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Construction of £PrGeneralized Inverses by Inversion of

Nonsingular Matrices*
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Any matrix B such that ABA=A is called a Ci-inverse of 4 and a C;-inverse of 4 such that BAB=B
is called a C,-inverse of A. Some properties of such inverses are established. It is shown that if 4 is
p-square of rank ¢ < p and P is any positive semidefinite matrix, whose rank is the nullity of 4, such
that U= A+ P is nonsingular, then B=U"'4U"" is a C,inverse of A with the property that null space
B=null space B*. That such a P exists for arbitrary square A is shown. The relation between this result

and the work of Goldman and Zelen is discussed.
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1. Introduction

Goldman and Zelen [1]' have shown how to con-
struct a generalized inverse (of a kind made precise
in what follows) of a real symmetric matrix 4 by in-
version of a nonsingular matrix formed from A. It is
inherent in the assumption that 4 is symmetric that
the resulting generalized inverse is also symmetric.

We show that if a complex matrix 4 and its conjugate
transpose have the same null space (i.e., 4 is an EPr
matrix [3]) then there always exists a generalized in-
verse of the kind discussed which is also an EPr
matrix. It is then shown that the construction given by
Goldman and Zelen [1] goes through, essentially step
for step, when the condition that 4 be real symmetric
is replaced by the condition that 4 be an EPr matrix,
and that the resulting generalized inverse is an EPr
matrix.

It is further shown that with no restrictions on A
the Goldman-Zelen procedure produces a general-
ized inverse which is EPr, although in this case the
details of the construction are somewhat different.
The (rather surprising) implication is that an arbi-
trary square complex matrix always possesses a gen-
eralized inverse, of the type discussed, which is an
EPr matrix. In any given case a generalized inverse
of this character can be obtained in principle by the
Zelen-Goldman procedure, i.e., by inverting a certain
nonsingular matrix and selecting from it a specified
submatrix.

2. Some Properties of Generalized Inverses

All matrices considered have complex entries.

We use the symbols p(V), NV), R(V), and V* to de-
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note the rank, null space, range and conjugate trans-
pose of the matrix ¥. When V is square, |V| denotes
the determinant of V. For two subspaces S; and
S., Si1+S, is the intersection of S; and Ss; S| <3S,
denotes that S, is a subspace of S,; the dimension of
Sy is written dim S;. The symbol I denotes an iden-
tity matrix of whatever order is appropriate in the
context.

For a given arbitrary matrix 4 we define by C,(A4) the
set of all matrices B such that ABA=A. We call any
matrix in Cy(4) a Ci-inverse of 4. We define by C»(A)
the set of all matrices B such that BeC(4) and BAB =B.
Thus BeCsy(A) if and only if BeC(4) and AeCy(B); and
BeCy(A) if and only if 4eCo(B). We call any matrix in
Cx(A) a Cyrinverse of A. Ci-inverses and Cs-inverses
have been termed by Rohde [4] generalized inverses
and reflexive generalized inverses respectively. We be-
gin with several lemmas regarding these kinds of
generalized inverses.

The first lemma, which we state for ready refer-
ence, is due to Rohde [4].

LEMMA 1. If A is any matrix and B is a C-inverse
of A then p(B) = p(A) = p(AB) = p(BA).

The next lemma was first proved by Rohde [4]. We
here give a shortened proof of a quite different char-
acter.

LEMMA 2. Let A be any matrix and B any C,-inverse
of A. Then B is a Cs-inverse of A if and only if p(B)
=)

PROOF. Assume BeC3(A) then since BeC(A) we have,
by Lemma 1, p(B) = p(A4); and since also AeC(B) we
have, by Lemma 1, p(B) < p(4). Thus p(4)=p(B).
Conversely, assume BeC(A4) and p(B)=p(4)=r. From
ABA=A the matrix AB is idempotent and by Lemma 1,
p(AB)=r. There are then linearly independent vectors
xi, 1 <1< r, such that ABx;= x;. 1f there are n columns
in B and y;, | <i< n—r,are any basis of N(B) =N(AB)
then ABy; =0. We then have BABx;= Bx; and BABy;
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= By;, from which it follows? that BAB=HB and that

LEMMA 3. Let P be an n X m matrix, Q and R be
m X n matrices. If PQ is idempotent, p(PQ)= p(Q) and
N(R)= N(Q), then RPQ =R.

