these needed new standards explained.

4.4.3 If existing standards require modification, .then status and timing for

changes shall be outlined and mechanisms explained as per Task 4.4.2.

4.4.4 When existing standards meet the "best" requirements, these should be
noted.

4.4.5 NBS shall clearly display the results of Task 4.4 through modification
of the matrix of Task 4.2.

4.4.6 All requirements of Task 4.4 shall be included in the fourth Task Report
as identified in Section 5, Attachment 1.

4.5 A review of existing standards organizations shall be performed in order
to identify issues such as potential conflicts, duplication of effort and
procedural approaches which should be addressed in conducting
the integrated Computer Aided Manufacturing Program.

4.5.1 The present and planned activity of existing standards organizations
such as ANSI, ISO, IEC

,
EIA, NCS

,
SME

,
CAM-I shall be assessed to identify

potential conflicts and duplication of effort which should be addressed by the
Air Force in resolving issues or filling in holes displayed in the matrix of

4.4.5.

251

4.5.2 These organizations shall be reviewed to identify the most effective
individual structures and procedural approaches which are utilized.

4.5.3 An approach including funding, time phasing and required working
relat ionships shall be outlined tc result in the most effective standards and
their related practices and procedures for integrated GAM.

4.5.4 All requirements of Task 4.5 shall be included in the fifth task report-
identified in Section 5 of Attachment 1.

5.0 DELIVERABLE REPORTS

5.1 This Statement of Work contains five (5) tasks to be performed by NBS

.

Each task has a report as its end product. These reports are deliverable items
due thirty (30) days after completion of each task.

5.2 The task schedules, program reviews and report delivery dates are identified
by the contract Milestone Chart (Attachment No. 1 of this Section).

6.0 SPECIAL CONSIDERATIONS

6.1 All AFML funded travel by NES personnel necessary for this program shall be
subject to AFML Project Manager approval.

:

252

APPENDIX B CAM SYSTEMS ARCHITECTURE

To identify where standards are needed in a large system, and particularly to identify
where the major system interfaces are located, one must have a concept of the overall
system structure or archi tecture.

Since the Air Force will develop the detailed I CAM architecture after this study is
complete, existing system concepts and architectures will be examined to identify the common
elements to guide the further presentation and discussion of relevant standards.

In discussing the architecture of CAM it is soon apparent that there is no widely
accepted definition or overall concept. CAM can be defined as the application of computers
in the manufacturing process. This definition is very global and does not clearly define
the boundaries of CAM and does not identify concepts which are not CAM.

Several examples are useful. The early use of computers in manufacturing industry fell
into three main categories: business applications such as payroll and accounting programs,
scientific and engineering support programs, and APT. In fact, it has been estimated
that fully 30 percent of the use of IBM 709 series machines in the aerospace industry in
the first half of the 1 960

1

s was committed to APT runs. Subsequent uses included inventory
control, customer order servicing, scheduling and control, and computer aided design.
It should be noted that, with the exception of interactive CAD systems, most CAM programs
have been batch type programs, even when available on time sharing systems to smaller
companies.

Two typical examples of CAM systems are the Rock Island Arsenal Pilot Automated Shop
Loading and Control System (PASLACS) specifications (Figure 1), which cover several
commonly available systems and the Norwegian AUT0K0N 71 programs for ship building shown
in Figure 2. Even if an online data base is kept of all files, these types of systems
are basically a set of programs that run in batch mode.

The more recent development of large Data Base Management Systems, Management Informa-
tion Systems, communication systems, and networks, including many computers and real time
operating systems, has led to concepts of CAM systems in which there is a real time interac-
tion with the system. IBM's COPICS, Figure 3, is an excellent example, as is the CAM system
in use at McDonnell Douglas, Figure 4. The Caterpillar system, Figure 5, shows the use of

such concepts outside of the aerospace industry.

Future systems concepts emphasize distributed processing and data structures and
"smart" data base concepts. A "smart" data base is one which can answer questions about
information that is implicitly, as well as explicity, in the data through the use of

modelling or simulation programs. The ICAM schematic, Figure 6, illustrates this idea.

The development of concepts of integrated manufacturing systems, in which applications
programs are all interfaced to a central operating system, data base management system
and management information system structure which can operate in a real time multi-user
manner, possibly with several computers coupled in a hierarchy or other network, has

led to a proliferation of concepts. There are significant commonalities that are often

obscured by different formats of presentation and by the use of conventions that mix
physical activities with information processing activities.

In fact, there are three different architectures that are simul taneoul sy present in

a CAM system and which must all be considered together. These are:

1. THE ARCHITECTURE OF THE MANUFACTURING SYSTEM

This is the structure of the operation of the manufacturing process itself, includ-
ing both physical activities and the management of those activities. Figure 7

shows the CAM-I Advanced Technical Planning Committee concept of a manufacturing
system, using the cell model convention:

253

control

input output

resources

Note that in a cell model the input and output may be either physical material
or information, depending on the activity.

2. THE ARCHITECTURE OF THE CAM SYSTEM

This is a set of computer programs that process information. The input and output
are always data which, of course, may have a physical analog in material or oper-
ations in the manufacturing process. Figure 8 shows an architecture of a CAM
system developed by the CAM- I Standards Committee, working from the CAM-

I

Long Range Plan, and using a modified "nodes and paths" convention:

.0
input

data base

computer
program

—>(D
output

data base

This convention was chosen to highlight the data bases which are the interfaces
in a CAM system.

3. THE ARCHITECTURE OF THE COMPUTER SYSTEM WHICH RUNS THE CAM PROGRAMS

Figure 9 shows a schematic of part of a computer system with at least two computers
networked together. This schematic was developed to show the main elements of

a computer system that must be considered in evaluating standards relevant to

CAM.

Note that if only one computer is involved and the Input/Output channels are
dropped, the parts of the schematic could be "wrapped around" the data base to

obtain the form of Figure 6. Figure 9 is thus a valid representation of the ICAM

concept, with the communications subsystems explicitly identified.

It is this architecture of a computer system. Figure 9, that will receive the
greatest attention in this study, since it is here that systems standards must
be set to assure software transportabil ity and computability.

254

Figure 1

U.S. Army Rock Island Arsenal Pilot Automated

Shop Loading & Control System (PASLACS)

The Rock Island Arsenal PASLACS specifications show the function of early CAM systems
for scheduling and control, many of which are still in active use.

Each of the functions shown is typically
each specific run.

This schematic is particularly useful in

and control system for batch manufacturing.

a batch program with data input prepared for

showing the feedback required in a scheduling

256

EXECUTION

&

CONTROL

PLANNING

ON SCHEDULE

t

FIGURE 1

U.S. ARMY ROCK ISLAND ARSENAL PILOT AUTOMATED
SHOP LOADING & CONTROL SYSTEM (PASLACS)

257

Figure 2

AUTOKON 71

The AUTOKON 71 system is a set of batch computer programs for ship design and fabrica-
tion linked directly or indirectly to a central data base manager. The system was developed
in Norway and purchased by the Maritime Administration (MARAD) of the U.S. Department of

Commerce for use by U.S. shipbuilders. The Illinois Institute of Technology Research

Institute maintains this software under contract to MARAD.

The programs are:

FAIR, DRAW, TRABO: Fairing programs
ALKON: NC flame cutter part programming
NEST, PRODA: Assist in developing flame cutting programs
LANSKI: Longitudinal curves

SHELL, TEMPLATE: Hull plate programs
DUP: File management utility.

AUTOKON is a computer aided design and NC part programming system. PASLACS, Figure 1,

covers only scheduling and control. Both concepts are part of computer aided manufacturing.

258

I

259

FIGURE

2

NORWEGIAN

AUTOKON

71

SYSTEM

FOR

SHIP

DESIGN

AND

FABRICATION

I

Figure 3

COPICS Concept

The IBM Communications Oriented Production Information- & Control System (COPICS) concept
emphasizes the idea of CAM systems created around a central data base with a data base

management system (DBMS). COPICS is a conceptual design study not a specific product. The
system is conceived of being implemented on one computer or several linked computers, with
possibly hundreds of terminals accessing the system throughout a company on a real time
interactive basis. The system thus depends on modern multi-user, real time operating
systems with DBMS capability.

260

ENGINEERING

261

FIGURE

3

IBM

COPICS

(COMMUNICATIONS

ORIENTED

PRODUCTION

INFORMATION

&

CONTROL

SYSTEM)

CONCEPT

Figure 4

McDonnell Douglas CAM Concept

All of the production and service departments shown on the opposite page can (or will
in the future) access the data and programs of the MCAIR CAM system which runs on the com-
puters of McDonnell Douglas Automation Company. This system is essentially an implementation
of the COPICS concept of Figure 3.

The diagram shows the extent of applications coverage of a major state of the art CAM

system.

262

MCAIR
CAM

r

j

GO
CO co
LU CL
U OO XX CO

!_?!„_

263

McDonnell

aircraft

cam

department

Figure 5

Caterpillar CAM System

This diagram shows the use of integrated CAM concepts outside the aerospace industry.
The Caterpillar system, which could be applied to any large batch manufacturing operation,
shows the integration of design, process planning, and manufacturing operations in a single
system with a central data base structure.

The basic information flow in this integrated system, from left to right with feedback
loops, is clearly shown.

264

INTERACTIVE

FEEDBACK

265

FIGURE

5

CATERPILLAR

TRACTOR

COMPANY

CAD/CAM

CONCEPT

DIAGRAM

Figure 6

Air Force ICAM Architecture

The Air Force ICAM (Integrated Computer Aided Manufacturing) concept is similar to the

COPICS concept. Figure 3, but adds a third layer of software: general purpose utility
programs, including simulation capability to create a "smart" data base system.

266

AIR FORCE ICAM (INTEGRATED COMPUTER AIDED
MANUFACTURING) ARCHITECTURE

267

Figure 7

CAM- I Cell Model

Computer Aided Manufacturing-International, Inc. (CAM-I) is a not-for-profit organiza-
tion of industry. Government, and universities dedicated to advancing the use of computers in

manufacturi ng.

The Advanced Technical Planning Committee of CAM-C has created a cell model diagram
of manufacturing. This diagram shows 6 basic functions of manufacturing. The nomenclature
used in earlier figures would be: design, planning and scheduling, process planning, inven-

tory control, manufacturing control, and shipping.

This diagram is one structuring of the functions needed in an integrated CAM system and
should be compared with Figure 5, which has a comparable but different partitioning.

268

ORDERS

&

FORECASTS

269

FIGURE

7

CAM-1

ADVANCED

TECHNICAL

PLANNING

COMMITTEE

CELL

MODEL

DIAGRAM

OF

MANUFACTURING

Figure 8

CAM- I Standards Committee CAM Architecture

A CAM system may be strictly defined as a set of computer programs which process data.
Working from the cell model diagram in Figure 7, the CAM- I Standards Committee created this
diagram of a CAM system.

The functions and data flows of this diagram should be compared with Figures 1 and 5.

The data bases, shown as circles in the diagram, are:

1. Production Schedule
2. Product Design
3. Raw Material Inventory

4. Work- In-Process , Finished Goods Inventory, Machine Tool Utilization
5. Shipments
6. Overall Manufacturi ng Plan (Routing Sheets, Tooling, Part Programs, QC Plans)
7. Production Order Release, Production Plans and Schedule
8. Schedule, Process or Product Revision Requirements
9. Group Technology Data Base (Parts Data, Standard Plans)

10. Management Data: Output Node
11. External Information: Input Node (Marketing Information, Customer Orders, Product

Functions, Cost Objectives, Anticipated Production Volumes)

270

CO
LU
cc

271

CAM-1

STANDARDS

COMMITTEE

CAM

ARCHITECTURE

Architecture of a Computer System

Two computers out of a distributed network are shown in this figure. This diagram shows

the interfaces between the application programs and the host system and between various
computers and provides a visual framework for discussing standards important to software
integration and portability in a distributed system.

COMPUTER #1

FIGURE 9

ARCHITECTURE OF A COMPUTER SYSTEM
USED IN A CAM SYSTEM

273

APPENDIX C

A SURVEY OF ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

Prepared for National Bureau of Standards

by

Chuck Rieger Hanan Samet Jonathan Rosenberg

Department of Computer Science
University of Maryland

College Park, Maryland 20742

November 1976

CONTENTS
1.

Introduction

2. SAIL

2.1. Introduction
2.2. Associative Data Base
2.3. Data Management Facility
2.4. Control Structures
2.5. System Building Capabilities
2.6. Standardization

3. The LISP Family of Languages

3.1. LISP
3.1.1. LISP Data Structure
3.1.2. Property Lists
3.1.3. Representative LISP Data Structure Manipulating Functions

3. 1.3.1. (MEMBER X Y)
3. 1.3.2. (ASSOC X Y)
3. 1.3.3. (SUB ST X Y Z)
3. 1.3.4. (APPEND X Y)

3.1.4. LISP Data Types
3.1.5. LISP Functions
3.1.6. The PROG Feature
3.1.7. LISP Macros
3.1.8. Variable Scoping
3.1.9. LISP I/O
3.1.10. Garbage Collection
3.1.11. LISP as a Self-Contained System

3.2. MICROPLANNER
3.2.1. The MICROPLANNER Database
3.2.2. MICROPLANNER Theorems
3.2.3. Heuristic Guidance of Theorem Application
3.2.4. Searching and Backup in MP
3.2.5. Other Representative MP Capabilities

3.2. 5.1. (THFIND <mode> <variables> <skel> <body>)
3.2. 5.2. (THMESSAGE <variables> <pattern> <body>)

3.3. CONNIVER
3.3.1. Frames, Au-revoir and Adieu

3.4. Efficiency of the LISP Language Family
3.5. Standardization of the LISP Language Family

4. Related Languages

4.1. AL
4.2. MLISP
4.3. POP-2

5. Examples

5.1. Introduction
5.2. SAIL

5.2.1. Sample Program
5.2.2. Commentary

5.3. LISP
5.3.1. Sample Program
5.3.2. Commentary

5.4. PLANNER (MICROPLANNER)
5.4.1. Sample Program
5.4.2. Commentary

5.5. CONNIVER
5.5.1. Sample Program
5.5.2. Commentary

6. Recommendations

7. Bibliography

8. Summary Chart

276

1. Introduction

This paper describes some of the recently developed Artificial
Intelligence programming languages: SAIL, LISP, MICROPLANNER, CONNIVER, MLISP,
POP-2 and AL. These programming languages are distinct from languages
previously used in computer-aided manufacturing environments [Leslie72] in
that they provide capabilities for the development of high-level symbolic
planning and supervisory control in addition to the simple numerical control
of machine tools. Tne paper includes (1) surveys and comparisons of the
distinctive features of these languages as they might be used in a
computer-automated manufacturing environment, (2) a sample automated
manufacturing task, and how it might be expressed as a program in each
language, (3) discussions of the standardization status of each language, and
(4) conclusions and recommendations to NBS, with emphasis on the types of
features which are most desirable and applicable to the automa ted- shop
env ironment

.

277

2. SAIL

2.1. Introduction

SAIL has its origins in a merger of LEAP [Feldman69] , an associative
language, and a version of ALGOL 60 [Naur60] . Therefore, unlike most of the
other artificial intelligence languages, it is not LISP-based. It is a
general purpose compiled language with an extensive run-time library of
functions. As befits its ALGOL nature, SAIL has block structure and
explicitly typed, statically scoped variables. The data types available
include INTEGER, REAL, STRINGS of arbitrary length, structure, pointer, LIST,
SET, and aggregates of the previous (i.e. ARRAYs).

Some of the more important features of SAIL are discussed separately
below. These include the associative data base facility, the capability for
usage of SAIL as a host language in a CODASYL [C0DASYL71] data base management
system, the control structures, and the system building facilities. Finally,
a summary is presented of current standardization efforts.

2.2. Associative Data Base

SAIL contains an associative data base facility known as LEAP which is
used for symbolic computations. This enables the storage and retrieval of
information based on the partial specification of the data. Associative data
is stored in the form of associations which are ordered three-tuples of ITEMS.
Associations are often known as TRIPLES. For example:

FASTEN XOR NAIL EQV HAMMER
FASTEN XOR SCREW EQV SCREWDRIVER
FASTEN XOR BOLT EQV PLIER

Associations may be conceptualized as representing a relation of the form

Attribute XOR Object EQV Value
or Attribute (Object) = Value

Most programming languages (e.g. LISP) provide the following associative-like
mechanism

:

Given: At tr ibute , Ob j ec

t

Find: Value

However, SAIL enables the programmer to specify any of the components of the
association and then have the LEAP interpreter search the associative store
for all triples which have the same items in the specified positions. For
example, the following may be used to retrieve all items that can fasten a
nail

:

FASTEN XOR NAIL

An ITEM is a constant and is similar to a LISP atom. Items have names
and may also be typed so that data can be associated with them. An item may
be declared, or created during execution from a storage pool of items by use
of the function NEW. For example:

REAL ITEM VISE;

declares VISE to be an item having data of type real associated with it. VISE

278

could be used in an association of the form:

TOP XOR WORKBENCH EQV VISE

The data associated with an item is obtained by use of the construct DATUM.
Thus in the above example, DATUM(VISE) denotes the capacity of the vise.

In order to deal with items, the user has the capability of storing them
in variables (ITEMVARs), SETs, LISTs, and associations. The distinction
between SETs and LISTs is that the latter have an explicit order while the
former do not. In addition, an item may have an arbitrary number of
occurrences in a LIST.

Associations are ordered three-tuples of items and may themselves be
considered as items and therefore participate in other associations. Triples
are added to the associative store by use of a MAKE statement and erased from
the associative store by use of an ERASE statement. For example:-

The motivation for using an associative store is a flexible search and
retrieval mechanism. Binding Booleans and Foreach statements are two methods
of accomplishing these goals.

The Binding Boolean expression searches the associative store for a
specified triple and returns TRUE if the triple is found and FALSE otherwise.
Tne aim of the search is to find an association which meets the constraints
imposed by the specified triple. If some of the components of the triple are
unknown (such components are preceded by the special item BIND), then a
successful search will result in the binding of tne designated component. For
example

:

IF FASTEN XOR BIND OBJECT EQV PLIER THEN PUT OBJECT IN PLIER! SET;

In this case the store is searched for an object that can be fastened by a
PLIER and if such an object is found, then it is placed in the set PLIER! SET.
Note the use of the item variable OBJECT in the association. A successful
search will result in this variable being bound and the corresponding item
being placed in the set.

The FOREACH statement is the heart of LEAP. It is similar to the FOR
statement of ALGOL in that the body of the statement is executed once for each
binding of the variable. For example:

FOREACH X
|

PART XOR B747 EQV X AND DATUM (X) < 3
DO PUT X IN B747 IORDER! SET;

In this case, assuming that the data associated with each part denotes
quantity at hand, the associative store is searched for all parts of a B747 of
which there are less than three pieces. These parts are placed in the set
B747 IORDER! SET.

2.3. Data Management Facility

Unlike other artificial intelligence languages, SAIL has a capab:"' '' of

[Samet76] which allows SAIL to be used as the data manipulation language in a
CODASYL based data base management system. SAIL is relatively unique in this
respect in that COBOL [COBOL74] has almost been exclusively used as the data
manipulation language (DML) of such systems. This situation is not surprising
since examination of the data description facility of the CODASYL report

ERASE ATTACHED XOR ASSEMBLY 1 EQV ASSEMBLY2
MAKE ATTACHED XOR ASSEMBLY 1 EQV ASSEMBLY3

(DBMS- 10 uj) to
existsinterface

279

reveals a very strong similarity to the data division of COBOL. Nevertheless,
there have been some attempts to use FORTRAN ([Stacey74] , [RAPIDATA])

.

Ideally, a data manipulation language should include the following
features. First, a full procedure capability which allows parameter passing,
dynamic storage allocation, and recursion. Second, processing of Boolean
requests should not be difficult. In a COBOL-based system this task is rather
cumbersome as pointed out by [Parsons74] . In order to avoid currency problems
raised by partial satisfaction of Boolean requests (the backtracking problem
[Taylor76]), the user must build collections of pointers to related records.
Third, there should he a capability for building an in-core data base so that
operations such as set UNION and set INTERSECTION can be performed without the
overhead of accessing extended storage more than once for any record.

SAIL has a mechanism, LEAP, for building associative data bases.
Currently, this only works for internal memory due to implementation
decisions. SAIL also has a record structure capability which enables the user
to build an in-core data base. In a COBOL-based data base management system,
whenever the user obtains an instance of a record type from the data base
(i.e. he locates it via a FIND and fetches it via a GET), he has no convenient
way of keeping it in temporary memory while obtaining another instance of this
record type. Of course, he can allocate temporary , storage for the various
fields; however, this becomes rather unwieldy especially when he wishes to
keep track of more than two instances of a record type. Alternatively,
instances of certain record types can be refetched from the data base. In
fact, this is the strategy that is generally followed. However, the cost is
prohibitive.

/

Briefly, the SAIL interface provides a SAIL record structure declaration
for each record type that has been defined in the data base management system.
Primitives exist for the creation and modification of such records. The
dynamic storage allocation capability of SAIL enables the creation of several
instances of each record type each of which is identified by an entity known
as a record pointer.

As an example of the use of SAIL as a host language in a data base
management system, consider the following program fragment. The task is to
traverse a set named SUPPLIER owned by a WAREHOUSE record and extract an
integer data item known as PARTNUM from each PART record which is a member of
the set. The exact instance of the set occurrence is identified by the owner
record, WAREHOUSE, having the value ELECTRICAL for the data item INDUSTRY.
Since SAIL has a data structuring facility (known as a RECORDICLASS and
similar to a PL/1 [Beech70] structure) we define a data structure known as
LISTX and a function to add items to the front of a list. The data structure
LISTX has two fields - ELEMENT which is of type INTEGER and NEXT which is of
type RECORD (POINTER (and points to another instance of the LISTX data
structure). The function ADDTOLIST has two arguments - a pointer to the head
of an instance of LISTX and the integer to be added to this instance.

RECORDICLASS LISTX (INTEGER ELEMENT;
RECORD (POINTER (LISTX) NEXT);

PROCEDURE ADDTOLIST (REFERENCE RECORD ! PO INT ER (LISTX) HEAD;
INTEGER VAL);

BEGIN
RECORD (POINTER (LISTX) TEMP;
TEMP NEW (ELEMENT (LISTX)

;

LISTX: ELEMENT [TEMP] VAL;
LISTX: NEXT [TEMP] HEX'D;
HEAD TEMP;

"

END;
-

The COBOL/DML and SAIL encodings are given below. The critical difference is
the step "Add PARTNUM in PART to result list." It is not immediately obvious
how the concept of a list would be implemented in COBOL.

280

COBOL Program:
MOVE 'ELECTRICAL' TO INDUSTRY IN WAREHOUSE.
FIND WAREHOUSE RECORD.
IF SUPPLIER SET EMPTY GO TO NONE ! SUPPL IED

.

NEXT: FIND NEXT PART RECORD OF SUPPLIER SET.
IF ERROR-STATUS = 0307 GO TO ALL! FOUND.
GET PART.
Add PARTNUM in PART to result list.
GO TO NEXT.

ALL 1 FOUND

:

SAIL Program:
INDUSTRY "ELECTRICAL"

;

FIND ! CALTT(WAREHOUSE)

;

IF EMPTY ! SET(SUPPLIER) GO TO NONE ! SUPPLIED

;

WHILE TRUE DO BEGIN
FIND 1NEXT (PART, SUPPLIER)

;

IF ERROR! STATUS = 0307 THEN DONE;
GET (PART)

;

ADDTOLIST (HEAD, PARTNUM)

;

END;

2.4. Control Structures

In addition to the ususal control structures associated with ALGOL-like
languages (e.g. for loops, while loops, case statements, recursive procedures,
etc.), SAIL has capabilities to enable parallel processing, backtracking, and
coroutines. In SAIL, a process is a procedure that may be run independently
of the main procedure. Thus several processes may be run concurrently. Note
that the main procedure is also a process.

A process is created with a SPROUT statement as follows:

SPROUT (<item> ,<procedure call>,<options>)

where <item> names the process for future reference, <procedure call>
indicates what the process is to do, and <options> is used to specify
attributes of the SPROUTed and current process. Unless otherwise stipulated
(in <options>), a SPROUTed process begins to run as soon as it is SPROUTed and
in parallel with the SPROUTing process.

Similarly, there exist primitives which result in the suspension of a
process, the resumption of a process, and in the blocking of a process until a
number of other processes nave terminated. These tasks are accomplished by
the SUSPEND, RESUME, and JOIN primitives respectively.

SUSPEND and RESUME have as their arguments single items while JOIN has a
set of items as its argument. These items are the names that have been set up
for the process by an appropriate SPROUT command.

For example, a procedure to tighten a bolt may be defined as follows:

ITEM P 1 , P2

;

SPR0UT(P1,GRASP(HAND1, SCREWDRIVER))

;

SPROUT (P2,GRASP(HAND2, BOLT))

;

.

JOIN ({ P 1 , P2 }) ;

TURN(HAND1, CLOCKWISE)

;

Since SAIL runs on a single processor computer system, true
multiprocessing is not possible. Instead, the SAIL runtime system contains a
scheduler which decides which process is to run and for how long. The
programmer makes use of the <options> field of the SPROUT statement to specify
information which the scheduler uses to determine the next process to be run.
Such information includes time quantum sizes, priority, whether or not to
immediately run the SPROUTed process, etc.

A process may result in the binding of ITEMVARs by use of a MATCHING
PROCEDURE which is basically a Boolean procedure. When one of the parameters
is an unbound FOREACH itemvar, then upon success the parameter will be bound .

The matching procedure is actually SPROUTed as a coroutine process and SUCCEED
and FAIL are variants of RESUME which return values of TRUE or FALSE
respectively. In addition, FAIL causes the process to terminate whereas when
the matching procedure is called by the surrounding FOREACH via backup, then
the procedure is resumed where it left off on t,he last SUCCEED.

For example, consider a box containing a number of different fasteners
(nails, regular screws, bolts, nuts, tacks, etc.). The goal is to obtain
Phillips screws. This can be achieved by the following MATCHING PROCEDURE
which returns a different Phillips screw each time it is invoked.

MATCHING PROCEDURE GET ! FASTENER (? ITEMVAR FASTENER, F! TYPE)
BEGIN

FOREACH FASTENER, F! TYPE
|
FASTENER IN BOX AND
TYPE XOR FASTENER EQV F ! TYPE

DO SUCCEED;
FAIL;
END;

Note that FASTENER is a FOREACH ITEMVAR which upon success will be bound.

Backtracking is supported by variables of type CONTEXT. However, the
programmer must specify the points to which backup is to occur (for example,
recall SUCCEED). State saving and restoring is achieved by use of CONTEXT
variables which act as pointers to storage locations of undefined capacity in
which are stored the entities to be saved and restored. Actual state saving
and restoring is accomplished by use of the primitives REMEMBER and RESTORE.

Processes may communicate with each other by use of the SAIL event
mechanism. This is a message processing system which enables the programmer
to classify the messages and to wait for certain events to occur. Events
occur via the CAUSE construct which has as its arguments the event type, the
actual notice, and instructions with respect. to the disposition of the event.
Similarly, there is a construct known as INTERROGATE which specifies a set of
event types and instructions with respect to the disposition of the event
notice associated with the designated event types. A variant of this facility
has been used extensively in the implementation of the Stanford Hand Eye
Project [Feldman71].

2.5. System Building Capabilities

SAIL includes many features which are designed to aid in system building.
Assembly language statements may be interspersed with regular SAIL statements
by use of the START ! CODE and QUICK1C0DE constructs. A number of different
files which are to be used with the program can be specified via use of
REQUIRE statements.

The statements:

REQUIRE "TOOLS" LOAD ! MODULE

;

REQUIRE "CAMLIB [1,3]" LIBRARY;

282

will cause SAIL to inform the loader that the file TOOLS. REL must be loaded.
In addition, the file CAMLIB on disk area [1,3] serves as a library and is
searched for needed routines.

The statement:

REQUIRE "HEADER. SAI" SOURCE! FILE;

will cause the compiler to save the state of the current input file, and scan
HEADER. SAI for program text. When HEADER. SAI is exhausted, scanning of the
original _ file resumes directly following the REQUIRE statement. This feature
is particularly useful when dealing with libraries since in this case the
REQUIREd file can contain EXTERNAL declarations thereby freeing the
application programmer from such work and possible errors.

A rather extensive conditional compilation capability is associated with
SAIL. This enables the development of large programs which can be
parameterized to suit a particular application without compiling unnecessary
code and thereby wasting memory for program segments which are never used.
This capability is used to enahance a macro facility to include compile-time
type determination; for loops, while statements, and case statements at
compile-time

;
generation of unique symbols, and recursive macros. For

example

:

DEFINE GRASP (SIZE) = [IFCR SIZE > 1 THENC VISE
ELSEC PLIERS
ENDC]

;

results in the definition of a macro named GRASP having one formal parameter,
SIZE. The result is the name of a tool that is appropriate for the size of
the item that is to be grasped - i.e. a vise in case size is greater than 1

(assuming size is measured in centimeters, etc.) and pliers otherwise. For
example

:

TOOL 1 GRASP (10.0)

;

TOOL2-GRASP(0. 5)

;

will result in the following statements:

TOOL 1 VISE;
T00L2TLIERS;

Note that the choice is made at compile-time and thus the programmer need not
be concerned with the available grasping mechanisms Thus the program
compilation step can be used to aid in the writing of the program. The
example illustrates the importance of such a feature when certain tasks can be
achieved by similar, yet not identical, means.

SAIL also provides an excellent interface with the operating system.
This enables its use for real-time applications such as control of external
devices. Interrupts can be handled and the user has at his disposal all of
the I/O capabilities that. an assembly language programmer has. This enables
the development of programs ranging from scanners to mechanical arm
controllers. In addition to compatibility with assembly language debuggers,
SAIL has a high-level breakpoint package known as BAIL [Reiser75].

2.6. Standardization

Currently, SAIL has only been implemented on the PDP-10. It runs under
both the TENEX [BBNEXEC] and TOPS-10 [T0PS10] operating systems. There is an
effort underway at SUMEX to develop a language similar to SAIL known as
MAINSAIL [Wilcox76]. The goal of that project is to capture the features that
make SAIL an attractive language (in particular the ease of interaction with
the operating system) and to develop a language that is capable of being run

283

on a large
mini- computers
SAIL programs
An extensive
facility. It
of SAIL (i.e.

number of machines. The orientation of the project is towards
The language is considerably different than SAIL and existing

will have to be modified in order to be capable of compiling.
run time library is being provided as is a record structuring

is still uncertain whether the associative data base capability
LEAP) will be incorporated in MAINSAIL.

284

3. The LISP Family of Languages

3.1. LISP

LISP ([McCarthy60] , [Levin65], [We issman6 7] , [Siklossy76]) , which stands
for List Processing Language, was developed by John McCarthy at MIT in the
late 50' s, having been inspired by Alonzo Church's work [Church41] in lambda
calculus. McCarthy's intention was to recast this elegant recursive function
theory as a theory of computation. Thus, the first implementations of LISP
relied

_

exclusively upon recursion as the computational paradigm (i.e. no
iteration), which, although elegant, resulted in a first version of LISP which
was not competitive with FORTRAN as a practical programming tool. Since then,
LISP's character has changed considerably, so that today LISP is an extremely
powerful and general programming language which retains its original elegance.

The most interesting features of LISP are:

(1) The language is practically devoid of syntax; all constructions in
LISP fall into two categories: atoms ana compositions of atoms.

(2) Program and data are totally interchangeable, since they are
represented in one and the same format. Therefore, in LISP it is
possible for one function to construct another function as data,
then execute it by indicating to the LISP system to regard it as
code; alternatively, an existing function's code may be examined,
modified or augmented by another function at run-time. In fact, a
function is capable of self-modification if appropriate care is
exerc ized

.

(3) Memory allocation and management are automatic and transparent to
the user, except where the user explicitly desires to influence
them. With the exception of arrays, there are no space
declarations to be made; this frees the programmer from having to
worry about details, and generally allows for the unlimited growth
of any given data structure. (For the most part, LISP data
structures have no size or complexity constraints.) Used memory
which is no longer involved in the computation is recycled
automatically by a garbage collector either on demand from the
user at specified points or automatically.

(4) LISP is an interpreted language. The system proper is a function
of one argument, (EVAL X), such that calling EVAL with any LISP
data structure as its argument causes that argument to be regarded
as code and executed. However, most LISP systems include a
compiler which will produce stand-alone machine code for
interpreted functions. Typically, compilation provides an order of
magnitude speedup which makes LISP competitive with other compiled
languages, or even with well-coded assembly language. Since
interpreted and compiled code may be intermixed, it is possible to
retain the flexibility and power of the interpreter, while
obtaining the speed required for production applications.

(5) LISP remains recursive, while also accomodating iterative
algorithms via a so-called PROG feature. Both recursion and
iterative programming will be illustrated later.

(6) Because of the technique LISP uses in storing local and global
variables, some very powerful context-switching can be carried
out, providing a fast way to enter and exit hypothetical planning
environments and to cause the behavior of a program to vary as a
function of its environmental context.

285

3.1.1. LISP Data Stractare

LISP's data structure, called the S-expression
, is simple, yet

extraordinarily flexible, providing a substrate upon which a programmer may
design his own complex data structures. An S-expression is either a so-called
"atom" or a "CONS node". An atom can be regarded either as a variable, as a
constant (a passive symbol), or both. There are no declarations in LISP; new
atoms are simply admitted to the system as they are scanned at the input
level, and atoms with the same name are guaranteed by the system to be unique
(i.e. have the same internal pointer, or address).

The other type of S-expression, the CONS node, provides a means of
structuring atoms and other CONS nodes into hierarchical data structures. A
CONS node is ordinarily implemented as a single computer word (say, 36 bits
long) which contains a left pointer, called its CAR, and a right pointer,
called its CDR. CONS nodes are created dynamically via the function (CONS X
Y), where X and Y are any other S-expressions ,

or passively (as data
constants) via the construction (X.Y). CONS nodes can be composed to form
arbitrarily complex hierarchies, the bottommost elements of which are usually
atoms (i.e. pointers to atomic S-expressions).

To illustrate, suppose we wish to characterize a particular tool, say a
screwdriver, in a LISP data structure. We first decide upon a name for it,
say, SCREWDRIVER- 1 , and what characteristics of it we wish to encode. Let us
suppose the characteristics are: its type is Phillips, its color is yellow,
its shaft length is 10 centimeters, and its head size is 0.3 centimeter. There
are many structures in LISP which would accomodate this information; the
external representation of the one we will adopt is:

((NAME SCREWDRIVER- 1

)

(TOOL-TYPE SCREWDRIVER)
(STYLE PHILLIPS)
(SHAFT-LENGTH 10 CM)
(COLOR-CODING YELLOW)
(HEAD-SIZE 0.3 CM)

)

Here, all the symbols such as NAME, YELLOW, etc. are LISP atoms. (So too are
the numbers; however numbers are not entirely equivalent with symbolic atoms.)
The particular hierarchy we have adopted woula be characterized as a list of
lists, where each sub-list consists of an initial atom describing that
sub-list's role in the structure, and a list of the information associated
with that role in the description.

This structure would be graphically represented as follows:

286

+ h

1*1*1-
4- +

H h

->l*l*l-
H———

h

H h

>
I

*
I

*
I

-

-| j-

H b H + 4-
1*1*1 — >1*1*1 >

|

*
H 4- H 4- H

—

H —b H b H b H b H b H b

l*l*l_>l*l/l |*|*|->|*|/| |*|*l->l*l/l
-j —4- H 1- -| 1- q h q 1- -j

NAME TOOL-TYPE STYLE PHILLIPS

SCREWDRIVER-1 SCREWDRIVER

H 1

- H 1

l*l*|->|*|/|
+ + H +

COLOR-CODING

YELLOW

4- 1 4 + + + 4 + 4 4- 4 +
|*|*|->|*|*|->|*|/j |*|*j_>|*|*j_>j*|/|
4 I 4 1 4 h H h H h H —f-

SHAFT-LENGTH 10 Ctl

HEAD-SIZE
0.3 CM

and could be constructed passively (as a fully constant structure) via a
quoted S-expression

:

'((NAME SCREWDRIVER- 1) (TOOL-TYPE SCREWDRIVER) ...)

or dynamically via CONS:

(CONS (CONS 'NAME (CONS 'SCREWDRIVER-1 NIL))
(CONS 'TOOL-TYPE (CONS 'SCREWDRIVER NIL))

(CONS 'HEAD-SIZE (CONS 0.3 (CONS 'CM NIL)))

Since it would be a rather harrowing experience to construct very large
S-expr essions dynamically in this fashion, LISP provides quite a spectrum of
higher-level functions for constructing, modifying and accessing
S-expr essions . Some highlights of these will be covered briefly in a
subsequent section. For our example, a more concise expression of code which
would build this structure dynamically would be:

(LIST (LIST 'NAME ' SCREWDRIVER- 1

)

(LIST 'TOOL-TYPE 'SCREWDRIVER)

(LIST 'HEAD-SIZE 0.3 'CM)
)

Presumably, having defined this tool, we would want to record it as one
available tool in a large supply of tools. Again, there would be numerous
methods of doing this. One way would simply be to maintain a global list of
all known tools in the system, and to add this entire description as a new
tool on this list:

(SETQ NEW-TOOL '((NAME SCREWDRIVER- 1) (TOOL-TYPE SCREWDRIVER) ...))
(SETQ MASTER-TOOL-LIST (CONS NEW-TOOL MASTER-TOOL-LIST))

(SETQ is one of LISP'S assignment statements.) Alternatively, we might wish to
put only the name of the screwdriver on the master tool list, and associate
all the remaining information on SCREWDRIVER- 1

' s property list :

287

(PUT 'SCREWDRIVER-1 'DESCRIPTION
'((TOOL-TYPE SCREWDRIVER) ... (HEAD-SIZE 0.3 CM)))

(SETQ MASTER-TOOL-LIST (CONS ' SCREWDRIVER- 1 MASTER-TOOL-LIST))

3.1.2. Property Lists

Any LISP atom may have a property list (built up from CONS nodes).
Conceptually, the property list allows the attachment of an arbitrary number
of attribute-value pairs to the atom, thereby serving to describe the
characteristics of the real-world entity the atom represents. This is a
powerful feature for any programming language, since it allows
"micro-descriptions" of atoms which ordinarily will not be seen by the
processes that manipulate the hierarchical structures in which the atom
participates. These microdescriptions can be maintained and accessed by the
functions PUT, GET and REMPROP in case more detail about an atom is desired.

Properties are attached to an atom via the function (PUT <atom>
<attribute> <value>), looked up via (GET <atom> <attribute>) and removed via
(REMPROP <atom> <attr ibute>) . We have seen one way to associate the
screwdriver information with the atom SCREWDRIVER-1 using property lists.
Another, more convenient way would be to splip apart all the various
attributes of this atom, making each a different entry on the property list:

(PUT ' SCREWDRIVER- 1 'TOOL-TYPE 'SCREWDRIVER)
(PUT ' SCREWDRIVER- 1 'STYLE 'PHILLIPS)

(PUT ' SCREWDRIVER- 1 'HEAD-SIZE '(0.3 CM))

Then, for instance, to determine SCREWDRIVER-1 ' s head size, we would
write: (GET 'SCREWDRIVER-1 'HEAD-SIZE). If such an attribute of SCREWDRIVER-

1

exists, it will be located and returned.

3.1.3. Representat lve LISP Data Structure Manipulating Functions

We include here a definition and brief example of several of the more
standard, higher-level LISP functions that have to do with data structure
creation, modification and searching.

3. 1.3.1. (MEMBER X Y)

If S-expression X is a member of S-expression Y (assumed to be in the
form of a list), return "TRUE", otherwise, return "FALSE".

EXAMPLE: (MEMBER ' SCREWDRIVER- 1 MASTER-TOOL-L 1ST) would return a pointer to
the atom T ("true") if SCREWDRIVER-1 is on the MASTER-TOOL-LIST, a
pointer to the atom NIL ("false") otherwise.

3. 1.3. 2. (ASSOC X Y)_

Y is assumed to be a list of lists. Y is scanned, comparing the first
item of each sublist to X until a match is found, or until Y is exhausted. In
case a match is found, ASSOC returns the entire sublist whose first item
matched X.

288

EXAMPLE: (ASSOC 'HEAD-SIZE '((NAME SCREWDRIVER- 1) ... (HEAD-SIZE 0.3 CM)))
would return the sublist (HEAD-SIZE 0.3 CM).

3.

1.3.3.

(SUBST X Y Z)_

X, Y and Z are all arbitrary S-expressions . SUBST creates a new copy of
Z, except that all occurrences of Y in Z are substituted with X's.

EXAMPLE: (SUBST 0.2 0.3 '((NAME SCREWDRIVER-1) ... (HEAD-SIZE 0.3 CM))) would
produce a new structure for our screwdriver, identical in all
respects to the original, except that its head width would be 0.2
instead of 0.3.

3.

1.3.4.

(APPEND X Y)

X and Y are assumed to be lists. A new list is created which is the
result of appending Y onto the end of X.

EXAMPLE: (APPEND '((NAME SCREWDRIVER- 1) (STYLE PHILLIPS)) '((COLOR-CODE
YELLOW) (HEAD-SIZE 0.3 CM))) would produce ((NAME SCREWDRIVER- 1

)

(STYLE PHILLIPS) (COLOR-CODE YELLOW) (HEAD-SIZE 0.3 CM))3.1.4.

LISP Data Types

In addition to atoms and CONS nodes, most LISP systems include the
following other data types:

1. integer numbers
2. real numbers
3. strings
4. arrays
5. octal numbers (for bit-level manipulations)

Some LISPs (notably MACLISP [Moon74]) have highly developed numerical and
trigonometric facilities and accompanying optimizing compilers geared to the
efficient generation of "number crunching" software.

3.1.5.

LISP Functions

A LISP "program" is a collection of functions. No main program is
distinguished, and the only distinction concerning a function's "type"
concerns whether or not its calling arguments are to be evaluated before it is
called. Otherwise, all functions in LISP are typeless, and hence there is no
need for function-related declarations.

A function is regarded as simply another type of data. As such, one
typically defines a function by assigning to some atom the function as the
atom's value. Strictly speaking, the function itself is nameless, and is
identified by the form:

(LAMBDA <argument- 1 ist> <body>)

289

When a "lambda expression" is stored as the value of some atom, we can say
that a function has been defined. Various LISPS's carry out such details
differently, but a common format for defining a function in LISP is:

(DEFUN <name> <arguments> <body>)

DEFUN is a macro which creates the appropriate lambda expression and assigns
the atom <name> this expression as its body. A function may be annihilated or
altered simply by reassigning the value of the atom which represents it.
Another virtue of this separability of a function from its name is that
nameless functions can be created and passed as arguments to other functions
without having to bother to name them if they are needed only once.

To illustrate LISP functions, suppose we wish to define a function of two
arguments, (LOCATE-ALL <tool-type> <tool-list>)

,
which, given the name of a

tool type (e.g. SCREWDRIVER), and a master tool list, will search the tool
list for tools of the specified type and report back a list of all tools of
that type it finds. Then, framing this as a recursive function, we would
wr ite

:

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(COND ((NULL MASTER-LIST) NIL)

((EQUAL (GET (CAR MASTER-LIST) 'TOOL-TYPE) TYPE)
(CONS (CAR MASTER-LIST)

(LOCATE-ALL TYPE (CDR MASTER-LIST))))
(T (LOCATE-ALL TYPE (CDR MASTER-LIST)))))

that is, if (COND) the master list is (or has been reduced to) NIL, then
report back "nothing"; otherwise, if the next item on the master list (its
CAR) is of the correct type (as determined by the GET), then add this tool to
the list to be reported (i.e. CONS it onto tne front of this list) and proceed
with the search on the remainder of the list (its CDR); otherwise (T...),
simply proceed, without recording the current tool.