Proor. If PQ is idempotent and p(PQ)=p(Q)=r,
then as in the proof of Lemma 1, we have x;, 1 <i <,
and y;, 1<i<n—r, linearly independent and such
that PQx;=x;, PQ}I 0 and y;eN(Q). If N(R)=N({Q)
then RPQx;=Rx; and RPQy;=Ry; from which the

conclusion follows.

It has been seen that if BeC;(4) then BA is idem-
potent and has the rank of 4. The following corollary
of Lemma 3 shows the converse of this to be true.

COROLLARY 1. The matrix B is a Ci-inverse of A if
and only if BA is idempotent and p(BA)=p(A); and
if and only if AB is idempotent and p(AB)= p(A).

ProoF. If BeC,(A) then from ABA=A, AB, and BA
are idempotent and that they have the rank of 4 is
given by Lemma 1. Conversely, assume BA idempo-
tent, p(BA)=p(A4), and in Lemma 3 take P=B, R
Q=A. Then ABA=A and BeC(A). If AB is idempo-
tent and p(AB)=p(A) then p(B*4*)=p(4*) and B*4*
is idempotent. By Lemma 3 (with P=B* R=0Q=A4%)
we have A*B*A*=A* 5 ABA=A = BeC(A\.

The following corollary of Lemma 3 gives a rela-
tion between an EPr matrix and a C;-inverse of that
matrix.

COROLLARY 2. A*=A*BA if and only if B is a
Ci-tnverse of A and N(A)=N(A*). Further, A*= ABA*
if and only if A* = A*BA.

Proor. If BeC(A) then BA is idempotent and has
the rank of A. If further N(4) =N(A4*), then Lemma 3
(with P=B, Q=A, R=A%*) gives A*BA=A*. Con-
versely, if A*BA= A* then N(A) <N(A*), and hence
N(A)=N(A*), and this being so A*BA=A*
=2 A*(I—BA) = 0=>A( — BA) = 0= BeC,(A). That
BeC1(A) and N(A)=N(A*) are necessary and suffi-
cient for A*=ABA* is proved in the same way.

REMARK: Corollary 2 can in fact be proved without
recourse to Lemma 3. The “if part” follows at once
from the fact [3] that N(A4*)=N(4%*)if and only if
R(A)=R(A%).

The next lemma shows that Cs-inverses can be con-
structed from C-inverses.

LEMMA 4. Let B; and B: be any two (not necessarily
distinct) Ci-inverses of A. Then B=B,AB; is a C.-
inverse of A.

PRrROOF. Given that B, and B; are in C;(A) we have
ABA= (AB1A)B.A=ABsA=A, or that BeC,(4). By
Lemma 1, p(B) =p(A4), but p(B) <p(B:A)=p(A)
also follows from Lemma 1 and BeC,(A). Thus we
have BeC,(A) and p(B)=p(A), and Lemma 2 gives
the conclusion BeCs(A).

A Ci-inverse, i=1, 2, of a hermitian matrix is not
necessarily hermitian but that a hermitian matrix
always possesses at least one hermitian Ci-inverse is

2 We observe that the x;. 1 <i<r,and yi. | < i< n—rare acomplete set of engenvectors
of the projection E=AB and are thus linearly independent. For proof, let z= Zat +32B5;.
Then Ez=3ax;. If z=0, then a;=0, and given this, z=38,y;=0, and g;=
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known3 [4]. We observe that the existence of a
hermitian C,-inverse of a hermitian matrix insures,
by Lemma 4, the existence of hermitian Cs-inverse.
For if Bi=B*eC,(A) then B=B,ABeC:(A) and is
hermitian whenever A4 is hermitian. There is in fact a
considerable list of properties such that by using
Lemma 4 we can assert: If there exists a C;-inverse
with one of the properties then there exists a C.-
inverse with that property.