Alternatively, we could express this algorithm in iterative form via the
PROG feature:

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(PROG (RESULT)
LOOP (COND ((NULL MASTER-LIST) (RETURN RESULT))

((EQUAL (GET (CAR MASTER-LIST) 'TOOL-TYPE) TYPE)
(SETQ RESULT (CONS (CAR MASTER-LIST) RESULT))))

(SETQ MASTER-LIST (CDR MASTER-LIST))
(GO LOOP)))

i.e., enter a PROG (akin to an ALGOL begin-end block), defining one temporary
local variable, RESULT; then, while the master-list remains non-nil,
repeatedly examine its next item, collecting those with the correct type on
the RESULT list (via the SETQ, the LISP "assignment statement"), scanning to
the next tool on the master list (SETQ MASTER-LIST (CDR MASTER-LIST)).

3.1.6. The PROG Feature

As just illustrated, LISP accomodates iteratively-phrased algorithms via
a construction called a "PROG". A PROG has the form:

(PROG <local-variables> <statement- 1> ... <statement-n>

)

As a PROG is entered, the local variables (if any) are created for the scope
of the PROG, and each is initialized to NIL. Next, the statements which

290

comprise the PROG s body are sequentially executed (evaluated) until execution
either falls off the bottom" of the PROG (an implicit exit from the PROG), or
until a GO or RETURN is encountered. Statements which are atoms are
interpreted as labels within a PROG, and are ignored during sequential
execution. When a GO is encountered, a branch to the specified label occurs,
and sequential execution proceeds from that point.

Since a PROG introduces some temporary variables which must be reclaimed
as the PROG is exited, there must be some way of informing LISP that a PROG is
about to be exited. The function RETURN is used for this purpose, informing
the system that a PROG is being exited, and specifying what value the PROG is
to pass back out to the calling environment.

PROG's may be nested and may appear at any point in a LISP program, and
the PROG construction will typically result in a more efficient implementation
of an algorithm than the corresponding recursive implementation. Although some
feel that PROG makes LISP "impure", in reality it is the feature which is
probably most responsible for LISP s widespread acceptance in the AI community
and elsewhere today.

3.1.7. LISP Macros

Most LISPs support two types of macros: compile-time macros and scanner
macros. A compile-time macro is nothing more than a function which, when
evaluated, computes not a final result, but another S-expression which, when
evaluated, will compute a final result. Thus, when a macro is encountered by
the LISP interpreter, a double evaluation is performed (the first to compute
the intermediate form, t he second to run the intermediate form). When LISP
functions are compiled into actual machine code, the compiler recognizes
macros and evaluates them once to obtain the intermediate form which it then
compiles. This technique is a very general and very powerful implementation
of the macro concept.

Most LISP scanners are quite modular, in the sense that they can be
conditioned to initiate an arbitrary computation upon encountering a given
character in the input stream. In Wisconsin LISP [Norman69] , for example,
there is a facility called (READMAC <char> <function>), which conditions the
scanner to call <function> (no arguments) whenever <char> is detected in the
input stream. <function> is free to perform any computation, and whatever
<function> returns is spliced into the scanner's input stream. This style of
table-driven scanner makes it possible to superimpose additional syntax on
LISP input, even to the point where LISP can model another language's syntax
(by redefining delimiters, etc.). MLISP [Smith70] is an example of this.

3.1.8. Variable Scoping

LISP variables' values are derived as a function of the run-time
environment rather than as a function of lexical environment. As a program
executes, there are two times at which new variables are introduced, or
"bound": (1) at function entry time (these are the function's arguments' names
mentioned in the LAMBDA expression), and (2) at PROG entry time (i.e., the
PROG's temporary variables). Variables are "unbound" at the corresponding exit
times: when a function returns or when a PROG is exited.

At the "top-level" of LISP (when no function is currently executing) , any
variables which receive values are thought of as "global" to the system.
Therefore, at any given moment during execution, there will be a pool of
global atoms plus all the atoms introduced via LAMBDA'S or PROG's on the
current sequence of function calls. All these variables and their associated
values ("bindings") are recorded on a structure called the "association list"
(A-LIST). This, like most everything else in LISP, is a user-accessible list
of CONS nodes. All variable lookups consult this list, from most recent to
least recent. Since this list is dynamically maintained at run-time, the
question of what variables are and are not bound (i.e. are on the A-LIST) is
exclusively determined by the dynamic calling environment, rather than the

291

lexical scope of variables at the time functions were defined. This means that
"free" variables (ones which have no binding at the current level) will assume
a value at run-time which is dependent upon their definitions in functions
farther up the calling hierarchy. In this manner, one function "peeks into",
or borrows another's variables.

By changing the system's A-LIST pointer while inside a function, that
function's entire environment can be altered. For this reason, LISP is a very
powerful tool wherever hypothetical reasoning (involving switches to altered
contexts) is necessary. Most other languages either lack such an ability, or
make it difficult to carry out. In LISP, context switching and "taking
snapshots" of contexts to which execution is to be returned are very natural
operations

.

3.1.9. LISP I/O

Traditionally

,

define at least the
input/output has been LISP's weakest
following I/O-related functions:

1 ink

.

Most systems

(READ)
(READCH)
(PRINT X)
(PRIN1 X)
(TERPRI)

read an S-expression
read an individual character
print S-expression X, skipping to p new line
print S-expression X on the current output line
skip to beginning of new line on output

While
def ic
excep
ope ra
than
matte
mul t i
and a

these functions provide adequa
ient in file-handling opera
tion, with some more highly dev
ting system) . We regard this d
as an inherent problem of LISP
r of writing the code). In fac
pie-file interaction and random
t Maryland (Wisconsin LISP)

.

te formatting control, most LISPs are
tions. (INTERLISP [Te itelman74] is the
eloped interfaces with the TENEX virtual
eficiency as more of a historical accident
(since adding these features is simply a
t, there are efforts underway for improved
access facilities both at MIT (MACLISP)

3.1.10. Garbage Collection

Since LISP data structures can grow in unrestricted ways, a crucial part
of any LISP system is a conceptually asynchronous process called the "garbage
collector". The role of this process is periodically to take control, mark
parts of storage that are still referenced by the ongoing computation, then
reclaim all storage that is not so referenced (garbage). Garbage collection is
an unavoidable overhead of any system with no declarations, and in which data
structures can grow in unrestricted ways.

One poten
runs out of fr
collect cause
controlling a
problems can
garbage collec
Alternatively,
garbage collec
[Dijkstra75] f

tial disadvantage of garbage collection is that, once
ee storage, a garbage collection mast occur. Since
s current computing activity TT5 be suspended,
real-time process, disastrous consequencs can ac
normally be avoided by forcing -the system into

t prior to entering real-time critical sections of c
there is growing interest in truly asynchronous

tion techniques which could obviate the problem altog
or instance)

.

the system
a garbage

if LISP is
crue. Such
a premature
omputation

.

(paral lei

)

ether (see

3.1.11. LISP as a Self-Contained System

LISP inter
language. After
software can be

preters themselves are typ
this basic facility has been
written in LISP itself. Typic

ical ly
brougn
al so f

implemented in
t up, most other
tware includes

assembly
supporting

292

(1) A compiler which will generate (potentially quite good) machine
cod& rdf LAMBDA expressions (i.e. functions) and PROGs. Typically,
the LISP compiler will be written in interpreted LISP, then used
to compile itself. Then the compiled version will be used as the
LISP system compiler.

(2) A debug package which will permit the tracing and interactive
developmbrtt c5T functions. Typically, functions (together with
their calling arguments) can be traced at entry time, and
(together with their returned values) at return time. Most LISPs
will also accommodate the tracing of variables (i.e. inform the
user whenever a traced variable's value is about to be changed).
The debugging potentials of LISP are essentially unlimited (the
INTERLISP system is the most advanced to date)

, and are
responsible (in part) for LISP's reputation as one of the best
languages for the efficient and rapid development of complex
software. In particular, there is no time-consuming interaction
with system compilers, loaders and linkers to be contended with; a
program can be developed and put into production within the
confines of the LISP system itself.

(3) An S-expression editor (or system editor interface) which makes
possible the convenient editing of S-expressions and maintenance
of files.

3.2. MieROPLANNER

While LISP is generally accepted as the standard for computing in AI, it
does not supply the user with any a-priori conceptions about intelligence.
LISP is simply the blank tablet onto which the user must write his theory of
intelligence or control. Not surprisingly, this resulted in numerous
reinventions of the wheel in areas like database organization, problem
solving, hypothetical reasoning, and language understanding. Most reinventions
were at a fairly low level, but occurred often enough to warrant some
investigations into some of the undercurrents of AI programming techniques.

MICROPLANNER [Sussman, Winograd, Charniak 71] is the outcropping of some
of these undercurrents, particularly where automatic problem solving is
concerned. MICROPLANNER was written in 1970-71 as a small-scale
implementation of some ideas originally proposed by Hewitt in 1969 [Hewitt69]

.

The intent of the language was and is to provide some automatic mechanisms of
database organization, context, and heuristic search.

MICROPLANNER is implemented entirely in LISP. Because of this, its syntax
is essentially LISP's syntax, and while in the MICROPLANNER environment, the
user has full access to all of LISP. To distinguish MICROPLANNER (hereafter
abbreviated MP) functions from pure LISP functions, the convention is to
prefix all MP functions (there are about 50 of them) with "TH" (standing, we
presume, for "theorem", a key notion in MP)

.

The most salient features of MP are these:

(1) Computation in MP is induced by pattern, rather than by calling,
functions by their names. In this style of computation (often
called "pattern-directed invocation"), whenever something needs to
be done, a pattern which describes the need is posted to the
entire system. "Entire system" normally means a large population
of problem-solving experts with patterns which advertise each
one s expertise. Whenever a need is posted, the system searches
through the database of experts looking for those whose advertised
patterns match the need. Each expert so located is then tried in
turn until one succeeds, or until all have failed. This is a
radically different computing paradigm from the standard paradigm
of "name calling", since it makes for a very modular system where
the requestor needn' t know any experts by name; problems are
solved by anonymous experts in the population at large.

293

(2) MP automatically maintains a context-sensitive database of both
factual assertions and the experts just mentioned. The factual
database is a collection of highly indexed n-tuples, expressed as
LISP S-expr essions . Any one n-tuple ("assertion"), or collection
of n-tuples can be "associatively ' accessed by presenting the
lookup routines with a pattern containing zero or more variables.
Only those facts that are deemed active in the current "context",
regardless of whether they physically exist in the memory, will be
located

.

(3) ftP does all the bookkeeping required for depth-first,
nondeterministic programming. That is, anytime there is a decision
of any sort in MP, the system makes a choice (either arbitrarily,
or under the control of user-specified heuristics), records the
alternatives for possible future reference, and then proceeds. If
a failure ever causes a "backup" to that decision point, the
system automatically discards the current (failing) choice,
selects the next alternative, and then attempts to proceed again.
In the backup process, all computations performed between the
initial (bad) choice and the failure point are undone (a record of
all changes to the database is maintained), and the system picks
up from the decision point as though nothing had ever gone wrong.
Thus, MP can be said to maintain, at least implicitly, an entire
goal tree (search tree) for each problem it attempts to solve. As
we will suggest later, there are both advantages and disadvantages
to such automatic control.

These are the three main contributions of MP. In the following sections
we will highlight and illustrate some of the specific features of this problem
solving language.

3.2.1. The MICROPLANNER Database

Conceptually, the MP database is divided into two segments: facts and
theorems. Theorems are further classified into three categories: "antecedent"
theorems, "erasing" theorems and "consequent" theorems. Theorems will be
discussed in the next section.

Both facts and theorems are entered into the database via the function
THASSERT; an item is deleted from the database via the function THERASE.
Facts are f ully-constant LISP n-tuples. Thus, to represent our screwdriver in
MP, we might augment the database as follows:

(THASSERT (TOOL-TYPE SCREWDRIVER- 1 SCREWDRIVER))
(THASSERT (STYLE SCREWDRIVER- 1 PHILLIPS))

(THASSERT (HEAD-SIZE SCREWDRIVER- 1 0.3 CM))

Database lookups and fetches are accomplished via the function THGOAL.
Therefore, if at some point in a MP program, we required a knowledge of
SCREWDRIVER-1 ' s head width, we could write a fetch pattern of the form:

(THGOAL (HEAD-SIZE SCREWDRIVER- 1 (THV X) (THV Y))

)

For our example, this would respond with "success" (i.e. a fact which matched
this template was located in the database, and it would produce the side
effects of binding the MP variables X and Y to 0.3 and CM, respectively. The
THV form is used in MP to signal references to variables (all else is

implicitly constant).

Every fact and theorem in the MP database has a context marking.
Whenever a fact or theorem is THASSERTed, if such a fact is not already

294

physically present in the database, it is created and then marked as also
being logically present. If the THASSERTed fact is present physically, but
marked as log ically not present, its logical status is changed to "present".
If the fact is aTTeady logically and physically present, THASSERT does
nothing, but reports a "failure" to store a new copy of the fact. THERASE
exerts opposite effects on facts in the database: it causes a fact to be
logically masked, either by changing the fact's logical context marking, or by
actually physically deleting the fact (i.e. if the fact is being THERASEd at
the level at which it was originally THASSERTed).

Context markings allow MP to keep track of the history of the logical
status of each fact and theorem. This enables the system to back up to prior
context levels, thereby restoring the database to the corresponding prior
state. Thus, although there are mechanisms for making permanent database
changes (e.g., after some segment of MP code is confident that what it has
done is absolutely correct), normally (except at the top level), THASSERT's
and THERASE's are not permanent; instead, they normally exist only for the
duration of some stretch of planning or hypothetical reasoning.

3.2.2. MICROPLANNER Theorems

All reasoning processes, indeed, all computations, in MP are carried out
by THANTE, THERASING and THCONSE "theorems" which are called by pattern rather
than by name. The three types of theorem are indistinguishable in internal
form, except with regard to the type of event to which each responds. A
THANTE theorem is triggered by the THASSERTion into the factual database of
any pattern which matches its invocation pattern. A THERASING theorem is
triggered by the THERASEure from the database of any factual pattern which
matches its invocation pattern. In the sense that these two classes of
theorems respond spontaneously (not in response to any particular request),
they represent a general interrupt capability. A THCONSE theorem responds to
THGOAL requests whose goal patterns match its invocation pattern.

Because of this last interaction between THGOAL' s and THCONSE, a THGOAL
can amount to considerably more than a simple database fetch. In MP, when a
THGOAL is issued, the system first attempts to locate the desired goal
directly as a fact in the database. If this fails, and the THGOAL request has
indicated that it is permissible to do so, MP will begin searching for THCONSE
theorems whose invocation patterns match the desired goal. If any are found,
each is executed in turn until one reports success (in which case the THGOAL
is satisfied), or until all THCONSE theorems have failed (in which case the
THGOAL fails). It is in this manner that more complex knowledge (i.e.
theorems, problem solving techniques, etc.) can be automatically brought to
bear on some goal if that goal is not already explicitly present in the
factual database.

The forms of these three MP theorem types are:

(THANTE <optional-name> <variables> <invocation-pattern> <body>)

(THERASING <optional-name> <variables> <invocation-pattern> <body>)

(THCONSE <optional-name> <variables> <invocation-pattern> <body>)

As a brief illustration of the uses of each of these, suppose we wish to
implement the following three capabilities in MP: (a) whenever a new
screwdriver is defined to the system, automatically cause its name to be added
to the master tool list; (b) whenever a screwdriver is deleted from the
system, automatically remove its name from the master tool list, and also
remove all its accompanying information; (c) whenever, during some assembly
task, a THGOAL of the form: (SCREW-IN <some screw> <some threaded hole>) is
announced, automatically search for, and return the name of an appropriate
screwdriver for the task (based on the screw's style and head size). Task (a)
will be modeled as a MP THANTE theorem, part (b) by a THERASING theorem, and
part (c) by a THCONSE theorem as follows:

295

(THANTE (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(SETQ MASTER-TOOL-LIST (CONS (THV X) MASTER-TOOL-LIST)))

(THERASING (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(THPROG (ST CC ... HS HSU)

(SETQ MASTER-TOOL-LIST (DELETE (THV X) MASTER-TOOL-LIST))
(THAND (THGOAL (STYLE (THV X) (THV ST)))

(THERASE (STYLE (THV X) (THV STYLE))))
(THAND (THGOAL (COLOR-CODE (THV X) (THV CC)))

(THERASE (COLOR-CODE (THV X) (THV CC))))

(THAND (THGOAL (HEAD-SIZE (THV X) (THV HS) (THV HSU)))
(THERASE (HEAD-SIZE (THV X) (THV HS) (THV HSU))))))

(THCONSE (SCREW HOLE) (SCREW-IN (THV SCREW) (THV HOLE))
(THPROG (ST HS HSU DRIVER DST DHS DHSU)

(THGOAL (STYLE (THV SCREW) (THV ST)))
(THGOAL (HEAD-SIZE (THV HOLE) (THV HS) (THV HSU)))
(THGOAL (TOOL-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THGOAL (STYLE (THV DRIVER) (THV DST)))

(EQUAL (THV DST) (THV ST)))
(THAND (THGOAL (HEAD-SIZE (THV DRIVER) (THV DHS) (THV DHSU)))

(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DRIVER))))

3.2.3. Heuristic Guidance of Theorem Application

It is possible, by including special indicators in THGOAL, THASSERT and
THERASE calls, to influence the order in which theorems are applied, or in
fact to indicate whether or not they should be applied at all. Specifically, a
THGOAL (similar remarks apply to THASSERT and THERASE) with no indicators will
fail unless the requested goal can be satisfied exclusively by database
fetches (no theorems will be applied). (This is the form we have been using
for illustration purposes.) If there is an indicator present, it has either
the form of a "filter" or a specific "recommendation list" of theorems
(referenced by name). When a filter is included in a THGOAL request, only
those theorems whose properties pass the filtering test (theorems can possess
property lists) will be candidates for application. If the indicator has the
form of a specific recommendation list, all theorems on that list will be
applied first (in order) before any other theorems from the general theorem
base are attempted. Both forms allow the programmer to insert limited
heuristic influences. Also, since one MP theorem can create or modify another
MP theorem, the filter facility provides a setting in which a collection of
theorems themselves can evolve into a more structured configuration on the
basis of past experience (e.g. who in the past has proven to be the most
reliable expert) . Although filtering and recommendations are a step in the
right direction, as we will discuss later, CONNIVER provides a more flexible
environment in which to encode heuristic knowledge.

3.2.4. Searching and Backup in MP

Search and backup in MP can occur for two reasons: (1) some THCONSE
theorem which was run to accomplish a THGOAL fails, and another theorem must
be invoked (restoring the environment to the sate at which the first theorem
took over), or (2) some object to which the system has committed itself is
discovered to be inappropriate, giving rise to the need of locating another
candidate object and retrying. The THGOAL-THCONSE mechanism underlie the
selection and backup where theorems are concerned, but object selection is
handled differently, via the THPROG MP construction.

In the previous THCONSE example, the goal was to locate some screwdriver

296

which satisfied some set of features (in that case, the correct STYLE and
HEAD—SIZE). This was accomplished by a THPROG which "conjectures" that such
an object, say X, exists, then proceeds to determine whether or not this
conjecture is true. In the example above, the THPROG searched for a
screwdriver of type and size which matched the type and size of the particular
screw which was to be inserted. For the sake of illustration, suppose the
screw was of type Phillips of head size 0.3. Then, the THPROG in the example
above would have performed essentially the same search as the following, more
specific, THPROG:

(THPROG (X)
(THGOAL (TOOL-TYPE (THV X) SCREWDRIVER)

)

(THGOAL (STYLE (THV X) PHILLIPS))
(THGOAL (HEAD-SIZE (THV X) 0.3))
(THRETURN (THV X)))

i.e., introcude an initially uncommitted variable, X, to represent the object
being searched for. First, obtain a candidate for X by finding something which
is of TOOL-TYPE SCREWDRIVER (the first THGOAL does this). At that point, X
will be tentatively bound to the first such an object found. Continue with
this candidate until either all THGOAL' s have been satisfied (in which case,
the candidate is a success), or until some THGOAL fails (in which case, the
system must back up and choose another candidate). Since some objects may
pass the first THGOAL, or even two, but not all three, the system must
automatically keep track of what object it is currently considering, and what
other objects remain to be tested. This is the source of backups which are
propagated because of bad object selections.

To keep track of theorem and object selection backups, MP maintains a
decision tree, THTREE, which is essentially a record of every decision made,
and what to do in case the decision leads to a failure. The strength of
THTREE is, of course, that it frees the programmer from having to worry about
failures: if there is a solution, it will eventually be found by an exhaustive
search. The fatal weakness of THTREE is that it imposes an often undesirable
depth-first ordering on the search (i.e. one subgoal must be solved in its
entirety before any other subgoals can be attacked). This makes it difficult,
if not impossible, to fabricate complexly intertwined solutions, since
subgoals cannot communicate laterally in the tree. The MP organization is also
quite awkward in its backup technique because of the depth-first organization
of THTREE. Often, one small failure will cause an entire branch of THTREE to
be undone, when in fact most of it was correct. It would be more desirable to
be able to discard only the bad part, of the tree, retaining the parts which
are correct, so that wholesale resynthesis of large parts of the THTREE does
not have to occur. Unfortunately, this is, again, very difficult, if not
impossible to do in MP. CONNIVER has a better control structure in these
respects

.

3.2.5. Other Representative MP Capabilities

To complete our description of MICROPLANNER, we include two
representatives of the other functions available in this language, together
with a brief example of each.

3.2. 5.1. (THFIND <mode> <variables> <skel> <body>)

THFIND provides a way of finding all objects in the system which satisfy
a certain set of criteria. A THFIND is essentially a THPROG which is made to
fail artificially after each successful location of an object which satisfies
the criteria. <mode> indicates how many objects are to be located (e.g. "ALL' ,

"(AT-LEAST <count>)",...); <variables> serve the same role as THPROG
variables; <skel> specifies what form to return as each object is found;
<body> contains the THGOAL' s, etc. which define the criteria. THFIND returns
either a failure (in case <mode> number of objects could not be found), or a

297

list of
found

.

<skel>'s, each <skel> corresponding to one successful object thus

EXAMPLE: (THFIND ALL (X) (THV X)
(THGOAL (TOOL-TYPE (THV X) SCREWDRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))

would return a list of all tools which were Phillips screwdrivers.

3. 2. 5. 2. (THMESSAGE <varlables> <pattern> <body>)

As subgoals are descended into (i.e. "on the way down" the goal tree),
THMESSAGE statements have no effect. They are essentially "hooks" which will
intercept failures beneath them in the goal tree as such failures propagate
back up to the THMESSAGE via a (THFAIL THMESSAGE <pattern>). Upon being
backed up to by a THFAIL, any THMESSAGE whose pattern matches the THFAIL
pattern will take control (its <body> Will be executed). Thus, the
THMESSAGE-THFAIL combination provides a way of anticipating possible problems
without actually checking for them beforehancfl IT all goes well beneath the
THMESSAGE, it will never run; however, if someone gets into trouble beneath
the THMESSAGE (in some way the THMESSAGE is prepared for), the THMESSAGE can
correct the problem and then cause the part of the tree beneath it to be
reattempted

.

EXAMPLE: ... (anticipate difficulty in inserting a screw)
(THMESSAGE (X Y) ((THV X) WILL NOT TURN IN (THV Y))

(THGOAL (LUBRICATE (THV X))) (attempt a remedy)
(THGOAL (SCREW-IN (THVX) (THV Y)))) (retry)

. . . (attempt to insert some screw in some hole)

... (report a failure back up to the THMESSAGE)
(THFAIL THMESSAGE ((THV SCREW) WILL NOT TURN IN

(THV HOLE)))

would anticipate, detect, report, and correct a problem, then retry.

3.3. CONNIVER

The most recent stage in^ the evolution of the LISP family of languages
was the result of McDermott's and Sussman's development of a language called
CONNIVER [McDermott, Sussman 73]. CONNIVER's development was principally
motivated by the control structure deficiencies of MP, as suggested in the
earlier discussion of THTREE. Although there were some improvements in the
database and pattern-directed invocation control (e.g. the pattern matcher is
more sophisticated), the most significant feature of CONNIVER is its ability
to maintain numerous computations in states of suspended animation, then to
switch among them, working on many subgoals or alternate strategies in unison
rather than one at a time. In such an environment, partial computations need
not be undone simply because some small aspect of the problem solving has gone
awry

.

CONNIVER is less a programming language than it is a collection of ideas
about control structure. (The language apparently has never been used for more
than one or two significant programming tasks [Fahlman7 3]) . Because of this,
our discussion will omit most references to syntax, and highlight only the
aspects of CONNIVER's control structure which are unusual or unique to it.

298

3 . 3 . 1 . Frames
, Au-revoir and Adieu

In a conven
another function
returns control
copy of it dies:
a new copy
status can be pr
usually carried
arguments and re
while returning
control informat

tional programming
either by name or

. In a conventio
the function may b

of the function
eserved across call
out under the contr
turn addresses; cal

from a function c
ion

.

language (MP included), one function calls
pattern and waits until the called function
nal language, once a function returns, that
e called anew, but the new call will cause
to begin. No memory of a function's current
-return sequences. This type of control is
ol of push-down stacks which record calling
ling a function causes stacks to be pushed,
auses stacks to be popped, annihilating all

In CONNIVER, things are quite a bit different. To call a function in
CONNIVER is to create a so-called "frame" for the called function, rather than
to push information onto a central stack. A function's frame will contain all
the information needed to characterize the function at any moment (e.g. from
what A-LIST it derives values for its free variables, to whom it is to return
when it has finished, etc.) There are two important features of a frame.
First, it is a user-accessible LISP data structure. This means that a function
may alter its own or another function's frame in arbitrary ways, causing free
variables to be looked up on some other function's A-LIST, or causing the
identity of the function to which control is to be returned to be altered.
Second, because there is no central stack which is chronologically pushed and
popped at function entry/exit, execution control is free to meander from one
function to the next without permanently closing any function. Thus, at any
moment, there can be numerous suspended functions which may be resumed at the
point at which they last relinquished control, or in fact, at an arbitrary
labeled point within them.

As one might expect, this ability makes the context marking technique for
items in the database more complex than in MP. In particular, since control
may eventually be returned to any suspended function (the system in general
has no way of knowing whether or not it actually will be) , every fact in the
database must have markings which specify for every suspended function, F,
whether or not that fact is supposed to be logically present while F is
running. To accomplish this type of marking, the
generalized from a stack-like arrangement to a tree of

MP context scheme was
contexts. Basically,

every fact lives on some branch of the tree, and functions have access to
limbs of the tree. Although there is considerable overhead, the system manages
to mask and unmask facts in the database in synchrony with the meandering of
execution control from one function to the next.

To distinguish the permanent return of a function from the case where a
function merely relinquishes control, reserving the option to continue,
CONNIVER defines two methods of returning: ADIEU (final, permanent return) and
AU-REVOIR (suspension) . One very important application of the AU-REVOIR
feature is in the (often costly) generation of alternatives. Rather than
calling a function (such as THFIND in MP) to generate all possible candidates
before any detailed filtering tests are applied (a procedure which may waste
an inordinate amount of time in the initial collecting phase) , in CONNIVER it
is possible to call a "generator" function which will locate and return
candidates one at a time, suspending itself across calls. This makes for a
more intimate form of interaction between the generating and testing functions
than is possible in MP, and can lead to more efficient searches because of
this intimacy. To facilitate the use of generators, CONNIVER has some rather
elaborate machinery for maintaining "possibilities lists", including a
function, TRY-NEXT, which controls the extraction of possibilities from such
1 ists

.

Computation in CONNIVER is similar in most other regards to computation
in MP. The counterparts of THANTE, THERASING and THCONSE theorems are,
respectively, IF-ADDED, IF-REMOVED and IF-NEEDED "methods". Except for
differences in syntax, and a more general pattern-directed invocation scheme,
these three functions are the same as the MP versions. CONNIVER counterparts
of MP's database and goal-statement functions, THASSERT, THERASE and THGOAL
are, respectively, ADD, REMOVE and FETCH.

299

3.4. Efficiency of the LISP Language Family

Being an interpreted language, LISP is slower than, say, FORTRAN, by
between one and two orders of magnitude. But compiled LISP can be competitive
with a good FORTRAN compiler. Thus, in our opinion, LISP provides the best of
both worlds, in the sense that the interpreter provides for easy program
development and debugging, while the LISP compiler can transform debugged code
into production-level efficiency.

MICROPLANNER and CONNIVER, on the other hand, are inherently less
efficient, primarily because of the control structures they superimpose on
LISP. The fatal flaw with MP is its backup system, which can be extremely
slow* compilation will not typically remedy the problem. CONNIVER is slow tor
similar reasons: in addition to data structures, processes must also be
garbage collected, and the elaborate context system must be’ maintained. In
our opinion, although these two languages contain many noteworthy features,
neither would be suitable as it stands for production use.

3.5. Standardization of the LISP Language Family

There are LISP systems for the following machines: PDP-10, PDP-11, UNIVAC
1106, 1108, 1110, CDC 6500, 6600, IBM 360, 370, SIGMA 5, and others. (Because
it is a relatively easy language to implement', we would anticipate no
significant development problems for any machine, including microcomputers.)
Since LISP'S syntax is nearly non-existent, there is exactly one dialect.
Although there are minor differences in the semantics of how functions are
defined, and how variables' values are accessed, such "incompatibilities" can
normally be ameliorated in about one day's worth of macro-writing. Because of
this, LISP can be characterized as a language which is fairly standard and
transportable. Finally, most LISP systems have an accompanying compiler,
usually written in LISP itself.

300

4 . Related Languages

4.1. AL

AL is a high-level programming system for specification of manipulatory
tasks, which has been developed at Stanford Artificial Intelligence Laboratory
[Finkel74] . AL is a SAIL-like language and includes large runtime support for
controlling devices.

Trajectory calculation is a crucial feature of manipulatory control. AL
contains a wide range of primitives to support efficient trajectory
calculations. As much computation as possible is done at compile-time and
calculations are modified at run-time only as necessary.

Besides a dimensionless scalar data type (i.e. REAL), AL recognizes and
manipulates TIME, MASS and ANGLE SCALARs, dimensionless and typed VECTORS, and
ROT (rotation) ,

FRAME (coordinate system) , PLANE (region separator) and TRANS
(transformation) data types. Proper composition of variables of these types
gives a simple means of performing calculations of any type of movement.

Also included are PL/l-like ON-conditions
,
which allow monitoring of the

outside world, and concurrent processes.

Example:

PLANE pi;

{ statements initializing pi }

SEARCH yellow

ACROSS pi
WITH INCREMENT = 3*CM
REPEATING

BEGIN
FRAME set;
set yellow;
MOVE

-yel low XOR - Z*CM

{ SEARCH is a primitive which causes
a hand to move over a specified
area. yellow is a hand }

{ hand moves across plane)

{ every 3 cm }

{ do at every iteration }

{ yellow is also coord system of hand }

{ move hand 1 cm down from current
position along Z-axis }

ON FORCE (Z) > 3000*DYNES
DO TERMINATE; { keep in touch with real world }

MOVE yellow TO set DIRECTLY; { move the hand back to where
it was in a straight line }

END;

4.2. MLISP

ML ISP (meta-LISP) is a high-level list-processing language developed at
Stanford University [Smith70J. MLISP programs are translated into LISP
programs which are then executed or compiled. The MLISP translator itself is

301

written in LISP.

MLISP is an attempt to improve the readability of LISP programs as well
as alleviate some alleged shortcomings in the control structure of LISP (e.g.
no explicit iterative construct). Since run-time errors are only detected by
the LISP system (when actually executing the program), users frequently find
themselves debugging the translated LISP code. This somewhat defeats the
purpose of any high-level language.

All LISP functions are recognized and translated in MLISP, but the
Cambridge prefix notation of LISP has been replaced by standard prefix, infix
and function notation. Instead of (PLUS X Y) one may write X + Y, and (F00 'A
B C) becomes FOO('A, B, C) .

MLISP also provides a powerful set of iterative statements and a large
number of "vector operators." Vector operators are used to apply standard
operators in a straightforward manner to lists. Thus, in MLISP, <1, 2, 3> +@
<6, 5, 4> yields <7, 7, 7>. +@ is the vector addition operator and <A, B, C>
is equivalent to (LIST ABC) in LISP.

Example:

/

Given
return a
holderi is
object. %

a list of the form <obj 1 ,
obj2, ..., objn>, this function will

list of the form <<objl, holderl>, ..., <objn, holdern>> where
either PLIERS, VISE or NOTHING accordingly as needed to hold the
...% is an MLISP comment.

EXPR HOLD-LIST (OBJ-LIST)
; %

BEGIN
NEW S; %
RETURN %

FOR NEW OBJ IN OBJ-LIST COLLECT

EXPR starts a regular func %

local declaration %
RETURN is a unary operator %

% OBJ is local to the FOR loop. %
% OBJ will be bound in turn %
% to each element of OBJ-LIST. %
% COLLECT indicates that the %
% result of each iteration is %
% to be APPENDed to the previous %
% result and this whole list %
% returned as the result of %
% the FOR. %

IF (S GET(OBJ, 'SIZE)) LEQUAL 5

THFN
<<OBJ , ' PLIERS>>

ELS
I

E
F S LEQUAL 10

THEN
<<OBJ , ' V I S E> >

ELS E
<<0B J , ' N0THING>>

END;

4.3. POP-

2

POP-2 is a conversational language designed by R. M. Burstall and R. J.
Popplestone and developed at the University of Edinburgh [Burstall7 1]

.

POP-2 features an Algol-like syntax and draws heavily from LISP.

302

Integers, reals, LISP-like lists and atoms (called 'names'), function
constants (lambda expressions), records, arrays, extensible data types and
run-time macros are supported. A unique feature of the POP-2 system is the
heavy use of a system stack, which the user may easily control to enhance the
efficiency of programs.

A full complement of list-manipulation, numeric and storage-management
functions are available.

Example:

Suppose one wanted to obtain a list of all machinery not currently
functioning. A useful function would be,

COMMENT returns a list of all elements of argument list xl
which satisfy argument predicate p ;

arguments are xl and p }

declaration of local, no type }

{
^ust like LISP }

{ hd(a) = (car a) >

FUNCTION sublist xl p;
VARS x;
IF null(xl) THEN nil

ELSE hd(xl) -> x;
IF p(x)

THEN x : :sub list (tl(xl)
, p)

{ tl(a) = (cdr a), x::l = (cons x 1) }

ELSE sub list (tl (xl) , p)
CLOSE

CLOSE
END;

A call might then look like,

sublist(machine- list,
LAMBDA m; not(f unctioning(m)) END);

which might return,

[punch-pressl drill-press2 unitlO]

which is a POP-2 list.

303

5 . Examples

5.1. Introduction

A common example will be used to illustrate the distinguishing features
of the four major languages. With only minor variations the program-segments
use the same algorithm. The program-segments appear out of context and are
not meant to indicate the most eficient (or preferred) implementation of the
problem in each language, but merely to illustrate the languages' major
attr ibutes

.

Problem statement:

Given two distinct assemblies (say A1 and A2), attempt to unscrew A1 from A2

,

and indicate success or failure accordingly. The "world" of the example is
assumed to include:

(1) Two hands (LEFT and RIGHT) capable of moving, grasping, twisting and
sensing force and motion.

(2) A fixed number (possibly zero) of PLIERS '

(3) A fixed number (possibly zero) of VISEs

(4) A fixed number of "assemblies"

For each PLIERS and VISE, the data base contains an assertion of the
form, "PLIERS (VISE) # n is at location (X, Y, Z) and is of capacity C cm." In
addition, for each assembly the data base contains an assertion of the form,
"assembly A is at location (X, Y, Z) and is of size S cm." One of the
distinguishing features of the languages is their method of representing this
knowledge

.

Each example assumes the existence of the following routines. They are
described below in ALGOL-like notation.

ATTACHED(A1, A2) - TRUE if and only if the assembly represented by A1
(hereafter simply called Al^ is attached to the assembly represented
by A2 (likewise called A2) . The routine has no side effects.

MOVE (HAND, LOCATION) - Moves HAND (either LEFT or RIGHT) to LOCATION (but see
PLANNER'S description of MOVE).

WIST (HAND, DIRECTION) - Twists HAND (LEFT or RIGHT) in given DIRECTION
(CLOCKWISE or COUNTER-CLOCKWISE). The DIRECTION is oriented looking
down the length of the arm. Except for SAIL, all programs assume a
routine called TWIST-BOTH, to cause both hands to twist at once.

GRASP (HAND, OBJECT) - Causes HAND (LEFT or RIGHT) to grasp OBJECT, which must
be within some fixed range of HAND (i.e. the hand must MOVE to the
OBJECT first) .

ATTEMPT (OBJ 1 , 0BJ2, A1 , A2) - Attempts to do the actual msc rewing of assembly
A1 from A2 using objects 0BJ1 and 0BJ2 (here, VISEs or PLIERS).
Returns TRUE if and only if the attempt is successful.

Each program proceeds as follows:

(1) Try to unscrew the assemblies using the hands. This entails obtaining the
location of the assemblies, moving the hands to their locations, grasping
and then twisting.

(2) If the objects are no longer attached, return "success."

304

(3) It is assumed that the hands weren't strong enough, it is proposed to try
two pairs of PLIERS. A search ensues" for a suitable set of available
PLIERS (i.e. large enough to hold the assemblies). If one set of PLIERS
fails, the search is continued for another set, with the hope that the
differences among PLIERS (grip, size, etc.) will eventually lead to
success

.

(4) The PLIERS failed. It is decided to hold one of the assemblies in a VISE.
A search identical in nature to that in step (3) occurs

(5) At this point all attempts have failed. An appropriate message is output
and "failure" is returned.

305

5.2. SAIL

5.2.1. Sample Program

1

2 INTEGER PROCEDURE BIGENOUGH (ITEMVAR HOLDER, HOLDEE)

;

3
4 " RETURN TRUE IFF OBJECT HOLDER IS LARGE
5 ENOUGH TO HOLD OBJECT HOLDEE "

6
7 BEGIN

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

INTEGER ITEMVAR C, S;

C COP (CAPACITY XOR HOLDER);
S - COP (S IZ E XOR HOLDEE);
RETURN (DATUM(C) GEQ DATUM (S)

)

END;

INTEGER PROCEDURE UNSCREW (ITEMVAR Al, A2);

" ATTEMPT TO DISASSEMBLE ASSEMBLY Al FROM A2, BY UNSCREWING "

BEGIN

DEFINE RUNME = 1;

ITEMVAR VI, PL 1 , PL2, PI, P 2

;

INTEGER FLAG;

IF NOT ATTACHED (Al , A2) THEN RETURN (1) ;
" DON'T BOTHER "

MOVE (LEFT, LOCATION XOR Al); MOVE (RIGHT, LOCATION XOR A2);
GRASP (LEFT, Al); GRASP (RIGHT , A2);

" GET BOTH HANDS TWITSTING AT ONCE "

SPROUT (PI, TWIST (LEFT, COUNTER! CLOCKWISE) ,
RUNME);

SPROUT (P2, TWIST(RIGHT, COUNTER! CLOCKWISE) , RUNME);
J0 IN ({ P 1 ,

P2 }) ;

IF NOT ATTACHED (Al, A2) THEN RETURN(l);

" HANDS NOT STRONG ENOUGH, TRY PLIERS "

FOREACH PL 1 , PL2
|

ISA XOR PL1 EQV PLIERS AND (BIGENOUGH (PL 1 , Al))
AND ISA XOR PL2 EQV PLIERS AND (PL1 NEQ PL2

)

AND (BIGENOUGH (PL 2, A2)) AND (ATTEMPT (PL 1 , PL2 , Al , A2))
DO RETURN (1)

;

" EITHER THERE WEREN'T ANY PLIERS LARGE ENOUGH,
OR THE PLIERS WEREN'T STRONG ENOUGH. TRY A
VISE ON ONE SIDE "

FOREACH VI, PL 1 |

ISA XOR VI EQV VISE AND (BIGENOUGH (V 1 , Al))
AND ISA XOR PL 1 EQV PLIERS AND (BIGENOUGH (PL 1 , A2))
AND (ATTEMPT (VI , PL1, Al , A2)

)

DO RETURN (1)

;

306

" ALL ATTEMPTS FAILED "

OUTSTR("CAN'T UNSCREW " & CVIS(A1, FLAG) & " &
"

& CVIS (A2 , FLAG) & ('15 & '12));
RETURN(O)

. •

l|} >

w.jyj I

307

5.2.2. Commentary

2. In SAIL, FALSE = 0, TRUE <> 0. BIGENOUGH is really a BOOLEAN procedure.

9. C and S are items whose DATUM is assumed to be of INTEGER type.

II. C0P(<set>) returns the first item of <set>. We are assuming there is
only one triple of the form CAPACITY XOR <object> EQV <capacity> for each
<ob j ect>

.

13. C and S were needed since DATUM(C0P (<set>)) is illegal. SAIL must know
at compile-time what the type of a DATUM is. GEQ is a numeric test for
greater than or equal.

20. UNSCREW is a BOOLEAN procedure which returns TRUE (non-zero) if it
succeeds in unscrewing the objects.

26. This is a macro definition. Whenever RUNME is seen (by the SAIL
compiler) it will be replaced by the constant 1. (see 39. for use)

39. SPROUT is a SAIL function which causes activation of its second argument
(a procedure/function call) as a process. The first argument is an item
whose DATUM will be set by SPROUT to contain information about the
SPROUTed process (see 41. for use). The third argument to SPROUT
determines the status of the current and the created process. RUNME (bit
35 set) indicates that the current and new process are to be run in
parallel by the SAIL scheduler.

47. BOOLEAN tests in a FOREACH must be enclosed in parentheses.

48. Notice (PL1 NEQ PL2) to insure that two distinct pairs of pliers are
found

.

50. If the body of the FOREACH is entered, all went well so we just return
success

.

64. CVIS is a SAIL function which will return a character string 'name'
associated with an item. FLAG is set by CVIS to indicate an error.