The next lemma shows that every EPr matrix pos-
sesses a C»-inverse which is an EPr matrix.

LEMMA 5. Let A be a matrix with the property
N(A)=N(A*). Then there exist matrices B such that
BeCs(A) and N(B)= N(B*). In fact B=B;A*B*, where
Bi is any Cs-inverse of A, is such a matrix.

ProOF. If N(4)=N(A*) and B.eC:(A) then by
Corollary 2, we have A*B;A=A* and A*R,*A=A. Let
B=B,A*B,*, then ABA=AB,(A*B,*A)=ABA=A.
Thus BeC;(A). By Lemma 1, p(B) =p(A4). On the
other hand p(B) < p(A*B1*) =p(A) follows from
Lemma 1 and the construction ofB Hence by Lemma
2, BeCs(A). Clearly N(B:*)<N(B) and N(B;*)
SN(B*) But p(B:) =p(B), for we have just proved

p(A)=p(B) and p(A4) —p(B ) follows from Lemma 2.
Hence N( ) =N (B%*).

3. Cs-inverses by Inversion of a Nonsingular
Matrix

Let A be a p X p matrix, p(4) = q, K be a p X r matrix
and define the matrices M and U as follows:

i

U=A+ KK*.

M

= (1)

*

2

We further denote by S and S* the subspaces S=/N(A4)
N(K*) and S*=N(A*) - N(K*). We then prove the
following theorem.

THEOREM 1. Let M and U be as in (1) and (2). If
r=p—q then any one of the following statements
implies the other two: (i) S=0 and S*=0, (i) M1
exists, (ii1) U~! exists.

ProoF. (i) & (ii). It has been shown [2] that S*=0
is equivalent to the existence of a matrix A such that
H*4 =0 and |H*K| # 0. Assume (i) and let 27 = (x7, y7)
be a suitably partitioned vector such that ze/N(M).
Then Ax+ Ky=0 and K*x=0. The first of these two
equalities shows H*Ky=0= y=0. Given y=0 we are
left with Ax=0 and K*x=0 so that xeS and hence
x=0. Thus (i) (ii). It has been shown [2] that S # 0

= |M|=0 and this same argument shows that S* # 0
|M*[“O We then have S=0&|M| # 06 |M*|
# 0= S*=0. Hence (ii) = (i).

()& (iii). Assume (i). Let xeN(U), then Ax+ KK*x
=0. There is an H such that H*Ax+H*KK*x=H*KK*x
=0=5K*x=0. But then xeS and x=0. Thus (i) = (iii).

3 The argument in [4], and in Lemma 5 to follow, assumes the existence of a C;-inverse.

The existence of a Cy-inverse for an arbitrary matrix 4 was given constructive proof by
Bose in 1959 and is given in [5] in detail.



Now assume (i) false. If (i) is false due to S # 0 then |U|
=0, since any xe€S is in N(U); if (i) is false due to S* # 0
then |U*| =0, since any xeS* is in N(U*). Thus (iii)
=(i).

Whenever M- exists* we partition this matrix in
the same manner as M and write
B»
B,

B
M-1=
By,

Regarding the relation of the blocks in M to those in
M-! we have the following theorem.

THEOREM 2. Let M be as in (1). Assume M~! to exist
and be as in (3). Then, (i) AeC,(B), (ii)) N(B)=N(B*),
(iii) B is a Cs-inverse of A if and only if r=p—q,
(iv) B2:€Cx(K), (v) Bi2eCs(K*), (vi) if r=p—q, B.=0,
(vii) if r=p—q and N(A)=N(A*) then B, =B.;.