308

5.3. LISP

5.3.1. Sample Program

1

2
3

4
5

6
7

10
1 1

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

(DEFUN UNSCREW (A1 A2)

? ATTEMPT DISASSEMBLY OF OBJECT A1 FROM A2, BY UNSCREWING

(PROG (PL 1 PL2 VI IN)

(COND [(NOT (ATTACHED A1 A2)) (RETURN T)])

(MOVE ' LEFT (GET A1 'LOCATION))
(MOVE 'RIGHT (GET A2 'LOCATION))
(GRASP 'LEFT Al) (GRASP 'RIGHT A2)
(TWIST-BOTH 'COUNTER-CLOCKWISE)
(COND [(NOT (ATTACHED Al A2)) (RETURN T)]

)

? HANDS NOT STRONG ENOUGH, TRY PLIERS

(COND [(FOREACH PL1 IN PLIERS-LIST (BIGENOUGH PL1 Al)
PL2 IN PLIERS-LIST (AND (NOT (EQ PL 1 PL2)

)

(BIGENOUGH PL2 A2)

)

DO (ATTEMPT PLl PL2 Al A2))
(RETURN T)]

? PLIERS NOT LARGE ENOUGH OR NOT STRONG ENOUGH.
? TRY A VISE ON 1 SIDE

[(FOREACH VI IN VISE-LIST (BIGENOUGH VI Al)
PLl IN PLIERS-LIST (BIGENOUGH PLl A2)

DO (ATTEMPT VI PLl Al A2))
(RETURN T)]

? ALL ATTEMPTS FAILED

[T (PRIN1 "CAN'T UNSCREW ") (PRIN1 Al)
(PRIN1 " & ") (PRIN1 A2) (TERPRI)
(RETURN NIL)]

)

(DEFUN BIGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS LARGE ENOUGH TO
? HOLD OBJECT HOLDEE

(NOT (LESSP (GET HOLDER
(GET HOLDEE

)

'CAPACITY)
'SIZE))

)

(DEFSPEC FOREACH (LAMBDA (OBJ1 INI LIST1 PRED1
OBJ2 IN2 LIST2 PRED2
DO TRY)

? MIMIC SAIL FOREACH IN SIMPLE CASE

(PROG (TEMPI TEMP2)

309

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

(SETQ TEMPI (EVAL LIST1))
LOOP 1

(COND [(NULL TEMPI) (RETURN NIL)]) ? RAN OUT
(SET OBJ 1 (CAR TEMPI)

)

(SETQ TEMPI (CDR TEMPI))
(COND [(NOT (EVAL PRED1)) (GO LOOP1)]) ? FAILED 1ST TEST
(SETQ TEMP2 (EVAL LIST2)

)

LOOP2
(COND [(NULL TEMP2) (GO LOOP 1)]

)

(SET OBJ 2 (CAR TEMP 2)

)

(SETQ TEMP 2 (CDR TEMP 2)

)

(COND [(NOT (EVAL PRED2)) (GO LOOP2)]
[(EVAL TRY) (RETURN T)] ? IT WORKED
[T (GO LOOP2)]

)

)))

(DEFMAC FOREACH (LAMBDA (OBJ1 INI LIST1 PR ED 1

OBJ2 IN2 LIST2 PRED2
DO TRY)

? MACRO VERSION OF FOREACH 1

(LIST ' PROG ' (LI L2

)

(LIST 'SETQ 'Ll LIST1)
'LOOP 1

'(COND [(NULL LI) (RETURN NIL)])
(LIST SETQ OBJ 1 *

(CAR LI))
' (SETQ LI (CDR LI))

(LIST 'COND (LIST (LIST 'NOT PRED1) '(GO LOOP 1))

)

(LIST 'SETQ L2 LIST2)
' LOOP2

'(COND [(NULL L2) (GO LOOP1)])
(LIST 'SETQ OBJ2 '(CAR L2)

)

' (SETQ L2 (CDR L2)

)

(LIST 'COND (LIST (LIST 'NOT PRED2) '(GO LOOP2))
(LIST TRY '(RETURN T))
' (T (GO LOOP 2))))

))

310

5.3.2. Commentary

2. The main function. Returns T iff disassembly was successful.

13. Unlike SAIL, LISP does not support concurrency. We thus assume a
primitive function to get both hands twisting.

18. FOREACH is an iterative special form which mimics a simple SAIL FOREACH.
FOREACH will try pairs of pliers until the given predicates succeed or it
runs out of pliers (and returns NIL). Note that the arguments to a
special form need not be quoted.

19. Check to insure that distinct pairs of pliers are found.

34. PRIN1 is a LISP function which loads its argument into the stream output
buffer

.

35. TERPRI is a LISP function which dumps the output buffer.

47. Return T if capacity >= size.

55. DEFSPEC defines a special form (sometimes called a FEXPR) . A special
form is identical to a LISP function except that its arguments are passed
unevaluated

.

63. EVAL is necessary since the argument was passed unevaluated.

66. Note SET and not SETQ. 0BJ1 needs to be evaluated to get the intended
atom (SET evaluates its first argument, SETQ does not).

68. Note EVAL (see 61.).

72. Note SET (see 64.).

82. This is an alternative macro version of FOREACH. It expands into a PROG
which is similar in nature to the special form FOREACH.

311

5.4. PLANNER (MICROPLANNER)

5.4.1. Sample Program

1

2

3
4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

(THCONSE UNSCREW (A1 A2)
(UNSCREW (THV Al) (THV A2)

)

? ATTEMPT DISASSEMBLY OF OBJECT Al FROM A2, BY UNSCREWING

(THOR
(THNOT (ATTACHED (THV Al) (THV A2))

)

(THAND
(THGOAL (MOVE LEFT (THV Al)) (THTBF THTRUE)

)

(THGOAL (MOVE RIGHT (THV A2)) (THTBF THTRUE))
(GRASP 'LEFT (THV Al)) (GRASP RIGHT (THV A2))
(TWIST-BOTH 'COUNTER-CLOCKWISE)
(THNOT (ATTACHED (THV Al) (THV A2)))

? HANDS NOT STRONG ENOUGH, TRY PLIERS

(THPROG (PL 1 PL2)
(THGOAL (ISA (THV PL 1) PLIERS) (THTBF THTRUE))
(THGOAL (BIGENOUGH (THV PL 1) (THV Al)) (THNODB)

(THUSE BIGENOUGH) (THTBF THTRUE))
(THGOAL (ISA (THV PL2) PLIERS) (THTBF THTRUE))
(THNOT (EQ (THV PL1) (THV PL2))

)

(THGOAL (BIGENOUGH (THV PL2) (THV A2)) (THNODB)
(THUSE BIGENOUGH) (THTBF THTRUE)

)

(ATTEMPT (THV PL1) (THV PL2) (THV Al) (THV A2))
)

? NO PLIERS LARGE ENOUGH, OR NO PLIERS STRONG ENOUGH.
? TRY A VISE ON 1 SIDE

(THPROG (VI PL)
(THGOAL (ISA (THV VI) VISE) (THTBF THTRUE))
(THGOAL (BIGENOUGH (THV VI) (THV Al)

)

(THNODB)
(THUSE BIGENOUGH) (THTBF THTRUE))

(THGOAL (ISA (THV PL) PLIERS) (THTBF THTRUE))
(THGOAL (BIGENOUGH (THV PL) (THV A2)) (THNODB)

(THUSE BIGENOUGH) (THTBF THTRUE)

)

(ATTEMPT (THV VI) (THV PL) (THV Al) (THV A2))

? NOTHING WORKED, JUST FAIL

(THNOT (THDO
(PR IN 1 "CAN'T UNSCREW ") (PRIN1 (THV Al))
(PRIN1 " & ") (PRIN1 (THV A2)

)

(TERPRI)
))
(THFAIL THEOREM)

(THCONSE BIGENOUGH (HOLDER HOLDEE C S)
(BIGENOUGH (THV HOLDER) (THV HOLDEE))

? SUCCEEDS ONLY IF OBJECT HOLDER IS LARGE ENOUGH TO HOLD
? OBJECT HOLDEE

(THGOAL (CAPACITY (THV HOLDER) (THV C)) (THTBF THTRUE))

62 (THGOAL (SIZE (THV HOLDEE) (THV S)) (THTBF THTRUE)

)

63 (THCOND [(NOT (LESSP (THV C) (THV S)))
64 (THSUCCEED)

]

65
' '

66
[T (THFAIL THEOREM)])

;

313

5.4.2. Commentary

2. Defines and asserts a consequent theorem with name UNSCREW.

3. This is the pattern on which to invoke this theorem if needed. ((UNSCREW
ASSEMBLY 1 ASSEMBLY2) for instance.)

7.

THOR sequentially executes each of its arguments until one succeeds, and
then the THOR succeeds. The THOR is used here to prevent undesired
backup .

8.

(THNOT p) is defined as (COND [p (THFAIL)] [T (THSUCCEED)]) .

9.

THAND succeeds if and only if all of its arguments succeed. Unlike THOR,
backup may occur among the arguments of a .THAND.

10.

Attempt to move the left hand to object A1 . There may be several experts
(theorems) on moving hands, PLANNER will try as many as it needs (a
powerful concept). (THTBF THTRUE) is a theorem base "filter" which is
satisfied by every theorem.

19. THPROG behaves in
may be declared.

a similar manner

20. Attempt to find a pi iers

.

21. See if the pliers is large enough

.

bother searching
<theorem> first.

the data base

.

24. Make sure we have two distinct pai

to THAND except that local variables

\

(THNODB) indicates to PLANNER not to
(THUSE <theorem>) tells PLANNER to try

s of pliers.

45. THDO executes its arguments and then succeeds. However, we know we have
failed, so THNOT is used to generate a failure from THDO. This is all
necessary since PRIN1 returns its first argument, which being non-NIL
would cause the THOR to succeed.

49. Generate explicit failure of the theorem.

314

5.5. CONNIVER

5.5.1. Sample Program

1

2

3

4
5

6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

(CDEFUN UNSCREW (A1 A2)

? ATTEMPT TO DISASSEMBLE A1 FROM A2, BY UNSCREWING

"AUX" (LOCI LOC2 GEN 1 GEN2 VI PL1 PL2)

(COND [(NOT (ATTACHED A1 A2)) (RETURN T)])

(PRESENT '(LOCATION ! ,A1 !>L0C1))
(PRESENT '(LOCATION !,A2 !>LOC2))
(MOVE 'LEFT LOCI) (MOVE 'RIGHT LOC2)
(GRASP 'LEFT Al) (GRASP 'RIGHT A2)
(COND [(NOT (ATTACHED Al A2)) (RETURN T)])

? HANDS NOT STRONG ENOUGH, TRY PLIERS

(CSETQ GEN1 ! "(^POSSIBILITIES) *IGNORE
(^GENERATOR (NEXT-OBJ 'PLIERS ' (BIGENOUGH $ Al)))))

: PLOOP

1

(CSETQ PL 1 (TRY-NEXT GEN1 '(GO 'TRY-VISE)))
(CSETQ GEN2 !"(("^POSSIBILITIES) * IGNORE

(*GENERATOR (NEXT-OBJ 'PLIERS
' (AND (NOT (EQ PL1 $)

)

(BIGENOUGH $ A2)))))

)

: PLOOP2
(CSETQ PL2 (TRY-NEXT GEN2 '(GO 'PLOOPl)))
(COND [(ATTEMPT PLl PL2 Al A2) (RETURN T)]

[T (GO ' PLOOP2)]

)

? NO PLIERS LARGE ENOUGH, OR PLIERS NOT STRONG
? ENOUGH. TRY A VISE ON ONE SIDE.

: TRY-VISE
(CSETQ GEN1 !"(('^POSSIBILITIES) ^IGNORE

(*GENERATOR (NEXT-OBJ 'VISE '(BIGENOUGH $ Al)))))
: VLOOP

(CSETQ VI (TRY-NEXT GEN1 '(GO 'NO-CAN-DO)))
(CSETQ GEN2 ! "(^POSSIBILITIES) * IGNORE

(^GENERATOR (NEXT-OBJ 'PLIERS '(BIGENOUGH $ A2)))))
: PLOOP3

(CSETQ PLl (TRY-NEXT GEN2 '(GO 'VLOOP)))
(COND [(ATTEMPT VI PLl Al A2) (RETURN T)]

[T (GO 'PLOOP3)]

)

? ALL ATTEMPTS FAILED

: NO-CAN-DO
(PRIN1 "CAN'T UNSCREW ") (PRIN1 Al)
(PRIN1 " & ") (PRIN1 A2) (TERPRI)
(RETURN NIL)

)

(CDEFUN BIGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS LARGE
? ENOUGH TO HOLD OBJECT HOLDEE

315

AUX" (C S)62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

If

(PRESENT '(CAPACITY !, HOLDER !>C))
(PRESENT '(SIZE ! ,HOLDEE I > S)

)

(NOT (LESSP C S))
)

(CDEFUN NEXT-OBJ (TYPE PRED)

? GENERATOR TO RETURN NEXT OBJECT OF 'TYPE'
? WHICH SATISFIES 'PRED'

"AUX" (OBJ TEMP)

(CSETQ TEMP (FETCH '(ISA !>OBJ !,TYPE)))
: LOOP

(TRY-NEXT TEMP '(ADIEU))
(COND [(CVAL (SUB ST OBJ '$ PRED))

(NOTE OBJ)
(AU-REVOIR)]

)

(GO 'LOOP)

/

316

5.5.2. Commentary

2. CDEFUN defines a function to CONNIVER.

6. "AUX" <list> defines local variables.

10. PRESENT is a CONNIVER function which searches the data base for an item
which matches its pattern argument. If one is found, PRESENT sets the
indicated variables (marked with !< or !>) and returns the item. ! ,A1
indicates the current CONNIVER value of A1 . !>L0C1 indicates that LOCI
is to be bound if possible.

18. GEN1 is being assigned a TRY-NEXT possibilities list. !" tells CONNIVER
to do a "skeleton expansion" of the following list (which is necessary to
CONNIVER's internals). The (^POSSIBILITIES) and ^IGNORE are syntatic
markers to TRY-NEXT whose function we can ignore. (^GENERATOR
<func-call>) indicates to TRY-NEXT to use <func-call> to generate
additional possibilities if needed.

19. NEXT-OBJ will continue to generate objects of type PLIERS which satisfy
the predicate (2nd argument). It will generate one PLIERS at a time.
(BIGENOUGH $ Al) is a skeleton predicate which NEXT-OBJ will use to
screen each possibility. The current candidate is substituted for $
before the predicate is CVALuated (CONNIVER's form of EVALuation)

.

21. When GEN1 contains no more possibilities, TRY-NEXT will execute (GO
'TRY-VISE). Unlike LISP, GO evaluates its argument here.

24. Check to insure that two distinct pairs of pliers will be found.

64. See 10.

66. RETURN is not necessary since the value of a CONNIVER function is the
last expression evaluated.

72. This starts the definition of the generator. Note that NEXT-OBJ looks
like a regular function to CONNIVER until it is called.

79. FETCH is a CONNIVER primitive which returns a possibilities list of all
items in the data base which match its pattern argument. !>0BJ indicates
that OBJ should be bound by TRY-NEXT to each possibility in turn.

81. TRY-NEXT binds OBJ from the possibilities list TEMP and removes the
current possibility. If there is no current possibility, (ADIEU) is
evaluated which causes termination of the generator.

82. The desired predicate is CVALuated after substituting the current object
into the skeleton. (SUBST ABC) is a LISP function which returns a list
which is the result of substituting A for every occurrence- of B in list

83. (NOTE OBJ) is a CONNIVER function which places the current value of OBJ
onto the current possibilities list.

84. (AU-REVOIR) returns control from NEXT-OBJ but leaves the generator in a
suspended state. When TRY-NEXT returns control to NEXT-OBJ, execution
will resume at (GO 'LOOP).

317

6. Recommendations

In principle, either SAIL or LISP could provide an excellent basis for
real-time planning and execution control of a large automated shop. However,
each language possesses features which facilitate certain types of operations.
In particular, SAIL is generically better at the low level control of I/O
devices, and has more extensive abilities for interacting with the operating
system (especially where file manipulations are concerned) . LISP, on the other
hand, is more flexible at the higher planning levels and where system
development and debugging are concerned.

We would therefore envision an "ideal" system as one which merged all the
desirable features of these two language classes. The merger would probably
adopt LISP program and data structure format, augmented where necessary to
accomodate SAIL file-related operations, and possibly LEAP. SAIL features
would be implanted in this environment, and, at the implementor's discretion,
an ALGOL-like front-end syntax (such as MLISP's) could be grafted onto the
front of the system to make LISP more tractable to humans.

Our recommendation therefore is that some development effort be invested
in the merger of LISP and SAIL. Such a merger would provide the foundations
for more complex control as found in MP and CONNIVER, without having to cope
with other, more cumbersome parts of these systems.

Such a merger should take care to preserve the following desirable
features of SAIL and LISP:

(1) Data structures should accomodate complex symbolic information as
well as string and numeric information. As in LISP, data
structures should be free to grow in unrestricted ways, and
storage declarations should be optional to the user.

(2) Program and data should, as in LISP, be in one and the same
format. Such a representation underlies (a) a strong macro
facility, (b) rapid editing, modification and debugging of
programs, and (c) self-modifying and self-extending systems. The
last ability would, for example, enable the system, given the
description of a new type of tool, automatically to synthesize the
programs for controlling the tool from a library of sub-functions.

(3) There should be strong I/O and file manipulating facilities, as
are found in SAIL. A good random-access file system is imperative
for even moderately large databases. The system should have both
high and low level control over input and output formatting which
provides control down to the bit level of the machine.

(4) There should be a highly-developed interrupt subsystem. With the
merger of SAIL' s bit-wise interrupt control, and LISP's symbolic
abilities, such a system as is described in [Rieger 76] could be
efficiently implemented, serving as the network protocol for a
large collection of highly autonomous processes where the
synthesis and control of many parallel events is important.

(5) For software development and debugging, the language should be
interpreted. Yet, tne language should be compilable for production
usage. LISP currently satisfies these requirements.

(6) The system should provide for a large, context-sensitive,
associative database. This would involve some new engineering to
coordinate a MP-like database with an efficient random-access file
system. [McDermott7 5] surveys some ideas on this topic.

(7) There should be some degree of automatic problem-solving control
which includes a CONNIVER-like context-switching and
process-suspending mechanism. There should also be accomodations
for SAIL-like parallel process control, and emphasis should be
placed on inter-process communications protocols. Most of the
ideas already exist in CONNIVER and SAIL, but the ideas need to be
synthesized into a unified system.

318

case
,

these
would

S“ C
NB
h
s
a

wo uf^supervise l?Y?i Si!, «M?h

w»f,

'

.

.

' .

-

,

X

319

7 . Bibliography

[Baumgart72] Baumgart, B. G. "Micro-Planner Alternate Reference Manual,"
Stanford AI Lab Operating Note No. 67, April 1972.

[B BN EXEC] Bolt, Beranek and Newman. "TENEX Executive Manual," Cambridge,
Massachusetts, April 1973.

[Beech70] Beech, D. "A Structured View of PL/1," ACM Computing Sarvevs, March
1970, pp. 33-64. — —

[Bobrow74] Bobrow, D. G. and Raphael, B. "New Programming Languages for
Artificial Intelligence," ACM Computing Surveys, September
1974, pp. 153-174.

[Burstall71] Burstall, R. M. , Collins, J. S. and Popplestone, R. J.
Programming in POP-2, The Round Table and Edinburgh University
PY

'

esh, 19 7 1 .

[Church41] Church, A. The Calculi of Lambda Conversion, Princeton University
Press, Pi* inceton

,
Mew jersey, 1 94 1

.

[COBOL74] COBOL. "American National Standard Programming Language COBOL,"
X3.32 - 1974, American National Standards Institute, Inc., New
York, 1974.

[C0DASYL71] CODASYL Data Base Task Group. "April 1971 Report," ACM, New York,
1971 .

[DEC] DEC. "DEC System-10 Data Base Management System Programmer's Procedures
Manual," Document DEC-10-APPMA-B-D, Maynard, Massachusetts.

[Dijkstra75] Dijkstra, E.W.D., Lamport, L. , Martin, A.J., Scholten, C.S.,
Steffens, E.F.M. "On-the-fly Garbage Collection: An Exercise in
Cooperation," Burroughs, Plataanstraat 5, NL-4565 NUENEN, The
Netherlands, EWD496-0.

[Fahlman73] Fahlman, S. "A Planning System for Robot Construction Tasks," MIT
AI Memo 283, 1973.

[Feldman69] Feldman, J. A. and Rovner, P. D. "An ALGOL-Based Associative
Language," Communications of the ACM ,

August 1969, pp. 439-449.

[Feldman71] Feldman, J. A. and Sproull, R. F. "System Support for the Stanford
Hand-Eye System," Second International Joint Conference on
Artificial Intelligence, London, September 1-3, 1971.

[Finkel74] Finkel, R. , Taylor, R. ,
Bolles, R. , Paul, R. and Feldman, J. "AL,

A Programming System for Automation," Stanford Artificial
Intelligence Laboratory, Memo AIM-243, November 1974.

[Hewitt69] Hewitt, C., "PLANNER: A Language for Proving Theorems in Robots,"
Proc. IJCAI-1 , 1969

[Leslie72] Leslie, W.H.P. (editor). Numerical Control Programming Languages,
North-Holland Publishing Company, London" 1972

.

[Levin65] Levin, M.I. "LISP 1.5 Programmer's Manual," The M.I.T. Press,
Cambridge, Massachusetts, 1965.

[McCarthy60] McCarthy, J. "Recursive Functions of Symbolic Expressions and
their Computation by Machine," Communications of the ACM, April
1960, pp. 184-195.

[McDermott7 2] McDermott, D. V. and Sussman, G. J. "The Conniver Reference
Manual," AI Memo No. 259, MIT Project MAC, May 1972.

[Moon74] Moon, D.A. "MACLISP Reference Manual," Project MAC - Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1974.

320

[Naur60] Naur, P. (Editor) . "Revised Report on the Algorithmic Language ALGOL
60, Communications of the ACM , May I960, pp. 299-314.

[Norman69] Norman, E. "LISP," University of Wisconsin Computing Center,
Madison, Wisconsin, April 1969.

[Parsons74] Parsons, F. G. , Dale, A. G. and Yurkanan, C. V. "Data
Manipulation Language Requirements for Database Management
Systems," Computer Journal , May 1974, pp. 99-103.

[RAPIDATA] RAPIDATA Corporation. "A FORTRAN DML Implementation for DBMS-10,"
Fairfield, New Jersey.

[Rieger76] Rieger, C.J. "Spontaneous Computation in Cognitive Models,"
Department of Computer Science, University of Maryland, TR-459,
July 1976.

[Reiser75] Reiser, J. F. "BAIL—A debugger for SAIL," Stanford Artificial
Intelligence Laboratory, Memo AIM-270, October 1975.

[Reiser76] Reiser, J. F. (Editor). "SAIL," Stanford Artificial Intelligence
Laboratory, Memo AIM-289, August 1976.

[Samet76] Samet, H. "The SAIL Data Base Management System," Computer Science
Department, University of Maryland, College Park, Maryland,
Unpublished, 1976.

[Siklossy76] Siklossy, L. Let* s Talk LISP ,
Prentice-Hall, Inc., 1976.

[Smith70] Smith, D. C. "MLISP," Stanford Artificial Intelligence Project, Memo
AIM-135, 1970.

[Stacey74] Stacey, G. M. "A FORTRAN Interface to the CODASYL Database Task
Group Specifications," Computer Journal, May 1974, pp. 124-129.

[Sussman72] Sussman, G. , Winograd, T. , and Charniak, E.
,

"MICROPLANNER
Reference Manual, M.I.T. AI-TR-203a, 1971

[Taylor76] Taylor, R. W. and Frank, R. L. "CODASYL Data-Base Management
Systems," ACM Computing Surveys, March 1976, pp. 67-103.

[Teitelman74] Teitelman, W. "INTERLISP Reference Manual," XEROX Palo Alto
Research Center, Palo Alto, California, 1974.

[TOPS 10] DEC. "DEC SYSTEM- 10 Operating Systems ’ Command Manual,"
DEC-10-OSCMA-A-D, Digital Equipment Corporation, Maynard,
Massachusetts, May 1974

[Weissman67] Weissman, C. "LISP 1.5 Primer," Dickinson Publishing Company,
1967.

[Wilcox76] Wilcox, C. R. "MAINSAIL Language Manual," SUMEX, Stanford
University, May 1976.

321

Summary

Chart

322

compile-

time

interprogram

facility

control

communication

of

extenranl

devices

,

APPENDIX D

A SURVEY OF SIMULATION LANGUAGES

Prepared for National Bureau of Standards

by

Mr. Benjamin Clymer, P.E.
Consulting Analytical Engineer

INTRODUCTION

TUTORIAL SURVEY OF SIMULATION LANGUAGES
GPSS
SIMSCRIPT
CSSL
CSMP
DYNAMO
GASP IV
Comparative Evaluations

NEEDS FOR DEVELOPMENT
Language Development Needs
Standards Development Needs
Application Development Needs
Hardware Development Needs

RECOMMENDATIONS
Applications of Simulation in CAM
Language Standardization
Language Choice

REFERENCES

323

Introduction

The purpose of this Appendix is to bring together the ideas in this report which relate
to simulation languages and to present those ideas in tutorial form as constituting an
important cross-section of the subject of integrated computer aided manufacturing.

For the benefit of those readers who are not familiar with the subject at hand, a few
basic definitions are offered at the outset of the discussion:

(1) "Software" is the hierarchy of programming tools (including languages) by which
a user of a computer exerts command control over the hardware. (A longer but
but better definition is given in (108, pp 177-178))*.

(2) "Problem-oriented languages" are among the higher-echelon languages; they employ
a vocabulary appropriate to the application problem.

(3) A "simulation language" is a problem-oriented language intended for application
to problems involving simulation. A simulation language is built upon a more
general-purpose language, such as FORTRAN. A simulation language saves the
user's time in writing and debuggings computer program, but the program takes
longer to be executed (run) than would a program written in a lower-level
language

.

(4) "Simulation" is the "establishment of a mathematical-logical model of a system
and the experimental manipulation of it on a ... computer" (4). Simulation
produces a "dynamic portrayal of the states of a system over time" (4)

.

(5) Some of the instances of a "system" which are relevant here are an aircraft
factory, an engineering department, an aircraft, or any subset of one of these.

(6) A "model" is a set of equations and/or verbal statements which together define
selected states and behaviors of the corresponding system, and which are
capable of being rendered as a simulation program that puts the model into
specified situations.

(7) A "discrete" system, model, or language, is one which is composed of or deals
with discrete objects and discrete events affecting them. The events usually
occur at irregular times.

(8) A "continuous" system, model, or language is one which undergoes or expresses
continuous processes, usually without sudden discontinuities.

(9) A "combined" system, model, or language has some discrete and some continuous
content

.

There is a regrettably sharp dichotomy of simulation people into discrete and continuous
camps (1). Few persons can deal with both, so the "combined" camp is still small. The

discrete camp contains people from probability and statistics, industrial engineering,
operations research, and management science, whereas the continuous camp is populated from
differential equations, analog computation, physical sciences, and recently the soft
sciences

.

There are many simulation languages. In order to focus this Appendix upon the language
which are most relevant, emphasis has been placed upon the following: GPSS

,
SIMSCRIPT,

CSSL, CSMP, DYNAMO, and GASP IV. Less concern has been given to languages developed and

used mainly outside this country (such as SIMULA)
,
or implemented only on old or unusual

or small computers (such as PACTOLUS) ,
or languages which are themselves old and to various

degrees superseded (such as MIDAS and DAS)

.

"k

Numbers in parentheses are numbers of references in Section 4 of this Appendix.

324

The level of the discussion herein is somewhat abstract. Details of the design of

particular simulation languages are not brought in at all. Comparisons of languages are
made only by citing opinions in the literature, there being more than enough of these
gratuitous opinions to serve the purpose here.

1. Tutorial Survey of Simulation Languages

1.1 GPSS

1.1.1 Overview of Language

GPSS is a highly structured discrete simulation language. It is designed to give
useful results easily and quickly (5). The user does not need to know much programming;
in fact, a statistical report is produced automatically (3).

GPSS is very well documented (3, 5, 6, 52-54).

The user of GPSS/360 invokes up to 43 "blocks", each of which is a subprogram in
assembly language specifying an action by the computer. Examples of GPSS blocks are link,

assign, tabulate, terminate and queue. When a model has been programmed, the blocks are
assembled into operational instructions to the computer by the software (3,6).

GPSS is the most widely used discrete simulation language (6) . Its flow orientation
makes it "an effective and efficient tool" (112) for queueing problems (6).

1.1.2 Applications

The literature concerning applications of discrete simulation languages is severely
truncated by proprietary interest on the part of the organizations which have developed
most of the practical applications. Therefore, the published papers have tended to be
of academic orientation: too theoretical, and too out of touch with real-life applications

(1).

Table 1 presents a sampling of representative papers concerning applications of GPSS
to systems of concern herein. All of the applications in Table 1 are directly or by
analogy relevant to CAD/CAM in the aircraft industry. The analogies are self-evident,
and several of them are noted in the literature. Many application classes are omitted
for lack of relevance, as judged by the writer.

1.1.3 Standardization Status

Some opportunity for standardization is available to users, and initiative has been
shown in this direction. For example, a steel company has developed a "standardized"
GPSS macro which simulates overhead crane movements within simulations of larger portions
of a steel mill. "The primary purpose of the routine is to eliminate the need to rewrite
simulations of crane movements, thus providing a substantial reduction in model development
time" (12)

.

1.1.4 Evolution and Derivatives

GPSS was first released by IBM in 1961. As of 1971 the evolution had led to GPSS V,

then the latest version (5). GPSS/360, version 1, is upward-compatible with GPSS V (87).

Some typical extensions to GPSS, which have been developed by users, may be noted:

(1) To avoid what had been a relatively large effort, an extension was proposed (35)
to deal efficiently with parameters dependent upon simulation time.

(2) GPSS with added graphics, denoted by GAPSS, was developed and applied to shop
scheduling problems (44)

.

325

II

(3) An extension of GPSS/360, version 5, called APPLES, was designed to be used
by production engineers who were not skilled in GPSS. The applications were
to production lines for electronic and electromechanical aerospace products.
Standard data forms were used to define a problem (20).

(4) Norden Division of United Aircraft Corp. has described some of its extensions
to GPSS: dynamic on-line display, data bases for input, interactivity with
user, and a combined language gotten by coupling GPSS to CSMP via GPSS HELP
blocks and by putting GPSS in control (1).

1.1.5 Implementation Status

GPSS, having been issued by IBM originally, has of course been implemented on system
360 and subsequent computers. The IBM versions of GPSS are implemented in assembly language,
whereas the Univac versions are in FORTRAN. Most major computers in this country have a

version of GPSS (5).
i

1.2

SIMSCRIPT

1.2.1 Overview of Language

SIMSCRIPT was developed by Rand Corp. and was released in 1962. Meanwhile, SIMSCRIPT has
become the most widely used discrete simulation language after GPSS (5) . It provides
the power and freedom of a general-purpose programming language (18) , but the user has
to have some programming expertise; he must specify the statistics he wants, and it takes
effort to document a model (5). SIMSCRIPT is modular, which facilitates debugging (6),
even in the large models for which it is designed (5). SIMSCRIPT is parsimonious in its
memory requirements, and it is relatively inexpensive to run (3).

SIMSCRIPT is well documented (3, 5, 6, 18, 50, 51, 99).

SIMSCRIPT programs consist of a vector of the attributes of entities and a collection
of event generation and interaction routines (99).

A SIMSCRIPT program is translated into FORTRAN, whence it is compiled and assembled.
SIMSCRIPT 1.5 eliminates the step of translation (6).

j

1.2.2 Applications

Only one relevant paper concerning an application of SIMSCRIPT to manufacturing or

analogous systems was encountered in the writer's search. This statistic is in contrast
to the number of entries in Table 1 for GPSS. The application found concerned a "flexible
manufacturing system" (FMS)

,
which consists of automated transfer lines and numerical

control (NC) machines (98). Large cost savings are claimed compared with conventional
job shops.

*

1.2.3 Standardization Status

No information on this subject was encountered in the search.

1.2.4 Evolution and Derivatives

Many languages have stemmed from the original SIMSCRIPT:

(1) SIMSCRIPT II, dating from 1968, is radically different. It has its own

compiler, which is written in SIMSCRIPT II. It requires programming competence

(5) . It is said to be the most comprehensive discrete simulation language (6)

.

It is even dignified with the description "higher order programming system" (5).

(2) SIMSCRIPT II Plus is marketed by Simulation Associates Inc. (6).

(3) SIMSCRIPT II. 5, which is marketed by Consolidated Analysis Centers Inc.,

contains additional improvements (6,100).

326

TABLE 1

Relevant Applications of GPSS

Degree of
Relevance

Class of
Application References

Essentially
Directly

Material handling system 12

Machine shop or job shop 48, 32

Assembly line tree, manu-
facturing system, or factory 9, 83, 73, 21

Steel mill 12

General queuing network 96

More or
Less
Indirectly,
by Analogy
to CAD/CAM

Computer, or net or comput-
ers or microprocessors

112, 111, 107,
82, 113

Telephone system 56

Health care system 60, 27

Bank real-time system 112

Airline schedule 77

327

(4) SIMFOR, which is based on a set of subprograms coded in FORTRAN, provides the
basic statements of SIMSCRIPT (105).

(5) SIMPL/1 is a SIMSCRIPT-like extension of PL/1 (95). It is said to be "easy
to learn" and "convenient" (96) ,

although it has none of the "amenities" of
SIMSCRIPT or GPSS (95).

(6) DESPL/1 (Discrete Event Simulation Programming Language / Version 1) is a close
relative of SIMSCRIPT II. It functions as a preprocessor to the PL/1 compiler
(55).

(7) CSP (Computer Simulation Program) is said to be a modular, flexible, and efficent
tool for all stages of the design of a computer. CSP I was written in SIMSCRIPT
1.5 in 1972; then CSP II was written in SIMSCRIPT II. 5 in 1975 (115).

(8) Another extension of SIMSCRIPT enables it to control DYNAMO by calling events
relating to the differential equation integrations at the end of every time
interval. In this version DYNAMO uses trapezoidal integration (18).

i

1.2.5 Implementation Status

In 1971 SIMSCRIPT compilers were available for the IBM 360, RCA Spectra 70, and many
other computers (5)

.

1.3 CSSL

1.3.1 Overview of Language

CSSL is a family of languages for continuous system simulation, including currently
MIMIC, CSMP, CSSL III, and ACSL (92). Some of the versions of CSSL are HYTRAN (for
analog-digital hybrid simulation programming), SL-1, and S/360.

CSSL had its origins in languages which sought to make the digital computer less
formidable for analog users to learn. These languages have been well surveyed (116) .

CSSL is a statement-oriented language for dynamic continuous system simulation (119)

.

CSSL III is marketed by Programming Sciences Corp. and by Control Data Corp. (92).

The difinitive references are (117, 118). CSSL III has seven options for its integration
subroutine. It is designed for ease of batch processing by novice programmers. CSSL III

programs are translated into FORTRAN for compilation and execution (92).

1.3.2 Applications

In the writer's search no references were found to papers dealing with manufacturing
applications or even analogous applications. Rather, numerous applications (not cited
herein) turned up for a variety of engineering design problems involving essentially
continuous systems.

There is a rather tenuous analogy between an assembly line and a set of chemical
reactions. With a sufficiently high rate of production the assembly line could be modeled
with the differential equations of chemical kinetics. A piece of scrap would correspond
to a chemical byproduct. Similarly, it is possible to model a health care system
as a continuous system (28).

1.3.3 Standardization Status

In 1965 Simulation Councils (now the Society for Computer Simulation) established
a Simulation Software Committee. It developed specifications for CSSL's which were
published in the December 1967 issue of the SCi journal "Simulation". Currently the

committee has been reestablished and is exploring possible updates in the specifications.
Several versions of CSSL, such as Raytheon's RSSL (102), have been voluntarily made to

conform to these specifications.

328

1.3.4 Evolution and Derivatives

Several derivatives of CSSL have evolved:

(1) GCSSL is an interactive graphics extension of CSSL III (59, 92, 93). The authors
would use ACSL as a starting point, if they could do it again.

(2) The originators of Raytheon's RSSL, Mitchell and Gauthier Associates, have more
recently developed and have been marketing ACSL ("Advanced Continuous Simulation
Language") (58, 91, 102). ACSL has such features as interactive output
displays (plots and/or tables), several options for the integration algorithm,
a strong analog "flavor", and array capability. A program can be prepared
from a block diagram, FORTRAN statements, or a mixture of the two.

(3) DARE P is a batch mode, ANSI FORTRAN IV based variant of CSSL (66).

(4) AHCSSL is intended for analog-digital hybrid computer users (90)

.

(5) CSSL IV is proprietary with Young Lee and Associates, Torrance, California.
It is said to be an improved version of CSSL III, having a number of enhance-
ments and extensions which enable it to run much faster.

1.3.5 Implementation Status

CSSL III has been available on the Control Data 6000 series computers, as well as on

the IBM 360, XDS Sigma 7, and Univac 1108 (59, 119).

ACSL is implemented on all major CDC, Univac, and IBM computers.

1.4 CSMP

1.4.1 Overview of Language

CSMP/ (Continuous System Modeling Program) was developed by IBM (119, 120). It is

based on IBM's DSL/90 digital simulation language. Problems can be prepared from either
a block diagram or a set of differential equations. CSMP can also accept most FORTRAN
statements

.

1.4.2 Applications

Relevant applications papers which were found in the writer's search are presented
in Table 2.

1.4.3 Standardization Status

No information on this subject was encountered in the search.

1.4.4 Evolution and Derivatives

Many derivatives have sprung from CSMP:

(1) PR0DYC is a language for chemical plant design studies. It is capable of

representing the plant's control system, and as of 1971 it could represent
six different processes, each with its own subroutine. An executive routine
ties the submodels together. PRODYC generates a CSMP program. (34)

(2) A precompiler to convert a chemical kinetics model into a CSMP program is

CHEMCSMP (23).

(3) Among interactive versions of CSMP/360 is (85).

(4) Another on-line interactive version of CSMP/360 with graphic output has been
reported in (76)

.

329

TABLE 2

Relevant Applications of CSMP

Class of Application References

Mechanical impact 42

Landing gear design 38

Control system design 40, 41

Aerospace component design 36

Inventory control 30

Aerodynamics 17

Optimization (2-point boundary
value problem) 19

Adaptive manufacturing system 22

330

(5) An extension of CSMP offering printer or plotter graphic output is (46).

(6) Other graphics additions to CSMP are described in (43)

.

'

(7) A graphic CSMP is presented in (39).

(8) An extension of CSMP, which incorporates some features of MIMIC, is given in (37).

(9) CSMP III has graphics capabilities (31).

i

1.4.5 Implementation Status

CSMP, being an IBM product, is available on the 360, 370, and 1130. The latter
version is only block oriented (119, 121).

1 . 5 DYNAMO

1.5.1 Overview of Language

DYNAMO is a special-purpose compiler for continuous system simulation. It was
developed originally to implement the "Industrial Dynamics" methodology, as Forrester
called systems modeling and simulation initially (later "Systems Dynamics"). The
definitive references for the first version of DYNAMO are (62, 122).

DYNAMO has error detection and diagnostic capabilities (18).

DYNAMO is "brilliantly limited" (18). For example, it uses only Eulerian (rectangular)
integration with fixed step size, even in the DYNAMO II User's Guide version of 1970 (4).

The result is a simple language with, of course, limitations.

1.5.2 Applications

DYNAMO has been especially popular for simulation of company, city, or the world,
following Forrester. Company simulation, strongly influenced by Industrial Dynamics (122),

have tended to concentrate on the aggregated dependent variables which are of concern in

upper echelons of management, to the virtual exclusion of particular factories as such
' (62).

DYNAMO has been applied to the dental care delivery system for this country (101).

1.5.3 Standardization Status—
The DYNAMO languages have been developed and marketed only by Pugh Roberts Inc. Hence

some future standardization is more possible than it might otherwise be.

1.5.4 Evolution and Derivatives

The latest version if DYNAMO III (101).

1.5.5 Implementation Status

The original DYNAMO compiler was designed for use on the IBM 704. It was quickly
extended to the IBM 709 and 7090 (122) . More recent versions are available for virtually
any computer.

1.6 GASP IV

1.6.6 Overview of Language

GASP IV is a "combined" language intended for simulation of systems having both
discrete and continuous aspect. It is preeminent in a new field. Of all combined
languages, only GASP IV is well documented and receives vendor support (103).

331

The definitive references for GASP IV are (4, 8, 7, 63-65).

GASP IV was developed and is marketed by Pritsker and Associates (4) . It was built
upon GASP II, which is only discrete, by including some continuous elements (64).

GASP IV is written in ANSI FORTRAN IV. Therefore, it is approachable by many people
and is potentially widely portable to different computers (4)

.

Some of the features in GASP IV include statistical calculations, random deviate
generation, report generation, and collection of performance data for the modeled system,
in addition to exercising the model (4).

GASP IV can use three independent variables: time and two space dimensions. Hence
it can model factory equipment in terms of their actual floor locations (7).

)

Integration in GASP IV is done by a variable-step-size fourth-order Runge-Kutta
algorithm (123, 124). Step size is adjusted to make any "time event" (occurring at a
preknown time) occur at the end of a step (64)

.

The structure of GASP IV is a two-echelon hierarchy. The top level is the executive
function, which switches among modes (initialization, state variable updating, monitoring,
etc.). The lower level is the event selection function, which sequences the execution
of event routines. Control passes back and forth between these two echelons (4).

The user has to keep in mind 98 GASP system variables and 41 GASP and user subprogram
names. His responsibilities consist of writing the following in FORTRAN:

(1) an initialization routine

(2) a subroutine for each type of discrete event in the model

(3) a subroutine defining state and derivative equations for the continuous state
variables

(4) a subroutine defining conditions on state variables when events trigger (69)

.

1.6.2 Applications

There have been quite a few applications of GASP IV to problems relevant to CAM.

Pritsker' s book (4) presents five examples, which are mostly discrete. Wortman (7)

states that GASP IV can be used for problems involved in automated manufacturing, including
inventory strategies, logistics, queueing, scheduling, materials handling, plant design,
etc. There has been an application to an inventory problem with backorders (104). A

system consisting of four parallel production lines, seven warehouses, and many products
with variable demand, has been studied with GASP IV (14).

A computation center has been modeled with SCOPE 4(103). It is written in FORTRAN,

and it calls GASP IV subroutines.

The plants comprising a crop have been simulated with GASP IV (109). The model
included growth, utilization of various nutrients, light, water, etc. The problem is

somewhat analogous to a manufacturing "plant", which likewise produces new growth (products)

by employing raw materials.

1.6.3 Standardization Status

There is a GASP IV user's group in ACM SIGSIM (7). Such groups tend to generate

extensions and embellishments, but this one might be able to undertake some efforts

related to standardization.

332

1.6.4 Evolution and Derivatives

Although GASP IV is quite new, it has already spawned some descendants. An interactive

I

1

!

version has been developed (104) . It was implemented initially on a minicomputer (General
Automation SPC 16/65).

1.6.5 Implementation Status

GASP IV is or soon will be implemented on all major computers in this country (4).

1.7 Comparative Evaluations
1.7.1

Discrete Languages

1.7.

1.1

GPSS and SIMSCRIPT

The popularity of GPSS is due in part to its simple structure, which facilitates
learning it. Moreover, it is powerful enough for many applications, even though it is

less flexible than competitive languages (99) . The other popular discrete languages in
this country, in decreasing order, are SIMSCRIPT, DYNAMO, and SIMULA (1, 5).

A point-by-point comparison of GPSS and SIMSCRIPT is offered in Table 3. Clearly
each has substantial advantages for its own class of users and applications. However,
the greater popularity of GPSS offers the most working model for the effort expended.

In the case of simulation of computers GPSS receives at least one vote: "Contrary to the
more conventional view of the matter, we believe that GPSS is superior to any of the

specialized computer system simulation packages for the most complex computer system
simulation applications" (112)

.

k. •
. ,i .•

"

1.7.

1.2

SIMULA

Since SIMULA has not been included in Sections 1.1-1. 6, a brief overview will be given
here as a preliminary to comparing it with other languages.

ALGOL is a subset of and is the base of SIMULA (5,99). SIMULA has an elegance,
richness, and flexibility of structure which recommends it to many users. In fact the

structure concept, and expressive power of GPSS and SIMSCRIPT are subsumed in SIMULA
so that each of these two languages could be rendered in SIMULA (99). Further information
is available in the definitive references (49, 67). The latter contains five papers
concerning SIMULA itself as well as abstracts of 34 papers in English.

The SIMULA Development Group serves as a standardizing body. It consists of repre-
sentatives of SIMULA implementations on various computers. SIMULA is said to be available
in the form of compilers for computers of nearly every major US manufacturer, with the
possible exception of Burroughs.

The most recent version of SIMULA, available since 1972, is SIMULA 67.

The following comparisons of SIMULA with other discrete simulation languages will
be noted:

(1) Like SIMSCRIPT, SIMULA gives the user nothing automatically in the way of

analysis and reporting of results; he must program to get them (6)

.

(2) Also like SIMSCRIPT, SIMULA is harder for an engineer to learn and use (1)

.

(3)

In a comparison made with a military simulation problem (45), SIMULA was found
to save personnel time and cost, although it increased computer time and cost,

relative to use of FORTRAN.

(4)

One comparison (29) found SIMULA 67-A to be better than SIMSCRIPT II in both
compiling and executing. It was granted, however, that SIMSCRIPT II has

a powerful language structure, better readability, and excellent documentation.