PROOF. It is known [2] that if M~! exists then p(K)
=r and r=p—gq. Assuming M-! exists we obtain

from MM-1=] and M-*‘M=1

3)

AB+ KBs =1 (4)

K*B=0 (5)
BA+ B,K*=1 (6)
AB1;+ KB»,=0. (7)

From (4) and (5) we have at once B¥*AB= B* and (i)
and (ii) follow from Corollary 2. Given (ii), (5) implies
BK=0 and this with (4) gives KB, K=K. Thus
By1€C,(K) and, by Lemma 1, p(KB.)=p(K)=r.
Since KBs; is idempotent of rank r we now have from
(4) that AB=1—KB>, is idempotent of rank p—r.
But p(AB)=p(B) =p—r follows from (i) and Lemma
1. Thus by Lemma 2, AeC»(B) and hence BeC,(A) if
and only if p(4) =q=p(B) =p—r, and (iii) is proved.
We have just seen that B»1eC; (K). Hence, by Lemma 1,
p(B21) = p(K) =r, but Bs; has r rows and thus p(B2;)
=r and (iv) follows from Lemma 2. From (5) and (6),
K*B;;K*=K* and B;:eC,(K*) implying, by Lemma 1,
p(Biz) =p(K)=r. But By, has r columns, thus
p(B2) =r and (v) follows from Lemma 2. If r=p—q,
then by Theorem 1, S¥*=0 and [2] there exists an H
such that H*4=0, |H*K|# 0. This being so, (7) gives
H*KB,=0 and (vi) is proved. If r=p—gq then from
(4), H*KB,, = H* gives Bsy= (H*K)-'H*. If further,
N(A)=N(A*) then from (6), B.K*H=H gives
By, = H(K*H)~! and (vii) is evident.

The next theorem gives an explicit formula for the
matrix B of Theorem 2 in terms of the matrix U in (2).

THEOREM 3. Let U be as in (2) and r=p—q. If U1
exists then B=U-1AU-1 is a Cxinverse of A with the
property N(B)=N(B*). If further N(A)=N(A*) then
UBU*=U*BU = A*.

4 Although not needed in Theorem 1, it is a fact that the existence of M~' implies both
p(K)=r and r = p—q [2]. cf. alternative proof of Theorem 3.

PRroor. If U-! exists and r= p — q then, by Theorem
1, M~1 exists. This being the case, according to The-
orem 2, the block B in (3) is a Cs-inverse of A4 with the
property N(B)= N(B*). Further B obeys K*B=0 and
BK=0. From these last two equalities and the defini-
tion (3) of U we have BU=BA and UB=AB which
imply UBU=ABA=A and hence B=U-1'AU-1. We
also have from UB=AB and BU*= BA* that UBU*
=ABA*; and if N(A)= N(A*) then UBU* = A* follows
from Corollary 2. Similarly from BU=BA and U*B
= A*B we have U*BU =A*BA and if N(A)= N(4*) then
U*BU = A*.

It is of some interest to prove Theorem 3 without
recourse to the existence of M-1.

ALTERNATE PROOF. If U-! exists and r=p— ¢ then
p(K)=r. For if p(K)<r, then dim NK*)=p—p(K)
>p—r and dim NA)+dim NK*)>p—q+p—r
=p=)S #0 and hence, by Theorem 1, |U|=0. Now
U-'A=1—U-KK* shows that if xeN(4) then U-1KK*x
=x, and clearly yeN(K*) implies U-'KK*y=0. Thus
given dim NA)=p—q=r and dim NK*)=p—r=gq,
we have that U-'KK* is idempotent of rank r and so
U-14 is idempotent of rank q. By Corollary 1, U-1€C(A4)
and U-'eC{(KK*). By Lemma 4, B=U-'4U" is a C,-
inverse of A. From B=(U-'A)U-'=(— U-'KK*)U-!
and U-'eC{(KK*) it follows that KK*B=BKK*=0
and hence (since p(K)= p(K*K)=r) that B*K=BK=0.
But dim NB)=p—q=r=p(K) and hence N(B)
= N(B*). The remainder of the proof is as given above.