333

TABLE 3

Comparison of GPSS and SIMSCRIPT

Feature GPSS SIMSCRIPT

Degree of structure (5)
highly
structured

less
structured

Ease of learning by nonprogrammer
(1, 5, 6)

relatively
easy

harder; requir-
es competence

Convenience features (5)
includes
many

less
convenient

Effort to develop significant
simulation (5)

moderate
considerably
more

Comprehensiveness (6) less
most of all
languages

Freedom in arithmetic and logic (6)
less
afforded

greater
freedom

Execution time (6) longer moderate

Automatic analysis and reporting (6)
much
provided

none

(5) One critic feels that SIMULA does not offer the user as sophisticated a tool

as GPSS or SIMSCRIPT II (5).

(6) The scenario approach to modeling is convenient for a SIMULA user, since a

scenario model can be transferred directly to SIMULA coding (99). However,
this approach is also fundamental to the structure of GPSS programs.

1.7. 1.3 GASP II

GASP ("General Activitiy Simulation Program") was orignially developed by Kiviat at

US Steel, and from it was developed GASP II at Arizona State University (4) . It includes
a number of special subroutines in FORTRAN which, when called, perform for the user the

fundamental actions of the program, such as timing, set manipulation, random deviate
generation, statistical summary, I/O, etc. (3).

GASP II is generally considered to be competitive with GPSS and SIMSCRIPT. One user

chose GASP II "because its lower run costs, smaller core requirement, and shorter compilation
times more than offset the greater flexibility of GPSS and SIMSCRIPT II" for a munitions
manufacturing study (74). Another user chose GASP II for modeling a iob shop with up
to nine machines. A 62-item bibliography of the application of discrete languages to

job shop scheduling simulation is included in this paper (61).

1. 7.1.4 Other Discrete Languages

Numerous other discrete languages are documented in the literature as "also rans" (3)

.

For example, SOL, OPS 3, and WASP are said (5) to be less sophisticated than the front-

running languages. One user selected SIMPL/1 over GPSS V for his problem because the
people concerned already knew PL/1, a fact which obviated a psychological obstacle (96).

The same argument might have led him to SPL, which also has PL/1 as its base language
(5). Some of the other lesser known languages are CSL (72), Application Program (81),

ESP (5), and ECSL (78). A total of 38 languages are tabulated in (3).

1.7. 1.5 FORTRAN

It is generally considered that simulation languages are preferable to FORTRAN or

other general purpose languages, because programming is a smaller and easier job. This
simplicity of specifying actions in the program outweighs the disadvantage of longer

execution time (6). Reitman (1) asserts that FORTRAN programs take 3 to 20 times as

long to write and debug. Nevertheless, FORTRAN IV has been used to simulate a job shop (71).

1.7. 1.6 Classifications of Discrete Languages

Kay (3) discerns three families of discrete languages:

GASP family, including FORSIM
GPSS family, including GPS

SIMSCRIPT family, including SIMULA and CSL.

Fishman (6) uses a different three-fold classification:

Event-oriented, including GASP II and SIMSCRIPT
Activity-oriented, including CSL, FORSIM, and GSP

Process-oriented, including GPSS, SIMULA, SPL, and SIMPL

These orientations distinguish ways of organizing the sequencing of events.

1.7.2 Continuous Languages

There have been many comparisons of the continuous simulation languages already
mentioned herein with each other and with general purpose analog and hybrid analog-
digital hardware (33, 11, 15, 16, 40, 47). Generally, the use of continuous languages
on a digital computer has taken most of the market away from analog and hybrid systems,

335

since less experience is required on the part of the user. However, hybrid computers show
great savings in computer time for problems having a large bandwidth (ratio of highest to
lowest natural frequency or reciprocal time constant) (108) .

There are not great differences among continuous languages of the same software
generation. Such differences as there are are shown in Table 4.

A competitor to DYNAMO is NUCLEUS (2, 125). It too uses Eluerian integration. It
has been applied widely to problems in engineering planning. The continuous simulation
part of NUCLEUS is machine-independent; the other portions have been implemented on the
CDC 6000 series and CYBER 73 computers. NUCLEUS is marketed by Battelle Columbus Laborator-
ies. It has not been tested on the same problem- against other languages.

1.7.3 Combined Languages

The combined languages which predated GASP IV have been surveyed by Oren (57).
They include SSL, CLASS, DYSYS, GEST (86), and GSL (84). CLASS includes features selected
from SIMSCRIPT II, GPSS, and CSSL. GSL ("Generalized Simulation Language") is a FORTRAN-
based cross between CSSL and SIMULA which was developed at Case Western Reserve University,
drawing upon the earlier work of Fahrland.

GASP IV seems to have seized the lead since its introduction in 1973.

2. Needs for Development

2.1 Language Development Needs

A number of needs for language development can be identified:

(1) There is a lack of language protability between different computers (105)

.

(2) There is excessive difficulty of debugging a program, and it is virtually
impossible to completely debug a language (5)

.

(3) Programs have low efficiency in compile or execute (105).

(4) Many languages need improvement in the interaction between man and computer.
"The role of the computer must change from that of a hostile assistant
attempting and succeeding in showing the human to be a relatively inept
provider of instructions. Instead the computer must become a patient teacher" (5).

(5) There is need for languages to become more deserving of the name "program
generating system" by employment of increasing automation of programming (79, 80).

2.2 Standards Development Needs

Reitman asserts flatly that "Standardization of simulation languages is premature" (5)

.

He does, however, push for machine independence, without which the Air Force would find

it impossible to implement CAD/CAM.

One potent force operating to thwart standardization is the pressure favoring
proliferation of simulation languages. Sammet (88) points out that "As long as people
find it fun to develop languages, as long as they want something which is specifically
tailored exactly to their needs, and as long as they are going to find picayune faults

with the existing languages, there is very little that technical progress can do to reduce
the number of languages". The same conclusion is stated independently by Thompson and

Dostert (89)

.

On the other hand, there is a force tending to throttle higher level language
development. According to Reitman (1), "The need for software standardization and the

336

G •3 G hd D i-3 G cn < cn G G 3 O
—

3 H- c p 3 3 3 r+ P 3 CD tr

0 3 M 1

—

1 3 CD 3 3 O 3- 3 3 O LJ.

G CD I-1 1—

*

CD 3 1 tr rh hh 1 3 3 3
3 1 3 03 ft o O hh r+

G
O O

3 3 cn 3- M H- i-1 3 3- r+

3 tr tr O CD 3 H- M 3 O G
CD 3 3 <+ CD o H 3 3 3 3 G

3 hi hh r+ Cn H- 3 r+ 3 O CD

3- 3- hh CD rt 0 3) H r+ 3 O O 3
N 3 CD X 0 3 3 3 3 03 G n 3 G
CD G hi % hi O G G 3 r+ o 3 P

CD > CD cn O 3 3 3 3- CD 3 CD

P CD 3 G ts CD r+ 3 ft O 3- O G
3 CD CD CD CD rt H- 3 3 3 3
CD H 3* CD P 3- O 03 03

\ CD 3 O 3
o 03 CD 3

>H- 03

03 t—1

03
•

> k; Kj Kj k; G k: > K Kj td G td G
>< CD CD CD CD CD CD h-1 3 3 X 3 X O

CD 03 03 03 03 03 03 h-1 03 3 rt 3 r+ 3 n
hj ft 3 3 3 rt cn

fl) 3 3 3 3 3 G
G 3 03 rh 3 CD

CD 3 3- 3 3- 3
CD < 3- <
03 3 O 3

rt-

n
G 2 3 2 3 cn 2 > 2 2 > G td G cn

CD 0 0 0 0 M 0 M O O < 3 X O cn

hi 0 I-1 3 3 rt 3 G
G s: 3 3 3 rt

CD 3 3 3 3 3 H
3 03 r+ 3 3 M
3 3 3 3- 3 H
3 3- <
3 O 3

r+

o
> 2 k; 2 3 > 2 cn k: h< > G G G cn

< 0 CD 0 0 < 0 0 3 3 < 3 3 O 2
CD 03 CD 3 3 03 3 3 P 3 G
hi 3 3 3 3 CD rt- \
CD CD 3 3 G 3 U)

G G 03 rt 3 Oh

CD CD 3 3 3 o
3-
O
rt
•

Cn 2 k; k; 2 > 2 2 2 2 2 2 2 >
3 0 CD CD 0 < 0 O O O O O O 3 2
CD 03 03 CD 3 3 3 H
t—1 3 3 3- 3 S
I-1 CD 3 3 IH

G 3 tr n
CD h-1 3*

3J

,1

337

Relative

Merits

of

Selected

Simulation

Languages

establishment of elaborate groups organized to support the computer itself have all worked
against the use of simulation languages, in fact, all languages except FORTRAN or COBOL.
We must avoid the trap of standardization into a rigid set of languages unsuited to
problems with certain characteristics. Simulation languages require, if not establishment
support, then at least no establishment hindrance."

One benefit of standardization is that the approved languages would be more exercised
and thus would have fewer undiscovered bugs.

2.3 Application Development Needs

In recent years there has been growth in the development of corporate models (70).
However, these models contain little or no detail in their treatment of production activities.
This is as it should be, since a model should not be too many echelons of detail deep.
Rather, what is needed is a hierarchy of corporate models. The lower echelons of models
in this hierarchy should be the CAD/CAM software.

The state of the art for accuracy of workload simulation is an error or prediction
of the order of 5 to 25% (110, 114) . There is 'need for improvement in realism of prediction.
To be sure there is a point of diminishing returns of effort to improve accuracy.

As factories evolve, there will be an increasing amount of on-line real-time computing
hardware and software on the lower echelons of control. These controls will need to be
simulated for purposes of design of these and higher echelons of computer control.

2.4 Hardware Development Needs

While it is not necessary to develop new hardware for CAD/CAM, the possibility
deserves to be considered, in order to make the most of simulation languages.

A net of conventional computers is already a reality in most aircraft companies.
Simulation languages should be designed to operate in the environment afforded by a

network of computers.

Another hardware development which seems inevitable is the interconnection of a

computing system, complete with graphic terminals, to a plant-wide data communication
system, in order that real-time supervision can be accomplished, at first semi-automatically

,

and perhaps later fully automatically in a growing sector of responsibility for the computer.

Simulation languages, operating faster than real-time, are a valuable tool in such
a situation.

Another possibility to be on the alert for is a new type of parallel hardware, which
would be eminently suited to the CAD/CAM job. One emerging candidate is HEP (106),
which offers a hierarchy of synchronized parallel processors. The hierarchy could
represent all or a major portion of a factory. Prototype hardware yields an expectation
of an average instruction time of 10 nanosecs.

3. Recommendations

3.1 Applications of Simulation in CAM

The most promising strategy for organizing the total CAD/CAM task is to apply the

hierarchical structure principle deliberately wherever feasible.

The computers themselves, by means of which the automated factory is to be scheduled

and controlled, could well be organized with an operating system designed to manage a

hierarchy of computers. Moreover, that hierarchy of computers would need to be simulated

for purposes of system design.

338

In addition, a hierarchy of models of the factory would be desirable, since no single
model could have the depth and bandwidth to deal with the entire factory at once in detail.
Conceivably the models in lower echelons would be rendered in logic statements or block
diagrams, suited to discrete languages, while some, at least, of the higher echelon
models could be continuous (sets of differential equations). There might be opportunity
in the top and middle of the hierarchy to apply "combined" modeling and programming.
Thus to the hierarchy of models there could correspond a hierarchy of simulation language
programs and a hierarchy, somewhat less elaborate, of simulation languages. Specific
languages can be chosen for each level as appropriate. The principles for such hierarchical
organization of very large and complex systems have been described (24-26).

Each language and program should have an internal hierarchical organization too.

Most modern simulation languages do have a hierarchical structure consisting of three
echelons. The top level is for simulation timing and control. The bottom level is to

call library subroutines. The middle echelon executes simulation oriented routines. (6)

3.2 Language Standardization

It seems desirable to try to exert a minimum of unnecessary constraints against
future ingenuity, giving a possible role and place to any deserving future development.
To implement this objective would require the broadest and most flexible of structures
in any standardization concept. Hierarchical organization of unspecified entities would
meet this need. Different companies could use different hierarchies, according to con-

siderations applicable to their individual situations. Hence language standardization
is not recommended. Project standards, particularly on systems structure and documentation,
will be needed and will be adequately for the Air Force program.

3.3 Language Choice

The success of the Air Force ICAM program will not depend upon which specific
language or languages are chosen as long as the system structure is adequately specified
and documented. Discrete, continuous, and combined languages are discussed above that

are supported by all major hardware vendors, so machine independence is not a major
problem.

339

4. References

(1) Reitman, J., "The Engineering Role of Simulation", IEEE Trans, on Systems,
Man, and Cybernetics, Vol. 6, No. 3, March 1974, pp 208-213.

(2) George Juras, Personal Communication, Batelle Columbus Laboratories, 19 Nov. 76.

(3) Key, I. M. , "An Over-the-Shoulder Look at Discrete Simulation Languages",
Proc. 1972 Spring Joint Computer Conf., Vol. 40, pp 791-798, May 16-18, 1972,
Atlantic City, N.J., AFIPS Press, Montvale, N.J.

(4) Pritsker, A.A.B., "The GASP IV Simulation Language", Wiley-Interscience,
New York 1974.

(5) Reitman, J., "Computer Simulation Applications: Discrete-Event Simulation
for Synthesis and Analysis of Complex Systems", Wiley-Interscience, New York, 1971

(6) Fishman, "Concepts and Methods in Discrete Event Digital Simulation", John Wiley
& Sons, N.Y., 1973.

(7) Wortman, D. B., "Simulation with GASP IV: A Combined Discrete - Continuous
Simulation Language", 9th Annual Sim'n Symp., Record of Proceedings, Tampa,
Fla., March 17-19, 1976, p 47-59.

(8) Pritsker, A.A.B., "The GASP IV User's Manual", Pritsker & Associates, Inc.,

Lafayette, Ind., 1973.

(9) Eldin, H.K., and Schroer, B.J., "A Utility Program for Assembly-Line Design",
Simulation Councils Proceedings Series, Vol. 3, No. 1, June 1973, pp 5-11.

(10) Moore and Clayton, "GERT Modeling and Simulation: Fundamentals and Applications",

Petrocelli/Charter , New York 1976.

(ID Rossnagel, B.L., "A Comparison of 1130 CSMP and the EA1 680 Hybrid Computer
for Various Engineering Problems", Darcom Intern Training Center, Texarkana,
Texas, April 1976, 82 pp, Report No. Darcom ITC-02-08-76-014

.

(12) Hawes, B.W., Jr., "A GPSS Subroutine for the Simulation of Overhead Crane
Movements", 9th Annual Sim'n Symp, Tampa, Fla., Mar 17-19, 1976, Record of

Proceedings, pp 205-212.

(13) Kay, I. M. , Kisko, M. ,
and Van Houweling, D.E., "GPSS/SIMSCRIPT $EM DASH$

The Dominant Simulation Languages", Record of Proc. of 8th Annual Sim'n
Symp, Tampa, Fla., Mar 12-14, 1975, p 141-154.

(14) Duncavage, T. D., Reklaitis, G. V., and Woods, J. M. , "GASP IV Simulation of

Inventory Control and Production Scheduling for a Multi-Product Plant",
Proc. 5th Annual Pittsburgh Conf. on Modeling and Simulation, University of

Pittsburgh, Pittsburgh, PA, April 24-26, 1974, Part II, pp 1170-1176, Publ,

by ISA, Pittsburgh, PA, 1974.

(15) Capehart, B.L., "Dynamic, CSMP, and State Variables, A Comparative Study
for Simulation of Dynamic Operations Research Models", Proc. SCSC, Vol. 1,

July 19-21, 1971, p 31f f

.

(16) Nilsen, R.N., and Karplus, W.J., "Continuous-System Simulation Languages:
A State-of-the-Art Survey", Annal. Ass'n. Internationale Calcul Analogique,
Vol. 16, No . 1, Jan. 1974, p 17-24.

340

(17) Kumar, A., Cheng, S.C., and Birta, L.G. "Use of the S/360 CSMP Package in

Solving an External Boundary-Layer Flow Problem" Simulation, Vol. 20, No. 5,

p 163-167, May 1973.

(18) Jones, R.D., "Combining Discrete and Continuous Simulation Dynamo into
Simscript", Proc. Annual Winter Sim'n. Conf., Washington, D.C., Jan. 14-16,

1974, Vol. 2,'p 747-748.

(19) Storm, J.E., "CSMP III in Optimum Systems Control", Proc. 1973 Summer Computer
Simulation Conference, p 429-435, July 17-19, 1973, Montreal, Canada.

(20) Moore, P.J., and Hoggatt, A.C., "Autonetics Planned Production Line Evaluation
Simulator (APPLES)", Proc. 1973 Winter Simulation Conf., p 892, Jan 17-19,

1973, San Francisco, California, publ, by AFIPS Press. Abstract only.

(21) Patel, M.M., Panchal, J.M., Coughlin, M.T., "Cycle-Time Simulation for a

Multiproduct Manufacturing Facility", Proc. 1973 Winter Simulation Conf.,
Jan 17-19, San Francisco, California, AFIPS Press, Montvale, N.J., 1973.

(22) Anastasiu, S., and Soceanu, A., "An Application of CSMP Language to Adaptive
Systems", Autom. and Electron. (Rumania), Vol. 17, No. 2, Mar-Apr 1973,

pp 97-102, in Italian.

(23) Clark, R.L., and Groner, G.F., "A CSMP/360 Precompiler for Kinetic Chemical
Equations", Simulation, Vol. 19, No. 4, Oct. 1972, pp 127-132.

(24) Clymer, A.B., "The Modeling and Simulation of Big Systems", Proc. Simulation
and Modeling Conf., Pittsburgh, PA, April 21-22, 1969, pp 107-118.

(25) Clymer, A.B., "The Modeling and Simulation of Hierarchical Continuous Systems"
Keynote Address, Proc. Conf. on Applications of Continuous System Simulation
Languages (1st SCSC)

,
June 30 and July 1, 1969, San Francisco, California

pp 1-16.

(26) Clymer, A.B., and Bledsoe, L.J., "A Guide to the Mathematical Modeling of an

Ecosystem", in "Simulation and Analysis of Dynamics of a Semi-Desert Grassland
Wright, R.G., and Van Dyne, G.M., Editory, Range Science Dept., Science
Series No. 6, Colorado State University, Fort Collins, Colorado, Dec. 1970,

p 1-75 to 1-99, inc.

(27) Caltagirone, R. , and Lev, B., "Evaluation of Health Care Delivery by Computer
Simulation", Bull, Oper. Res. Soc. of America, Vol. 20, supp. 2, B/399, 1972.

(28) Clymer, A.B., "Next-Generation Models in Ecology", in Pattern, Ed., "Systems
Analysis and Simulation in Ecology", Vol. 2, Academic Press, New York, 1972,

pp 533-569.

(29) Tognetti, K.P., and Brett, C., "Simscript II and Simula 67-A Comparison",
Australian Comput . Journal, Vol. 4, No. 2, May 1972, pp 50-57.

(30) Valisalo, P.E., Sivazlian, B.D., and Maillot, J.F., "Experimental Results on a

New Computer Method for Generating Optimal Policy Variables in (S, S)

Inventory Control Problem", Proc. 1972 Spring Joint Computer Conf.,
Vol. 40, pp 199-203, May 16-18, 1972, Atlantic City, N.J., publ. by AFIPS
Press, Montvale, NJ.

(31) Caskie, R.E.M., and Mason, R.E.A., "Some Factors Influencing Development of

CSMP III", Canadian Information Processing Society, Canadian Computer
Conference Session 1972, June 1-3, 1972. Montreal.

(32) Skjerseth, P.J., "The Use of GPSS for Operational Planning a Numerically
Controlled Job Shop," Bull. Ops. Res. Soc. Amer., Vol 20, Suppl. 1, B-183,
Spring 1972.

341

(33) Delle Donne, P.E., and Capehart, B.L., "Some Modeling and Simulating
Considerations in Environmental Systems Analysis", Bull. Ops. Res. Soc.
Amer., Vol. 20, Suppl. 1, B-149, Spring 1972.

(34) Ingels, D.M., "A System for Simulating Chemical Process Dynamics and Control",
University of Houston, Texas. Order No. 71-9531, University Microfilms, Ann
Arbor, Michigan.

(35) Schmitz, P.
,
"On the Simulation of Time Dependent Queuing Discipline Using

the GPSS Simulation Language", Angew. Inform. (Germany), No. 1, Jan. 1971,

pp 31-34, in Germany.

(36) Anon., "Design for Precision", Comput. Rep. (USA), Vol. 7, No. 2, April 1971,

pp 8-11.

(37) Carver, M.B., and Likeness, S.L., "FORSIM. A FORTRAN Oriented Simulation
Program for the Continuous Transient Solution of Systems of Ordinary Differential
Equations", Report No. AECL - 3902, Atomic Energy of Canada, Ltd., Chalk
River, Ontario, May 1971.

(38) Biehl, F.A., "Aircraft Landing Gear Brake Squeal and Strut Chatter Simulation",
Proc. Conf. on Applications of Continuous System Simulation Languages, pp 201-

230, June 30-July 1, 1969, San Francisco, California.

(39) Sturcke, E.H., "Interactive Graphics in Aircraft Landing and Take-off Studies",
Proc. Conf. on Applications of Continuous System Simulation Languages, pp 241-

246, June 30-July 1, 1969, San Francisco, California.

(40) Murrill, P.W., and Smith, C.L., "Application of Simulation to the Generalized
Optimization of Process Control Systems", Proc. Conf. on Applications of

Continuous System Simulation Languages, pp 193-196, June 30-July 1, 1969,
San Francisco, California.

(41) Hinchley, E.M., "Digital Simulation in Control System Design of the Gentilly
Nuclear Generating Station", Proc. Conf. on Applications of Continuous System
Simulation Languages, pp 121-128, June 30-July 1, 1969, San Francisco California.

(42) Tramposch, H. , and Jones, H.A., Jr., "Impact Problems Efficiently Solved with
1130 CSMP", Simulation, Vol. 14, No. 2, Feb. 1970, pp 73-79.

(43) Schroer, B.J., "Expanded Capabilities of CSMP Graphics on the IBM 1130
Digital Computer", Simulation, Vol. 14, No. 5, May 1970, pp 205-214.

(44) Bell, T.E., "Simulation Analysis with Interactive Computer Graphics ", Instruments

and Control Systems, Vol. 43, No. 11, Nov. 1970, pp 109-115.

(45) Palme, J., "A Comparison Between Simula and FORTRAN", BIT (Sweden), Vol. 8,

No. 3, 1968, pp 203-209.

(46) Packer, T.J., "An Extended Version of the 1130 CSMP", Simulation, Vol. 13,

No. 5, Nov. 1969, pp 231-232.

(47) Chubb, B.A., "Economic Evaluation of the CSMP Digital Computer Simulation
Language", Simulation, Vol. 14, No. 3, March 1970, pp 101-103.

(48) Jain, S.K., "A Simulation-Based Scheduling and Management Information System

for a Machine Shop", Interfaces, Vol. 6, No. 1, Part 2, Nov. 1975, pp 81-96,

TIMS.

(49) Dahl, O.J., and Nygaard, K. , "SIMULA - A Language for Programming and

Discription of Discrete Event Systems, Introduction and Users Manual", Norwegian

Computing Center, 1967.

342

(50) Markowitz-, Hausner, and Karr, "SIMSCRIPT - A Simulation Programming Language",
Printice-Hall, Englewood Cliffs, N.J., 1968.

(51) Kiviat, Villanueva, and Markowitz, "The SIMSCRIPT II Programming Language"
Printice-Hall, Englewood Cliffs, N.J., 1968.

(52) Gordon, G. , "General Purpose Systems Simulation Program", Proc. Eastern Joint
Computer Conf'. , Vol. 20, 1961.

(53) IBM, "IBM General Purpose Systems Simulation Program V Users Manual", IBM
Form SH20-0851 , 1970.

(54) Bobillier, Kahan, and Probst, "Simulation with GPSS and GPSS V", Prentice-Hall,
Englewood Cliffs, N.J., 1976.

(55) Reddy, Y.V., and Bryan, R.H., "DESPL/1 - A Discrete Simulation Language Based
on PL/1", Proc. 1973 SCSC, July 17-19, Montreal, Canada, pp 100-112.

(56) Luk, R.H.
,
and Rabideau, G.F., "A Simulation Approach to the Evaluation of Two

Telephone Switchboard Systems", IEEE Trans, on Systems, Man, and Cybernetics,
Vol. 6, No. 4, April 1976, pp 310-315.

(57) Oren, T.I., "Digital Simulation Languages for Combined Systems, An Overview",
Proc. 1973 SCSC, July 17-19, 1973, Montreal, Canada, pp 346-353.

(58) Mitchell, E.E.L., and Gauthier, J.S., "A Table Driven Continuous System
Simulation System", Proc. 1973 SCSC, July 17-19, 1974, Montreal, Canada,

pp 121-125.

(59) Herring, T.L., and Kiraly, L.J., "Graphical CSSL - A New Tool for Scientific
Computation Using Interactive Computer Graphics", Proc. 1973 SCSC, July 17-19,

1973, Montreal, Can., pp 63-65.

(60) Flaugh, R.S., and Delporto, R.W., "Simulation of Automated Materiel-Handling
Systems Using GPSS", Simulation, Aug. 1971, pp 65-70.

(61) Ashour, S., and Vaswani, S.D., "A GASP Simulation Study of Job-Shop Scheduling",
Simulation, Jan. 1972, pp 1-10.

(62) Pugh, A.L., III, "Dynamo User's Manual", MIT Press, Cambridge, Mass., 1963.

(63) Pritsker, A.A.B., and Hurst, N.R., "A Manual for GASP IV", Purdue University,
Lafayette, Indiana, March 1973.

(64) Pritsker, A.A.B., and Hurst, N.R., "GASP IV - A Combined Continuous-Discrete
FORTRAN - Based Simulation Language", Simulation, Sept. 1973, pp 65-70. (The

paper following treats one example in detail)

.

(65) Hurst, N.R., "GASP IV - A Combined Continuous/Discrete FORTRAN Based Simulation
Language", Ph.D. thesis, Purdue University, 1973.

(66) Lucas, J.J., and Wait, J.V.
,
"DARE P - A Portable CSSL - type Simulation

Language", Simulation, Jan. 1975, pp 17-28.

(67) Norwegian Computing Center, "NCC Publications on Simulation and Simulation
Languages", Oslo, Norway, April 1974, 17 pp.

(68) Des Roches, J.C., "Survey of Simulation Languages and Programs", Mitre Corp
.

,

Report MTR-2040, Bedford, Mass., July 1971.

(69) Pritsker, A.A.B.,"The GASP IV Simulation Language", John Wiley & Sons, New
York, 1974.

343

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

Naylor, T.H., and Jeffress, S., "Corporate Simulation Models: A Survey",
Simulation, June 1975, pp 171-176.

Johnson, M.M.
,
and Schneider, M.H., "Simulation of Production Flow Times in

a Job Shop", Sci. Proc., Vol. 3, No. 2, Dec. 1973, pp 47-54.

Milner, D.A., "The Computer in Numerical Control of Machine Tools", Sc. Proc.,
Vol. 3, No. 2, Dec. 1973, p 27-33.

Curry, G.L., Wadsworth, R.B., and Dolbey, B.I., "Simulation Analysis of
Design Parameters for a Proposed Production Facility", Sci. Proc., Vol. 3,

No. 2, Dec. 1973. pp 3-7.

Brown, T.G., and Morris, R.S., "A Simulation Model for the Analysis of Multistation
Parallel - Channel Manufacturing Processes", Sci. Proc., Vol. 3, No. 2, Dec. 1973,

pp 95-102.

Pristker, A.A.B.
,
and Kiviat, P.J., "Simulation with GASP II", Prentice-Hall,

Englewood Cliffs, N.J. 1969.

Birta, L.G., Raymond, J. , and Haqqani, M.A.M.
,
"SIMPAK - An Interactive/Graphics

Program for Continuous - Simulation System", Simulation, Oct. 1976, pp 115-122.

Raqazzini, J.F., Jr., and Tapiero, C.S., "Optimum Shuttle Scheduling - a GPSS
Simulation", Simulation, Sept. 1976, — 97-104.

Clementson, A.T., "Extended Control and Simulation Language", University of
Birmingham Institute for Engineering Production, Birminghan, England, 1973.

Davies, N.R., "On the Information Content of a Discrete - Event Simulation
Model", Simulation, Oct. 1976, pp 123-128.

Davies, N.R., "A Modular Interactive System for Discrete Event Simulation
Modeling", Proc. 9th Hawaii Intern. Conf. on System Sciences, Jan. 1976, p 296.

Giffler, B. ,
"DPS: A Dynamic Planning and Scheduling System", TIMS/ORSA Bull.,

No. 1, 1976, p 116-117.

Bowdon, E.K., Mamrak, S.A., and Salz, R.F., "A Simulation Tool for Performance
Evaluation of the IBM 360/75", Intern. Journal of Computer and Information
Sciences, Vol. 3, No. 1, 1974.

Hutchinson, G.K., and Wynne, B.E., "A Flexible Manufacturing System", Ind.

Eng. (USA), Vol. 5, No. 12, Dec. 1973, pp 10-17.

Golden, D.
,
and Schoeffler, J.D., "Combined Continuous and Discrete Event

Simulation", Proc. 1972 SCSC, pp 329-334, June 14-16, 1972, San Diego, CA.

Josephson, P.D., "Interactive Continuous System Simulation Language", Proc.

1972 SCSC, pp 44-61, June 14-16, 1972, San Diego, California.

Oren, T.I., "GEST: General System Theory Implementor - A Combined Digital
Simulation Language", Ph.D. Dissertation, University of Arizona, Tucson, Ariz.

,

1971.

Schriber, T.J., "Simulation Using GPSS", John Wiley & Sons, New York, 1974, pp 533. 1

Sammet, J.E., "An Overview of Programming Languages for Specialized Application
Areas", Proc. 1972 SJCC, Vol. 40, May 16-18, 1972, pp 299-311.

Thompson, F.B., and Dostert, B.H. ,
"The Future of Specialized Languages",

Proc 1972 SJCC, Vol. 40, May 16-18, 1972, pp 313-319.

344

(90) Mawson, J.B., "A Continuous System Simulation Language for an Advanced
Hybrid Computing System (AHCSSL)", AICA International Symposium on Simulation
Languages for Dynamic Systems, London, England, Sept. 8-10, 1975 (available as
reprint from Electronic Associates Inc., West Long Branch, NJ, 07764).

(91) Mitchell, E.E.L., and Gauthier, J.S., "Advanced Continuous Simulation Language
(ACSL) User Guide/Reference Manual", Mitchell and Gauthier Accocs. , Concord,
Mass. 01742.

(92) Herring, T.L., "On the Design and Use of Graphics - Oriented Continuous System
Simulation Languages (CSSL)", Proc. ACM Symp. on Graphic Languages", April 26-27,

1976, Miami Beach, Fla., Florida Internil. Univ., pp 123-128.

(93) Herring, T.L., "User's Guide to Graphical CSSL - A New Tool for Scientific
Computation Using Interactive Computer Graphics" NWL Tech. Report TR 2905,
Naval Weapons Lab., Dahlgren, Va.

,
Jan. 1973.

(94) Young, R.E., and Pritsker, A.A.B., "GASPL/1: A PL/1 Based Simulation Language",
Proc. 1974, Winter Simulation Conf

. ,
Jan 14-16, 1974, Washington, D.C., pp 24-35.

(95) Rettenmayer, J.W., "SIMPL/1: A Simulation Programming Language", Proc. 1974
Winter Simulation Conf., Jan 14-16, 1974, Washington, D.C., pp 3-12.

(96) Sutherland, D.R., and Tendolkar, N.N., "Exploring the Use of SIMPL/1 for Modeling
Queuing Networks", Proc. 1975 SCSC, July 21-23, 1975, San Francisco, Cal.,

pp 92-97.

(97) Stewart, J.P., "Simulation Languages SIMPL/1, "Simuletter IV/2, ACM, Jan. 1973,

pp 84-87.

(98) Wynne, B.E., and Hutchinson, G.K., "Simulation of Advanced Manufacturing Systems",
Proc. 1974 Winter Simulation Conf., Jan. 14-16, 1974, Washington, D.C.,

pp 39-44.

(99) Houle, P.A., and Franta, W.R., "On the Structural Concepts of Simula and Sim-
ulation Modeling", Proc. 1974 SCSC, July 9-11, 1974, Houston, Texas, pp 55-60.

(100) Kiviat, P.J., Villanueva, R. , and Markowitz, H.M., "The Simscript II. 5 Pro-
gramming Language", Consolidated Analysis Centers, Inc., 1973.

(101) Hirsch, G.B., Bergan, T.A., Goodman, M.R. , and Pugh, A.L., III, "A Dynamo III
Simulation Model of the Dental Care Delivery System", Proc. 1975 SCSC, July
21-23, 1975, San Francisco, California, pp 1056-1061.

(102) Gauthier, J.S., and Mitchell, E.E.L., "Large Scale Simulation in the Raytheon
Scientific Simulation Language", Proc. 1975 SCSC, July 21-23, 1975, San Francisco,
California, pp 133-137.

(103) Alexander, E.L., Jr., "Scope 4: A Simulation Approach to Computer Performance
Evaluation Using GASP IV", Proc. 1976 SCSC, July 12-14, 1976, Washington, D.C.,

pp 6-10.

(104) Fox, M. ,
and Pritsker, A.A.B., "Interactive GASP IV", Proc. 1976 SCSC, July

12-14, 1976, Washington, D.C., pp 3-5.

(105) Toth, P., "Considerations on the Efficiency of Discrete Simulation Languages",
Proc. 1976, SCSC, July 12-14, 1976, Washington, D.C., pp 14-19.

(106) Gilliland, M.C., Smith, B.J., and Calvert, W.
,
"HEP: A Semaphore - Synchronized

Multiprocessor with Central Control", Proc. 1976 SCSC, July 12-14, 1976,
Washington, D.C., pp 57-62.

345

(107) Brauch, C.J., "Simulation of a Large Computing Facility as a Multiproduct Firm"
Proc. 1975 Symp. on the Simulation of Computer Systems, Aug. 12-14, 1975,
Boulder, Colo., pp 243-249.

(108) Karplus & Bekey, "Hybrid Computation", John Wiley & Sons, New York, 1968.

(109) Miles, G.E., Peart, R.M. , and Pritsker, A.A.B., "CROPS: A GASP IV Based
Simulation Language", Proc. 1976 SCSC, July 12-14, 1976, Washington, D.C.

pp 921-924.

(110) Segal, R. , and White, N. , "Representation of Workloads in a Network Environment
Proc. 1976 SCSC, July 12-14, 1976, Washington, D.C., pp 815-818.

(111) Griffith, W.G., Ingerman, D.
,
and Price C.E., "A Simulation Model of Univac's

DMS - 1100 — More Than Just A Performance Evaluation Tool", Proc. 1975 Symp.

on the Simulation of Computer Systems, Aug. 12-14, 1975, Boulder, Colo.,

pp 91-98.

(112) Traub, A.C., Jr., and Zachman, W/.F., "A GPSS Model of Complex On-Line Computer
System", Proc. 1973 Symp. on the Simulation of Computer Systems, June 19-20,

1973, Gaithersburg, Md., pp 17-37.

(113) Pasahow, E.J., "Simulation of a Real Time Microprocessor Network", Proc. 1975

Symposium on Simulation of Computer Systems", Aug. 12-14, 1975, Boulder,
Colo . , pp 67-71

.

(114) Roth, P.F., "Simulation of Computers: A Tutorial Introduction", Proc. 1975

Symposium on Simulation of Computer Systems, Boulder, Colo., Aug. 12-14, 1975,

pp 3-5.

(115) Iwata, H.Y., and Cutler, M.M. , "CSP II - A Universal Computer Architecture
Simulation System for Performance Evaluation", Proc. 1975 Symp. on Simulation
of Computer Systems, Aug. 12-14, 1975, Boulder, Colo, pp 197-206.

(116) Brennan, R.D., and Linebarger, R.N.
,
"A Survey of Digital Simulation: Digital

Analog Simulator Programs", Simulation, Dec. 1964, reprinted in McLeod, J.,

Ed., "Simulation: the ;Modeling of Ideas and Systems with Computers", McGraw-
Hill, New York, 1968, pp 244-258.

(117) Anon., "CSSL III User's Guide/Reference Manual", Rev. A, Programming Sciences

Corp., Los Angeles, Cal. 1971.

(118) Anon.
,
"Control Data 6000 Computer Systems Continuous System Simulation

Language III (CSSL III) User's Guide", Version 1, Publ. no. 17304400, Control

Data Corp., Systems Publications, Sunnyvale, California.

(119) Sammet, J.E., "Roster of Programming Languages for 1973", Computing Reviews,

Apr. 1974, ACM (A condensed version of the paper was given in Simultter V/4,

PP 33-35.)

(120) IBM, "System/360 Continuous System Modeling Program: User's Manual", GH 20 -

0367, IBM Data Processing Div., White Plains, NY.

(121) IBM, "Introduction to 1130 Continuous System Modeling Program II", GH 20 -

0848, IBM Data Processing Div., White Plains, NY.

(122) Forrester, J.
,
"Industrial Dynamics", MIT Press and John Wiley & Sons, 1961.

(123) England, R.
,
"Error Estimates for Runge - Kutta Type Solutions to Systems of

Ordinary Differential Equations:, Comput. J., Vol. 12, May 1969, pp 166-170.

346

(124) Shampine, L.F., and Walls, H.A., "Efficient Runge - Kutta Codes", Sandia Labs
SC — RR — 70-615, Sept. 1970.

(125) Goodman, F.K., and Juras, G.E., "NUCLEUS" A Simulation and Modeling System
Applied to Demographic, Economic, and Electricity Demand Forecasting Problems
Proc. 1976 Conference on Modeling and Simulation, Pittsburgh, Pa., in press.

347

-
'

.

APPENDIX E DATA BASE MANAGEMENT FILE STRUCTURES

FILE STRUCTURE AND ACCESS METHOD

Sequential
Random
List

COMPLEX STRUCTURES

Indexed Sequential
Tree
Network
Sets

349

File Structure and Access Method

With present comiuerical data base management systems, many of the
characteristics of their operations are a result of the particular file
structure and access method used. We will describe here, the various methods
used with their advantages and limitations. These will be general remarks
and do not indicate that some of the limitations cannot be resolved by clever
alterations, however, these additional correction factors are usually expensive
in terms of main memory, storage space, or retrieval time overhead.

We will partition the structure/access methods into three types -

sequential, random, and list.

1) SEQUENTIAL - Here, the record is contiguous, its location is
based on the value a record's key has relative to other records.
(Storage devices tend to be tapes and cards.)

Advantages - very rapid access' to the next file.

Limitations - a new file has to be written for each update to
a record or if a new additional record is inserted, retrieving
records out of their normal sequence is virtually impossible,
if a file is to be retrieved by more than one key (e.g. a water
pump specification may be under the key-engine parts and the key-
aluminum parts) , then duplicate files have to be created leading
to much data redundancy.

2) RANDOM - records are stored and retrieved on the basis of a pre-
dictable relationship between the key of the record and the address
of the location where the record is stored (Storage devices are
drums and discs) . Three general methods are used to determine
the address

:

a) Direct Address - the address of the Jones’ record (for example)
i.e., the disc, track, and sector location (number 3469, for
example) is known by the programmer and is supplied at storage
and retrieval times.

Advantages - allows equally fast access to all records.

Limitation - additional effort is required to maintain these
direct addresses.

b) Dictionary lookup - both the address and the record key are
stored in a dictionary (table or index) . To locate the "Jones"
record, the dictionary is scanned for a match on this name.
Then the location address is picked up and the record retrieved.

Advantage - the system maintains the actual address.

Limitation - additional time required to scan the dictionary,
and additional storage space required for the indices.

c) Calculation or Randomization - the record key is converted
through some kind of hash code process into an address.

Advantage - can retrieve all records equally fast without
having to search a data file or index file, and records can
be sorted, retrieved, and updated in place without effecting
other records in the storage media.

350

Limitation - may not yield a unique address for each record,
therefore, if overlap occurs - causes a condition called over-
flow therefore have to use pointers indicating where the over-
flow record is stored.

3) LIST - The basic concept here is to separate the logical organiza-
tion from the physical organization. The next logical record
desired can be "pointed" to, and need not be the next physical
record as in sequential organization. Thus, new records can be
placed in any space that is available. There are three basic types
of list organization:

a) Simple list - pointers are used to cause a record to be a
member of as many lists as desired under any number of different
keys (like our water pump example)

.

Advantage - there is no duplication of the record in the data
base and, therefore, no multi-updates, in addition, the record
can be stored anywhere in the file where there is space.

Limitation - additional space required for pointers, user's
system must take into consideration the length of the lists
as well as the number of lists in which a record participates
- these factors increase the file maintenance overhead time
since if a record is deleted, all of the lists it was involved
in have to be readjusted to bypass it.

b) Inverted list - makes available every data item as a key.
Such an organization requires a table or index of all data
values in the system and contains the addresses of all record
locations where those values occur.

Advantage - allows access to all data with equal ease - this
gives good query and reporting capabilities - good at handling
hierarchical data structures.

Limitation - the index table required can be as large or larger
than the data itself, as with the simple list system above,
there can be much maintenance required in storing and updating
data in large tables - this system has difficulty in handling,
requests of records located in different branches and/or levels
of a hierarchical structure, or located in network type data
structures

.

c) Ring - the last record in a list points (by a pointer) back
to the first (forming a ring structure).

Advantage - very powerful as it provides retrieve and process
capabilities in both directions while allowing branching to
to other logically related ring structures.

Limitation - again heavy record pointer overhead - these
searches can be quite time consuming if the data base is not
"tuned" properly - e.g. if the pointers send you back and forth
to different discs for each record in the list to be searched.

Compex Structures

In addition, to the simpler methods of storing and relating records
described above more complex relational structures can be defined.

1) INDEXED SEQUENTIAL - The file is organized so that records can
be accessed either by use of an index or in a sequential fashion

351

(of the indices or the data records) . Indices containing record
keys and addresses may exist for each record in the file.

Advantages - it provides some of the speed of retrieval of the
sequential file (once you are at the right location) by using
indicies to increase the speed of entering the file at the proper
place

.

(

Limitations - still large maintenance problems of sequential files
with the additional maintenance overhead of indices.

2) TREE - several layers of indices or records are used to establish
a tree-branched hierarchy. Indices may be organized as lists or
in sequence, with either method's characteristics.

Advantage - convenient in maintaining large dictionaries - allows
the data to be structured to represent rather complex data
relationships

.

Limitation - only a single entry point into each hierarchical
relationship - therefore, can require a long time to search the
hierarchy for one piece of data. Does not represent a network
related data structure, since no branches of the tree touch.

3) NETWORK - specialized form of a hierarchy where all the branches
can be interconnected.

Advantage - permits the storage and retrieval mechanisms of the
data management system to start with any record in the file and
move in multidirections throughout the hierarchy. The network
structure allows the data to accurately model real world
manufacturing and business relationships.

Limitation - updating and record deletion can involve large main-
tenance due to the involved relationships.

4) SETS - this is the CODASYL concept of relating data records. Each
set type consists of one record type declared as owner and plus
one or more record types declared as members. Connection between
the owner record and the member records is made by chains (embedded
pointers) or pointer arrays (indices). Both tree and network
structures can easily be built from these sets. At the least,
sets are connected by one way pointers, but the user may also choose
to declare two-way pointers for given sets. These sets can then
be searched in either direction with equal efficiency. In addition,
the member records can have pointers to the owner record, to avoid
stepping through the chain to obtain the owner.

352

*U.S.Government Printing Office: 1978 — 757-080/294