We observe from Theorem 2 that when p—q=r,
every block in M- is a Cs-inverse of an appropriate
block in M (we agree that trivially a zero square matrix
is its own Cs-inverse), and that if additionally N(4)
= N(A*) then M and M-! are of the same form in that
B2 = B}5. Furthermore we have from Theorem 3 that
U'AU-'= BeCy(A), U-1eCi(A), as noted in the alter-
native proof, and UeC,(B), which follows from BU
=BA. This last set of relations among generalized
inverses is a special instance of the following lemma.

LEMMA 6. Let B, be any C,-inverse of A, then
B=B,AB,; is a Cs-inverse of A and any C;-inverse of
Bi is a Ci-inverse of B.

Proor. If B,eC,(A) then BiAB, = BeC,(A) is given
by Lemma 4. Let QeC,(B,) then BOB= B,AB,QBAB,
:BlABlABlzB]ABlzB and hence QGC[(B).

In Theorems 2 and 3 it has been shown for r=p—gq
that the existence of a K such that M~' and U~" exist
implies the existence of a B such that B is an #Pq
matrix and BeC:(A). If it is shown that such a K exists
when A is an arbitrary p-square matrix of rank g, then
we will have the conclusion that every square matrix
possesses a Cs-inverse which is an EP matrix. The
next theorem shows this to be the case.

Let X be the first block row of M, X= (4, K) and
Y the first block colamn of M, Y*= (4%, K). It is clear
that p(X)=p if and only if S*=0, for N(X*)=S*.
Similarly p(Y) = p if and only if S=0, since N(¥) =S.
By Theorem 1, p(X)=p(Y) =p is necessary and suf-
ficient for M-1 to exist and necessary and sufficient
for U-! to exist. This established, we need only to
have the following theorem, called to the author’s
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attention by John W. Evans (Mathematical Research
Branch, NIAMD, NIH) who kindly furnished the proof
which follows:

THEOREM 4. Let A be a p-square matrix, p(A)
=q<p, p—q=r. Then there exists a pXr matrix
K such that X= (A, K) and Y=(A*, K) have rank p.

Proor: We first show that given any two proper
subspaces T and L, it is possible to select a vector
x such that x ¢7 and x¢L. In the group theoretic con-
text this result is well known, viz, the union of two
proper subgroups of a given group cannot be that
group. Let & be the set of all vectors x such that either
xeT or xel. There are two cases to be considered.
First, either T<L or L <T and then there are cer-
tainly vectors not in &. Second T-L<Tand T- L<L.
In this case let .#7 be the set of all vectors x such
that x¢7" and x¢7T - L and let ¥, be the set of all
vectors x such that xel. and x¢T" - L. Now let xe.#7 and
ye#;. Then z=x+y is not in &, since for example if
z€T' then z—x=yel which contradicts ye.7.

Let a1, a2, . . ., ap be the columns of 4 and «,
ay, ., ap the columns of A* Define To=/{ai,
as, . . ., ap} to be the subspace spanned by the a;,
1<i<p, and when appropriate vectors ki, ks, . . .,
kj have been selected define Tj={ai, a», . . ., ap, ki,

ks, . . ., kj}, 1 <j<r, tobe subspaces spanned by the
vectors ai, . . ., ap, ki, k2, . . ., k;. Similarly define
L():{al, Oz, . .« o, ap} and Lj={a1, Az, . . ., Op, k],
ksy . . ., ki}, 1<j<r. Select a vector k; such that

k1¢To and ki¢Lo; select k» such that k.¢T; and k.¢L;

continue this process up to the selection of k, such that
kr¢Tr—; and kr¢L,_;. Now this selection process is
always possible, for clearly dim T,=dim Ly=gq and
at each stage of the process dim Tj=dim Lij=q+j
<p for 0<j<r—1. Assuming the above selection
process completed, then dim 7,=dim L,=p and
p(X)=p(Y)=p as asserted.

The following observation is due to A. J. Goldman
(National Bureau of Standards): Since the proof of
Theorem 4 nowhere makes use of the assumption that
the a; are the columns of 4*, we have in fact proved
that if 4 and C are p-square matrices of rank ¢ <p
and r=p—gq, then there exists a p X r matrix K such
that [4, K] and [C, k] have rank p.
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